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Abstract

Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of 

the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty 

remains despite evidence that resting-state FC patterns are highly similar to cognitive task 

activation patterns. Identifying the distributed processes that shape localized cognitive task 

activations may help reveal why resting-state FC is so strongly related to cognitive task 

activations. We found that estimating task-evoked activity flow (the spread of activation 

amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a 

large-scale neural network model. Applying this insight to empirical functional MRI data, we 

found that cognitive task activations can be predicted in held-out brain regions (and held-out 

individuals) via estimated activity flow over resting-state FC networks. This suggests that task-

evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of 

resting-state FC to cognitive task activations.
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INTRODUCTION

The neural basis of cognition has been primarily investigated in terms of task-evoked 

activation level changes. Over the past decade a separate focus on spontaneous (non-task-

evoked) activity has challenged cognitive neuroscientists’ focus on task-evoked 

activations1-3. Due to the lack of experimental control of spontaneous brain activity there has 

been a strong emphasis on discovering correlations (rather than activation level changes) 

among activity time series – an approach termed resting-state functional connectivity (FC). 

Thus, the theoretical framework and methodological approaches associated with cognitive 

task activations and resting-state FC are highly distinct, leading to a bifurcation in 

investigations of brain function.

Notably, this bifurcation mirrors the classic “localized” versus “distributed” neural 

processing debate4-7, such that the relationship between localized cognitive task activations 

and distributed FC is also relevant to this broader theoretical divide in neuroscience. Here 

we sought to identify where the human brain lies with respect to these two extremes. We 

focused in particular on the role of intrinsic functional networks (as estimated by resting-

state FC) in distributed processing. There is evidence that resting-state FC patterns are 

similar to cognitive task activation patterns8-10, but we sought here to quantify this 

relationship using a large-scale mechanistic construct that may help explain why this 

relationship exists. Critically, we recently found that the FC architectures across a variety of 

tasks were highly similar (80% shared variance) to the resting-state FC architecture11. This 

suggests that the functional network architecture identified using resting-state FC is present 

during task performance, and could plausibly reflect the routes by which activity flows 

during cognitive task performance. However, it remains unclear whether and how these FC 

patterns relate to cognitive task activation amplitudes – such as task-evoked blood oxygen 

level dependent (BOLD) functional MRI (fMRI) signal increases – and therefore how they 

relate to cognition.

We sought to answer these questions by testing whether estimated activity flow over resting-

state FC networks can accurately predict cognitive task activations in held-out regions. 

Activity flow (often termed “information flow”) is the spreading of activation amplitudes 

between brain locations, such as task-evoked activations spreading from visual cortex to 

motor cortex in a visual-motor task. Decades of findings in local circuits and simulations 

have suggested that connectivity and activations are strongly interrelated neurophysiological 

variables, with activity/information flow as a key linking variable12-14. However, little is 

known about how FC and cognitive task activations relate at the large-scale network level, 

e.g., as measured with fMRI. Beginning to fill this gap, several recent studies used abstract 

statistical models to predict cognitive task activations based on individual differences in 

large-scale connectivity9,15,16. We sought to build on these findings to identify why these 

predictions were possible. This involved testing the plausibility of a (large-scale) 

mechanistic relationship between connectivity and cognitive task activations in terms of the 

concept of activity flow.
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Local circuit-level studies have suggested that task-evoked activation at a given location is 

primarily determined by activity flow from other neurons17,18. Activity flow is carried (via 

axons) by action potentials modulated by synaptic strengths (among other modulators). 

Thus, activity flow is a mechanism that emerges from several more basic mechanisms. One 

can conceptualize activity flow as relating activations (action potentials and associated local 

field potentials) and functional pathways (their tendency to influence one another via, e.g., 

synaptic strengths). Applied to large-scale measures of the human brain, we hypothesized 

that aggregate activation amplitudes (e.g., as measured by BOLD fMRI signal) flow among 

brain regions via functional pathways (possibly reflecting, in part, aggregate synaptic 

strengths) described by FC. Thus, we conceptualized activity flow as a linking variable 

between large-scale FC and cognitive task activations that could be used to demonstrate (and 

quantify) the functional relevance of these two measures to one another.

We tested the plausibility of this hypothesis by constructing activity flow mappings using FC 

and task activations. This involved predicting the cognitive task activation level at one 

location based on the FC-weighted sums of the activations at other locations (i.e., the sum of 

activity flow estimates; Fig. 1A). We then repeated this process separately for each brain 

region – akin to cross-validation from machine learning19-21. This resulted in a whole-brain 

activation pattern prediction, which could be compared with a given task’s actual fMRI 

activation pattern. A successful prediction (i.e., high correspondence between predicted and 

actual activation patterns) would indicate the plausibility of resting-state FC pathways in 

shaping the empirically observed activation pattern. Further, successful prediction across a 

variety of tasks and subjects would indicate the general plausibility of the activity flow 

framework at the large-scale network level – suggesting resting-state FC is relevant to 

cognitive task activations due to its role in shaping task-evoked activity flow among brain 

regions.

There are several reasons why activity flow-based prediction of cognitive task activations is 

not guaranteed to work. For instance, cognitive task activations may be largely shaped by 

task-evoked network reconfigurations18,22,23, making prediction of cognitive task activations 

by resting-state FC ineffective. Additionally, localized processing independent of other brain 

regions could be a major driver of cognitive task activations in any given brain region, such 

that activity flow is largely irrelevant to localized cognitive task activations. Indeed, many 

cognitive task activations have been interpreted under this assumption7, such as task-evoked 

activations within dorsolateral prefrontal cortex during working memory maintenance24. 

Even with strong evidence that activity flow shapes activations at the local circuit level12-14, 

this is not guaranteed at the large-scale network level since local processing (e.g., within-

region activity flow) is likely to be at least partially independent of the large-scale activity 

flow into a region. FMRI signals have several orders of magnitude lower spatial and 

temporal resolution than neuron-level events, leaving room for extensive local processing to 

occur independently of large-scale activity flow into and out of a given region.

The activity flow mapping approach is based on the local circuit-level findings described 

above. However, like recent models of activity spreading dynamics25,26, it is not meant to be 

a realistic simulation of neuronal dynamics but rather a tool for quantifying (and making 

inferences about) brain activity relationships. We see the present study as a precursor to 
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more complex approaches that incorporate biophysical models of neuronal 

communication27,28 to improve activation pattern predictions further. Here we sought to 

make as few assumptions as possible regarding the biophysical basis of the FC-activation 

relationship by using the simplest activity flow mapping approach possible – the FC-

weighted sum of activations. This allowed us to make straightforward inferences regarding 

the relationship between FC and cognitive task activations, which future work can refine 

using more elaborate models of neuronal communication.

We began by validating the activity flow mapping procedure with a simple computational 

model of large-scale neural interactions. We then applied the activity flow mapping 

approach to empirical fMRI data acquired as healthy adult human participants (N=100) 

rested and performed a variety of tasks. We used activity flow mapping to test our primary 

hypothesis: That cognitive task activations can be predicted in held-out brain regions (and 

held-out individuals) via estimated activity flow over resting-state FC networks. This would 

suggest that task-evoked activity flow over intrinsic networks (i.e., the spread of activation 

amplitudes between regions) acts as a large-scale mechanism helping to explain the 

functional relevance of resting-state FC to cognitive task activations.

RESULTS

Computational validation and identification of factors contributing to cognitive task 
activations

Previous research has shown that there is a statistical relationship between resting-state FC 

and cognitive task activations8,9, but not why this relationship exists. We recently found that 

resting-state FC patterns are present during cognitive task performance (80% shared 

variance in whole-brain FC patterns between rest and task)11. This suggests that resting-state 

FC might describe activity flow among brain regions even during task performance. Here we 

tested this possibility in the context of task-evoked activation amplitudes, using activity flow 

among brain regions as a linking variable between resting-state FC and task-evoked 

activations. This involved modeling activity flow as task activation amplitudes (standard 

fMRI general linear model estimates) multiplied by FC strengths (standard Pearson 

correlations) between brain regions (Fig. 1A). Standard measures were used to maximally 

relate to the existing resting-state FC and cognitive task activation literatures. We 

hypothesized that this would allow us to predict cognitive task activations in held-out brain 

regions based on resting-state FC patterns.

We began by validating this activity flow mapping procedure with a simple computational 

model of large-scale neural interactions. The model was kept simple to reduce the number of 

assumptions regarding underlying biophysical detail (see Methods). Interactions among 300 

brain regions were simulated along with task-evoked activations (Fig. 1B). Knowing the 

ground truth connectivity and activations in the model allowed us to validate the activity 

flow mapping procedure.

We constructed the model to have three structural network communities, with the first 

community split into two “functional” communities via modulation of synaptic strengths 

(Fig. 1C). This was of particular interest here given the potential for resting-state FC fMRI 
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(unlike, e.g., diffusion-weighted MRI) to detect the aggregate effects of synaptic strengths 

that are known to modify activity flow over structural (axonal) connections in local 

circuits12. Note that although we focus on synaptic strengths there are other modulators of 

FC as well, such as large-scale changes in neurotransmitter concentrations. We then ran the 

model with spontaneous activity (Gaussian random values) in each unit while simulating 

fMRI data collection (see Methods). We then computed Pearson correlations among all of 

the time series to produce simulated resting-state FC data (Fig. 1D).

We next simulated task-evoked activations by injecting stimulation (2 simulated minutes of 

stimulation in 3 blocks) into 5 neighboring regions at a time. Six “tasks” were simulated by 

changing the stimulated regions (see Fig. 1E). We simulated fMRI data collection as with 

the “rest” data, followed by application of a standard fMRI general linear model to obtain 

activation amplitude estimates for each simulated region (Fig. 1E). We then implemented the 

activity flow mapping algorithm, assessing its ability to predict task activations in held-out 

regions based on resting-state FC. We found that activity flow mapping was successful in 

recovering the original task-evoked activation pattern (across-task average r=0.56, 

p<0.00001; across-task average Spearman’s rank correlation rho=0.51, p<0.00001).

To ensure robustness of this result we repeated the entire simulation procedure 4000 times 

(see Methods). Over these iterations we varied a global coupling parameter to assess the role 

of aggregate synaptic strengths (and/or other potential modulators of neuronal 

communication), along with varying a local processing parameter to assess the role of non-

distributed (local) activity. Global coupling was defined as a constant that linearly scaled all 

synaptic strengths, while local processing was defined as a constant that linearly scaled all 

self (recurrent) connection strengths. We found that activity flow mapping worked to the 

extent that global coupling was high and local processing was low (Fig. 1B). The sensitivity 

of these results to the local-distributed processing relationship suggested that empirical 

assessment of activity flow mapping with real fMRI data would be non-trivial, in the sense 

that it would only be effective if the empirical data displayed certain properties. Further, 

these results suggest that activity flow mapping could provide evidence regarding the 

relative distributed versus localized processing that occurs in the human brain during 

cognitive task performance.

Activity flow mapping with empirical fMRI data

We next applied the activity flow mapping approach to empirical fMRI data, testing the 

hypothesis that cognitive task activations can be predicted in held-out brain regions via 

estimated activity flow over resting-state FC networks. This involved applying activity flow 

mapping to a Human Connectome Project dataset involving rest and 7 highly distinct 

tasks29. A standard set of functionally defined brain regions22,30 (Fig. 2A) was used along 

with standard Pearson correlation-based FC measure across all regions pairwise (Fig. 2B). 

The predicted activation pattern matrix was highly similar to the actual activation pattern 

matrix: across-task average r=0.48, t(99)=39.29, p<0.00001. The r-values were similar for 

each of the seven tasks individually: r=0.42 (emotional), r=0.49 (gambling), r=0.46 

(language), r=0.53 (motor), r=0.49 (reasoning), r=0.50 (social), r=0.45 (N-back).
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These correlations were higher when comparisons were computed after averaging the 

predicted and actual activation patterns across subjects (across-task average r=0.66, 44% 

variance explained), likely due to an improved signal-to-noise ratio from aggregating more 

data prior to comparison (Fig. 2C). This was true of each of the seven tasks individually (r-
values, in the same order as above): 0.67, 0.66, 0.66, 0.65, 0.68, 0.65, and 0.65. Note that 

these average-then-compare results likely better reflect the true effect sizes (due to better 

signal-to-noise ratios), while the compare-then-average results better demonstrate the 

consistency of the effects across subjects.

Results were similar when using global signal regression during preprocessing (average 

r=0.50 across the 7 tasks, t(99)=45.32, p<0.00001). Further, it should be noted that all 7 

tasks used block designs, and that future research investigating the efficacy of activity flow 

mapping with event-related relative to block designs will be important. Also note that 

similarity was high between tasks in the actual activation patterns relative to rest 

(Supplementary Fig. 1A), consistent with previous meta-analyses31-34, suggesting the 

existence of a “task-general” activation pattern. We therefore conceptualized a given task 

activation pattern as being composed of a task-general pattern and a task-specific pattern 

(Supplementary Fig. 1B). We applied activity flow mapping on isolated task-specific 

activations (see Methods for details), allowing us to identify the role of activity flow in 

shaping task-specific activations (e.g., motor network activations during the motor task).

These results demonstrate the plausibility of activity flow as a large-scale linking 

mechanism between resting-state FC and activations across a variety of distinct cognitive 

tasks. Further, these results suggest a strong role for large-scale distributed (rather than 

primarily local) processing in the human brain, establishing the relevance of resting-state FC 

to understanding cognitive task activations.

Improving activity flow mapping predictions using multiple regression

We used Pearson correlations to this point due to their prominent role in the resting-state FC 

fMRI literature. However, multiple regression is a standard measure for making predictions 

of a single variable based on many other variables – the goal of the activity flow mapping 

approach. We reasoned that this might produce better predictions since, relative to 

correlation, multiple regression would reflect more direct FC relationships between regions 

(accounting for, e.g., signals passing through a third region). Further, unlike correlation 

(which is an abstract statistical measure), multiple regression would scale FC values to be in 

the same units as activity in each to-be-predicted region during rest, likely producing more 

accurately scaled predictions. We therefore adapted the activity flow mapping approach to 

use multiple regression in place of Pearson correlation. This involved calculating resting-

state FC using a standard linear regression model (i.e., a general linear model) for each 

region, with all other regions as predictor variables. Each regression coefficient in the 

resulting FC matrix represents how much a given source region’s activity must be scaled 

(statistically controlling for all other source regions) to match the activity amplitude of a 

given target region during resting state.

Using this new FC matrix substantially improved activity flow mapping predictions: across-

task average r=0.69, t(99)=46.18, p<0.00001. The r-values were similar for each of the seven 
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tasks individually: r=0.61 (emotional), r=0.72 (gambling), r=0.64 (language), r=0.73 

(motor), r=0.72 (reasoning), r=0.75 (social), r=0.64 (N-back). The average correlation was 

higher when comparisons were computed after averaging predicted and actual activation 

patterns across subjects (across-task average r=0.91; 83% of variance), likely due to 

improved signal-to-noise (Fig. 3). This was true of each of the seven tasks individually (r-
values, in the same order as above): 0.86, 0.93, 0.88, 0.93, 0.94, 0.92, and 0.86.

These results demonstrate the utility of using multiple regression rather than Pearson 

correlation in the context of activity flow mapping. Further, the high correlations obtained 

further support the possibility that activity flow over intrinsic networks (as estimated by 

resting-state FC) strongly shape cognitive task activations.

Additional validation of the activity flow mapping approach

The activity flow mapping approach assumes that the observed prediction accuracies are 

dependent on the particular organization of the FC network architecture. To test this 

assumption we randomly permuted FC patterns across regions (10,000 permutations; see 

Methods). We found that the original result was highly dependent on each region’s particular 

FC pattern. Out of the 10,000 permutations, the highest Pearson correlation r-value between 

predicted and actual activity was r=0.024. This indicates that the non-parametric 

permutation test p-value for the original multiple regression FC result (r=0.69) was 

p<0.0001. Supplementary Figure 2A depicts a prediction based on an example permutation, 

while Supplementary Figure 2B visually illustrates the null distribution created for the 

permutation test. Similar results were obtained with Pearson correlation FC (highest value 

from 10,000 permutations: r=−0.009).

Another assumption of the activity flow mapping approach is that – outside the hypothesized 

activity flow mechanism – resting-state FC and task activations are largely independent. 

Such independence is likely because the resting-state fMRI data were collected during 

separate runs from the task fMRI data. However, there may be vasculature-based or other 

fMRI-related confounds consistent across both the resting-state and task runs that link 

resting-state FC and task activations. If such confounds exist (e.g., effects of differential 

signal-to-noise ratio across regions), they would likely result in region-to-region correlations 

in activation amplitudes across rest and task. We therefore tested for correlations between 

task-specific activation amplitudes and resting-state amplitude of low-frequency fluctuation 

(ALFF) values, a standard measure of resting-state activation amplitudes. We found that 

there was no region-to-region correlation between resting-state and task-specific activation 

amplitudes: across-task average r=−0.005, t(99)=−1.30, p=0.20. This suggested 

independence of the resting-state and task activation amplitudes, at least as far as task-

specific activations are concerned.

Another possibility is that regions with overall stronger resting-state FC tend to have higher 

task activation amplitudes. While not strictly incompatible with the proposed activity flow 

network mechanism, this could create a situation in which resting-state FC could predict 

activation amplitudes without the activity flow mapping procedure. We calculated the overall 

(sum) resting-state multiple regression FC for each region and tested for a correlation with 

task activation amplitudes. Note that this is equivalent to running the activity flow mapping 
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procedure with resting-state FC values alone (no task activation amplitudes). We found that 

there was only a very small (but significant) negative correlation between summed resting-

state FC and task-specific activation amplitudes: average r=−0.01, t(99)=−4.46, p=0.00002. 

This demonstrated that increased resting-state FC did not correspond with increased task-

specific activations, meaning this effect could not have driven the observed activity flow 

mapping results. Together these results further support the assumptions underlying the 

activity flow mapping approach.

Voxelwise activity flow with empirical fMRI data

We next sought to test whether resting-state FC describes the routes of task-evoked activity 

flow at a finer-grained scale, using voxels instead of regions. We also performed this 

analysis to gain a more general assessment of the accuracy of the activity flow modeling 

approach (e.g., without assuming a set of a priori defined brain regions). Note that we 

excluded FC with all voxels within the same region as (and voxels within 9 mm of) the to-

be-predicted voxel to reduce the chance of spatial autocorrelations35 contributing to 

prediction accuracies (see Methods).

We found that whole-brain voxelwise activation patterns were predicted well above chance: 

across-task average r=0.63, t(99)=40.68, p<0.00001. The r-values were similar for each of 

the seven tasks individually: r=0.54 (emotional), r=0.65 (gambling), r=0.57 (language), 

r=0.67 (motor), r=0.66 (reasoning), r=0.72 (social), r=0.58 (N-back). The average 

correlation was higher when comparisons were computed after averaging the predicted and 

actual activation patterns across subjects (across-task average r=0.92; 85% of variance; Fig. 

4; Supplementary Fig. 4). This was likely due to an improved signal-to-noise ratio from 

averaging more data. Results were similar for each of the seven tasks individually (r-values, 

in the same order as above): 0.84, 0.93, 0.90, 0.94, 0.95, 0.94, and 0.86.

Note that, unlike the regionwise analysis above, it was statistically impossible to include all 

predictors (here, voxels) for all to-be-predicted voxels. This is due to multiple regression 

requiring more data points than predictors. We used principal components regression to get 

around this limitation (see Methods). However, because not all resting-state fMRI time 

series variance was included in the predictions these may be under-estimates of the 

voxelwise predictions possible with more data. The voxelwise activity flow mapping 

procedure is illustrated in Figure 5, as applied to predicting activation in a single region 

during the motor task. An anterior prefrontal cortex region in the cingulo-opercular network 

(see Fig. 2A) was chosen for illustration since neither anterior prefrontal cortex nor the 

cingulo-opercular network are typically considered in the literature in the context of such 

simple motor tasks36,37. The FC and activity flow with primary motor cortex in Figure 5 

provides an example of additional insight that can be gained using the activity flow (with 

multiple regression FC) approach. Overall, these results further demonstrate the plausibility 

of the activity flow network mechanism in shaping cognitive task activations.

Quantification of prediction accuracies by network

We found that overall prediction accuracy was high across all tasks, but we wanted to also 

quantify prediction accuracy for each network separately. We used the same approach as our 
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main results (task-specific activations predicted using multiple regression FC, calculated 

after averaging across subjects), but predicted-to-actual correlations were calculated for each 

network separately. We found that correlations for all networks were high (greater than r=0.8 

on average), though there was some variability. The across-task average predicted-to-actual 

correlations for each network were (r-values): 0.89 (motor/tactile [hand]), 0.91 (motor/tactile 

[mouth]), 0.95 (cingulo-opercular), 0.93 (auditory), 0.92 (default-mode), 0.98 (memory 

retrieval), 0.93 (visual), 0.93 (fronto-parietal), 0.93 (salience), 0.67 (subcortical), 0.94 

(ventral attention), 0.96 (dorsal attention), and 0.84 (cerebellum). These correlations were 

also calculated for each task separately (Supplementary Fig. 3A). Note that networks 

showing poor accuracy for individual tasks were accurate overall when predictions across all 

tasks were considered (Supplementary Fig. 3B).

These results illustrate that effects were similar across cortical networks, but tended to be 

lower for subcortical regions. It will be important for future studies to investigate this as a 

possible difference between cortical and subcortical activity flow mechanisms. Note, 

however, that the 32-channel MRI head coil and multiband fMRI sequence used here are 

thought to reduce signal-to-noise for subcortical regions relative to cortical regions29, 

possibly leading to the observed effect.

Predicting individual differences in cognitive task activations

We next tested whether activity flow mapping can be used to predict individual differences 

in cognitive task activations based on individual differences in resting-state FC. A recent 

study was able to do this using an abstract statistical model trained to directly associate 

(within small patches of cortex) resting-state FC values with cognitive task activations9. We 

postulated that if activity flow is a large-scale mechanism linking resting-state FC to 

cognitive task activations then activity flow mapping would also produce above-chance 

prediction of held-out individual subjects. Importantly, unlike the previous study, activity 

flow mapping does not involve training of an abstract statistical model associating resting-

state FC with task activations, thus potentially demonstrating a more direct relationship 

between resting-state FC and cognitive task activations.

In addition to holding out each region one-at-a-time, for this analysis we also held out 

activations from each subject one-at-a-time. This allowed us to use the held-out individual’s 

resting-state FC – in combination with other subjects’ mean task activations – to predict the 

held-out individual’s cognitive task activations (see Methods). The predicted task-specific 

activation patterns were again above chance on average: r=0.45, t(99)=25.15, p<0.00001. 

The r-values were similar for each of the seven tasks individually: r=0.23 (emotional), 

r=0.48 (gambling), r=0.37 (language), r=0.54 (motor), r=0.52 (reasoning), r=0.58 (social), 

r=0.40 (N-back). These results demonstrate that resting-state FC describes individualized 

routes of activity flow, which shape individual differences in cognitive task activations.

It is possible activation predictions in the held-out individuals were above chance due to the 

general similarity of activations across subjects, rather than due to prediction of individual 

differences. Consistent with this, across-subject cognitive task activation pattern similarity 

was r=0.20 on average. We therefore used regression to isolate individual differences in 

resting-state FC and actual activation patterns (see Methods), reducing across-subject 
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cognitive task activation pattern similarity to r=−0.01 on average. This revealed that 

individual differences in cognitive task activations could be predicted based on individual 

differences in resting-state FC: across-task average r=0.59, t(99)=25.15, p<0.00001. The r-
values were similar for each of the seven tasks individually: r=0.66 (emotional), r=0.56 

(gambling), r=0.59 (language), r=0.54 (motor), r=0.65 (reasoning), r=0.58 (social), r=0.51 

(N-back). These results suggest that resting-state FC describes individualized routes of 

activity flow that shape individual differences in cognitive task activations.

DISCUSSION

Recent studies have shown that there is a strong statistical relationship between resting-state 

FC and cognitive task activations. This was shown using meta-analytic data from thousands 

of fMRI experiments8 and in individual subjects performing specific tasks9. However, it has 

remained unclear how or why this relationship exists. Understanding this relationship in a 

more mechanistic manner would provide critical insight into the relevance of resting-state 

FC for cognitive task activations. This would also provide insight into the factors that shape 

cognitive task activations – a central goal of cognitive neuroscience. Based on our recent 

work showing that resting-state FC patterns are present during task performance11, we 

expected that resting-state FC may describe the routes of activity flow even during task 

performance. Building on this, we tested the possibility that activity flow is a linking (large-

scale) mechanism between resting-state FC and cognitive task activations, potentially 

explaining the statistical relationship previously observed between these two constructs.

We quantified activity flow as the FC-weighted sum of activations in other brain regions 

(Fig. 1A). We found using empirical fMRI data that estimating activity flow across resting-

state FC networks allowed prediction of cognitive task activations (Fig. 2). This was true 

when holding out each brain region (or voxel), but also when holding out each individual. 

This demonstrated that individual differences in intrinsic network activity flow can help 

explain individual differences in cognitive task activations. This may have application in the 

future for predicting and understanding cognitive task activations in patients who cannot 

perform a given task (e.g., due to lack of consciousness or cognitive disability) or who 

perform the task poorly. This addresses a key issue in the study of cognitive disability: We 

wish to investigate patients with cognitive disabilities using the tasks they have difficulty 

with, but by definition they will be performing those tasks differently than healthy control 

subjects. This leads to “performance confounds”, in which any observed change in cognitive 

task activations could be either a cause or a consequence of the disrupted cognitive task 

performance. Use of activity flow mapping (and related approaches9,15,16,38-40) may allow 

us to get around such confounds, since we can now understand individual differences in 

cognitive task activations in terms of connectivity variables estimated independently of task 

performance.

Several recent studies also sought to identify the relationship between individual subject 

connectivity and cognitive task (as well as brain stimulation-based41) activations9,15,16. 

These studies found that functional and structural connectivity patterns – when combined 

with a statistical model fit to separate data – could be used to predict individual differences 

in cognitive task activations. These studies provided further evidence that there is a 
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relationship between large-scale connectivity and cognitive activations. Unlike these studies, 

we utilized a large-scale mechanistic construct – activity flow – to link connectivity and 

cognitive task activity without use of a statistical model trained to relate connectivity to 

activations. This allowed us to infer a more direct relationship between connectivity and task 

activations, and further to link this relationship to a potential underlying large-scale 

mechanism (activity flow, likely shaped in part by aggregate synaptic connectivity strengths; 

Fig. 1D). Linking to mechanistic constructs (large-scale or otherwise) is important for 

theoretical advances in neuroscience. In this case, linking to activity flow supports an 

explanation for the statistical relationships observed in these previous studies. It will be 

important for future studies to build on these findings with manipulations of FC and activity 

flow to make more causal inferences about these constructs. Further, it will be important to 

investigate the relationship between these constructs using more direct measures of neural 

activity such as multi-unit recording or magnetoencephalography, given that (while 

strong42,43) the link between neural activity and BOLD fMRI is indirect.

We began by using a simple FC measure (Pearson correlation) to model activity flow. We 

did this primarily to make minimal assumptions regarding the true nature of brain 

interactions, and due to widespread use of Pearson correlations for FC estimation in the 

literature. It is noteworthy that we observed such high accuracy in our predictions (over 40% 

of variance explained; Fig. 2) despite using FC estimates that lack information about both 

the direction of influence and whether an influence between nodes is indirect (i.e., effective 

connectivity)44. We found that when we used multiple linear regression as an FC measure 

activity flow mapping accuracies increased (Fig. 3). Unlike Pearson correlation this measure 

isolates unique influences between regions. Just as we found that using multiple regression 

FC increased the activation pattern prediction accuracy, so we expect that adding additional 

(or more accurate) information – perhaps using more sophisticated effective connectivity 

methods45-47 – will improve prediction accuracy further. This would provide evidence for 

the importance of these factors in shaping cognitive task activations. More generally, this 

illustrates a benefit of the activity flow framework: the accuracy of predicted activation 

patterns can be evidence for the veracity of any connectivity properties of interest.

The large-scale aggregate activity flow construct tested here was derived from well-known 

mechanisms for activity flow at the local circuit level. The key local mechanism allowing for 

activity flow among neurons is the propagation of action potentials along axons. The 

demonstration of large-scale activity flow here is non-trivial given that action potentials 

occur at the level of individual neurons and on the order of tens of milliseconds, while 

BOLD fMRI signals involve hundreds of thousands of neurons over seconds. This suggests 

that aggregating many instances of local activity flow via action potentials results in self-

similar48 large-scale properties. This is consistent with the computational model results (Fig. 

1), which demonstrated that activity flow occurring on the order of milliseconds can 

nonetheless be estimated accurately using simulated fMRI signals. However, it will be 

important to investigate activity flow at other spatio-temporal scales. Most crucially, it will 

be important to increase temporal resolution to observe the time-lagged propagation of 

signals between brain regions, allowing for clear directional activity flow estimates. Note 

that the primary reason we did not take temporal lags into account is the uncertainty of 

precise BOLD response timings relative to underlying neural response timings across brain 
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regions and voxels47,49. Further progress characterizing BOLD signal timing and advances 

in spatial coverage and localization for high-temporal-resolution methods will likely lead to 

improved estimates of activity flow.

It is important to consider our approach in the context of other modeling frameworks. The 

activity flow approach is analogous to a model of task activation at time t+1 based on the 

product of the activation at time t and the connectivity matrix. As such, this is a single-time 

step prediction based on the simple linear model utilized in previous studies50, with one 

important change: that the connectivity matrix being utilized is based on FC rather than 

structural connectivity. Our results may help to explain the observed correlations between 

cognitive task activation profiles and resting-state FC profiles with fMRI8, though they may 

not explain the lack of correlations between activity and connectivity observed with some 

electrophysiological neuroimaging approaches51. It will be interesting in future to extend 

our model to include considerations of nonlinear dynamics, such as those implemented in 

the Virtual Brain project28.

To conclude, it is well established that there is a strong statistical relationship between 

resting-state FC and cognitive task activations8, yet the reason for this relationship has 

remained unclear. We provided evidence for a large-scale mechanism involving activity flow 

over intrinsic networks (described by resting-state FC) shaping cognitive task activations. 

This suggests that observed cognitive task activations should not be interpreted simply in 

terms of localized processing, but should also consider distributed processing in the form of 

activity flow across intrinsic networks. Further, these results suggest strong relevance of 

resting-state FC for the task activations that produce cognition. We expect that these insights 

and the activity flow mapping procedure introduced here will facilitate future investigation 

into the functional relevance of resting-state FC, the factors that influence cognitive task 

activations, and the balance of large-scale distributed versus localized processing in the 

human brain.

ONLINE METHODS

Activity flow mapping

We developed a method to quantify the relationship between FC and task activation patterns 

(Fig. 1A). This involved estimating net input to each target region by multiplying each other 

brain region’s task-related activation amplitude (analogous to the amount of neural activity) 

by its FC with the target region (analogous to aggregate synaptic strength):

, where Pj is the predicted mean activation for region j in a given task, Ai is the actual mean 

activation for region i in a given task (a beta value estimated using a general linear model), i 
indexes all brain regions (vector V) with the exception of region j, and Fij is the FC estimate 

between region i and region j (the Fisher z-transformed Pearson correlation or multiple 

regression estimate of the regions’ time series). This algorithm results in a vector predicting 

the pattern of mean activations across regions for a given task. Note that when FC is used 
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(rather than directed/effective connectivity) this approach estimates total bidirectional 

(and/or indirect) activity flow.

Activation amplitudes were z-normalized for each task separately via subtracting each 

activation amplitude by the across-region mean and dividing by the across-region standard 

deviation. This facilitated a focus on the activation patterns (rather than absolute activation 

levels) across tasks. Prediction accuracy was assessed using Pearson correlation between the 

predicted activation values and the actual activation values (i.e., the actual activations for 

each region and task). This was done for each task separately and (unless noted otherwise) 

each subject separately. Each correlation value was Fisher’s z-transformed prior to 

averaging, then converted back to a Pearson correlation for reporting purposes. Statistical 

significance tests were conducted using t-tests (two-sided; paired by subject) of Fisher’s z-

transformed Pearson correlations, facilitating the ability to infer generalization of results 

across subjects (rather than just on across-subject mean patterns). The group distributions of 

these Fisher’s z-transformed Pearson correlations were approximately normally distributed. 

When p-values were computed based on non-normally distributed data we also reported a p-

value based on the Spearman’s rank correlation. Note that predicted activation patterns and 

actual activation patterns were averaged across subjects prior to comparison for a subset of 

analyses. This was done primarily to increase the signal-to-noise ratio via averaging of more 

data, likely providing more accurate effect size estimates (i.e., percent variance explained).

Computational modeling

We used a simple computational model of large-scale neural interaction to help validate key 

aspects of activity flow mapping. We sought as simple a computational model as possible to 

reduce the number of biophysical assumptions and improve the likely generality of our 

results.

The model consists of 300 abstract units, each representing a brain region. The units interact 

via a standard spiking rate code passed via predefined structural (and synaptic) 

connectivity52. Activity at a given node is determined using a standard sigmoid function on 

the mean of the input activities. Note that the sigmoid function introduces a non-linearity to 

the interactions among units that is similar to aggregate non-linearity from neuronal action 

potentials53. Specifically, the model used the following equation to determine activity in a 

given unit at a given time step:

, where wji refers to the synaptic weight from neuron i to j, xj refers to the activity level at 

region j. biasi is the bias of neuron i, but for this model this is set to 0. τi is the time constant 

for region i, and is set to 1 time step for all regions.

The model’s network connectivity was constructed by first defining a random set of 

structural connections (15% density), then creating 3 graph communities/sub-networks by 

randomly connecting each node to 10 other nodes within the same community. Structural 
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connections were defined as non-zero connection weights (all set to the same value of 1.0), 

while synaptic connections were modifications on the initial connection weight. Normally 

distributed random synaptic weights were added to all structural connections, scaled to be 

quite small (mean of 0 and standard deviation of 0.001). Finally, synaptic weights were used 

to split the first structural connectivity community into two “functional” communities. 

Specifically, the synaptic weights were increased (multiplied by 1.5) within the first half of 

the first graph community, while synaptic weights for the second half of that community 

were also increased (multiplied by 1.5). Also, synaptic weights between these communities 

were reduced (multiplied by 0.5). These modifications were designed to test the impact of 

synaptic weights on simulated activity flow.

Spontaneous activity for each node was added as normally distributed random values 

(mean=0, standard deviation=1) every time step (100 ms). An autocorrelation factor of 0.10 

was used to maintain some activity across multiple time steps. 20,000 time steps were 

simulated using purely spontaneous activity (resting state data) and, separately, using 

spontaneous with task-evoked activity (task data). Task-evoked activity was implemented as 

increased activity (normally distributed random values centered at 1 with a standard 

deviation of 0.5) added linearly to ongoing spontaneous activity. Activity consisted of 3 

blocks of 2,000 time points each, each separated by 3,000 time points. Each task was 

simulated by adding task-evoked activity to six separate groups of five regions 

simultaneously (2 per structural graph community). FMRI data collection was simulated by 

convolving the simulated time series with the SPM canonical hemodynamic response 

function, then downsampling to a standard TR of 2 seconds. All analyses of the simulated 

fMRI data were identical to the analyses conducted on the empirical fMRI data.

We defined a global coupling parameter as a scalar multiplier on all synaptic strengths, and a 

local processing parameter as a scalar multiplier of all self-connection strengths. Self-

connections increase the influence of a region’s activity on itself in the next time step, 

separating variance in its activity from the activity of other regions. For the parameter sweep 

(Fig. 1B) we used 20 global coupling parameters (from 0-5, using 0.25 increments) and 20 

local processing parameters (from 0-100, using 5.0 increments), each averaged across 10 

“subjects” (separate iterations with random initial structural/synaptic connectivity matrices). 

This totaled 4,000 simulations. Modeling was carried out using Python (version 2.7).

Data collection

Data were collected as part of the Washington University-Minnesota Consortium Human 

Connectome Project (HCP)54. Human participants were recruited from Washington 

University (St. Louis, MO) and the surrounding area. All participants gave informed consent 

consistent with policies approved by the Washington University Institutional Review Board. 

The data used were from the “500 Subjects” HCP release. The “100 Unrelated Subjects” 

(N=100) subset of this dataset was used, given that a subset of unrelated individuals is more 

appropriate for statistical analyses intended to represent the general population. Details 

regarding randomization can be found in the relevant HCP paper54. Based on our primary 

statistical tests (one-sample t-tests, alpha=0.05) and assuming a moderate Cohen’s d effect 

size of 0.5, N=100 provides 99.86% power55 (higher than the standard criterion of 80%). 
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The average age of the participants was 29 years (ranging from 22 to 36), with 54% females. 

Whole-brain echo-planar imaging acquisitions were acquired with a 32-channel head coil on 

a modified 3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, flip angle = 52°, BW = 

2290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a 

multi-band acceleration factor of 856. Data were collected over two days. On each day 28 

minutes of rest (eyes open with fixation) fMRI data across two runs were collected (56 

minutes total), followed by 30 minutes of task fMRI data collection (60 minutes total). Each 

of the 7 tasks was completed over two consecutive fMRI runs. Resting-state data collection 

details for this dataset can be found elsewhere57, as can task data details29.

Task paradigms

The dataset was collected as part of the Human Connectome Project, and included rest and a 

set of seven tasks29. These tasks included seven distinct domains: emotion, reward learning, 

language, motor, relational reasoning, social cognition, and working memory. Briefly, the 

emotion task involved matching fearful or angry faces to a target face. The reward learning 

task involved a gambling task with monetary rewards and losses. The language task involved 

auditory stimuli consisting of narrative stories and math problems, along with questions to 

be answered regarding the prior auditory stimuli. The motor task involved movement of the 

hands, the tongue, and the feet. The relational reasoning task involved higher-order cognitive 

reasoning regarding relations among features of presented shape stimuli. The social 

cognition (theory of mind) task used short video clips of moving shapes that interacted in 

some way or moved randomly, with subjects making decisions about whether the shapes had 

social interactions. The working memory task involved a visual n-back task, in which 

subjects indicate a match of the current image to either a constant target image or two 

images previous.

Data preprocessing

Preprocessing consisted of standard resting-state functional connectivity preprocessing 

(typically performed with resting-state data), with several modifications given that analyses 

were also performed on task data. Resting-state and task data were preprocessed identically 

in order to facilitate comparisons between them.

Spatial normalization to a standard template, motion correction, and intensity normalization 

were already implemented as part of the Human Connectome Project in a minimally 

processed version of the dataset described elsewhere58. With the volume (rather than the 

surface) version of the minimally preprocessed data, we used AFNI59 to additionally remove 

nuisance time series (motion, ventricle, and white matter signals, along with their 

derivatives) using linear regression, remove the linear trend for each run, and spatially 

smooth the data. The data were smoothed using a non-Gaussian filter (nearest neighbor 

averaging) at 4 mm to reduce the chance of introducing circularity in the activity flow 

mapping procedure (see below). Unlike some standard resting-state FC preprocessing 

pipelines, whole brain signal was not included as a nuisance covariate (given current 

controversy over this procedure60), and a low-pass temporal filter was not applied. We did 

not apply a low-pass temporal filter given the likely presence of task signals at higher 

frequencies than the relatively slow resting-state fluctuations, and the desire to preprocess 

Cole et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2017 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the rest and task data similarly. Note that activity flow mapping results were similar after 

whole brain signal regression (see Supplementary Information). Freesurfer61 was used to 

identify ventricle, white matter, and gray matter anatomical structures for each participant.

For the main analyses, data were sampled from a set of 264 brain regions (rather than 

individual voxels) in order to make inferences at the region and systems level (Fig. 2A). We 

used an independently identified set of putative functional brain regions30 rather than 

anatomically defined sets of regions in order to reduce the chance of combining signal from 

multiple functional areas62. These brain regions were identified using a combination of 

resting-state FC parcellation63 and task-based neuroimaging meta-analysis30. Data were 

summarized for each region by averaging signal in all voxels falling inside each region. 

Analyses were carried out with MATLAB 2014b (Mathworks) and R 3.1.2 (The R 

Foundation for Statistical Computing).

FC estimation

The initial analyses estimated FC using Pearson correlations between time series (averaging 

across voxels within each region) from all pairs of brain regions. The same procedure was 

used for the voxelwise analyses, but between voxels rather than regions. All computations 

used Fisher’s z-transformed values, which were reconverted to r-values for reporting 

purposes.

We used standard multiple linear regression (the regstats function in MATLAB) as an 

alternative to Pearson correlation. This involved computing a linear model for each to-be-

predicted region separately. Resting-state fMRI time series from all other regions were used 

as predictors of the to-be-predicted region’s resting-state fMRI time series. The resulting 

betas – which were directional from the predictor regions to the predicted region – were then 

used as FC estimates in the activity flow mapping algorithm. Note that beta estimate 

directionality reflects optimal linear scaling of the source time series to best match the target 

time series (based on resting-state fMRI data), not necessarily the direction of activity flow.

Task activation level estimation

The activation amplitudes were estimated using a standard general linear model. The SPM 

canonical hemodynamic response function was used for general linear model estimation, 

given that all tasks involved block designs.

Activity flow mapping permutation testing

We used permutation testing to help validate the activity flow mapping approach, and 

provide an additional means of inferring statistical significance. The permutation test was 

constructed so as to facilitate a conservative statistical inference, wherein only the 

hypothesized essential aspect of the analysis was permuted. This involved keeping all 

aspects of the analysis the same except for random permuting (without replacement) which 

region’s FC was used on each iteration. In other words, the entire set of FC strengths for the 

to-be-predicted region was swapped with the entire set of FC strengths for another region 

chosen uniformly at random from the set of all regions. This permutation process was run 

10,000 times (with resting-state FC), resulting in a null distribution of r-values .
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Voxelwise activity flow mapping

We made relatively minimal changes to the regional activity flow modeling procedure when 

applying it in a voxelwise manner. First, we excluded all voxels within the same functional 

region (defined as local voxels with similar resting-state FC patterns) as the to-be-predicted 

voxel in order to reduce the influence of potentially trivial within-region activity flow upon 

prediction accuracies. Second, we excluded all voxels within 9 mm of the same functional 

region as the to-be-predicted voxel to reduce the chance of spatial autocorrelations 

contributing to prediction accuracies35. Non-Gaussian smoothing was also used (averaging 

neighboring voxels) to further reduce spatial autocorrelation. The recently developed 

Gordon cortical area parcellation64 was used because (unlike the Power brain area 

parcellation used for the other analyses) it includes a voxelwise version amenable to our 

processing pipeline and because its development involved similar principles as the Power 

brain area parcellation. Note that we used the Power brain area parcellation for the 

regionwise analyses because it is better established and may have more accurate network 

assignments than the Gordon parcellation (an issue not relevant to the voxelwise analyses). 

This conclusion is based on greater similarity of network assignments to independently 

derived network assignments by Yeo et al.65. Unlike the regionwise analyses, the voxelwise 

analyses were restricted to the voxels included in the Gordon parcellation (i.e., cortex). The 

2 mm cubic voxels were downsampled to 3 mm cubic voxels (using linear interpolation) to 

increase computational tractability. Finally, the voxelwise activity flow predictions were 

calculated for each subject independently, and the resulting prediction (and actual) maps 

were subsequently averaged across subjects prior to actual-to-predicted comparison. Results 

are also reported with predictions compared to actual activation patterns for each subject 

separately. We used Connectome Workbench software (v1.0) for visualization. Statistical 

maps were smoothed on the surface with 2 standard (in Connectome Workbench) iterations 

prior to visualization.

For the multiple regression-based voxelwise activity flow approach, there were many more 

predictors (voxels) than time points. Thus, unlike the regionwise analyses, this made it 

impossible to compute FC estimates using all available predictors. Instead we used a 

standard statistical approach for performing multiple regression with many more predictors 

than data points: principal components regression66. Briefly, this involved extracting the 

time series for the first 1200 principal components, performing the regression on each voxel 

using those components as predictors, then projecting the resulting beta values back into the 

original voxel space (from the principal component space). The principal components were 

calculated independently for each to-be-predicted region, with that region’s voxels and 

voxels within 9 mm excluded to avoid circularity. We used the first 1200 components (out of 

4800 resting-state fMRI time points) for computational tractability. Note that the same 

procedures were used for the Figure 5 illustrative analysis, except that a single region of 

interest’s activation level was predicted rather than a single voxel’s activation level.

Task-specific activation patterns

Task-general activation patterns were defined as the first principal component across task 

activation patterns. Principal component analysis was used rather than averaging to reduce 

the chance that any individual task’s activation pattern dominated the task-general pattern. 
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This was computed separately for each subject, and also for each task; the to-be-predicted 

(or compared) task’s activations were excluded to remove circularity from the calculation. 

Results were virtually identical if all seven tasks were included in the task-general activation 

calculation. Task-specific activation patterns were defined as a given task’s activation pattern 

after regressing out task-general activations (the first principal component across the other 

six tasks’ activation patterns). The average pairwise similarity among task-specific activation 

patterns (i.e., after regressing out task-general activations) was r=−0.1.

Prediction of individualized task activations

Each subject’s cognitive task activations were held out in a leave-one-subject-out cross-

validation approach. The held-out individual’s resting-state FC – along with other subjects’ 

task activations – were used to predict the held-out individual’s cognitive task activations. 

Specifically, task activations were averaged across all subjects except the held-out subject, 

then the activity flow mapping procedure was applied along with the held-out subject’s 

resting-state FC. This allowed us to quantify the likely role of that individual’s intrinsic 

connections (as estimated by resting-state FC) in shaping cognitive task activations.

In a separate analysis, we sought to further test the conclusion that resting-state FC describes 

individualized routes of activity flow that shape individual differences in cognitive task 

activations. This involved removing subject-general patterns from resting-state FC and each 

task’s activations prior to implementing the activity flow mapping procedure. This better 

isolates the subject-specific FC and activation patterns, allowing us to better assess 

prediction accuracy of these patterns. Subject-general patterns were identified as the first 

principal component across subjects. These subject-general patterns were then regressed out 

of each subject’s FC and activation patterns. This approach was similar to the task-specific 

pattern isolation approach described above. After removing the subject-general activation 

patterns, across-subject activation similarity dropped from r=0.20 on average to r=−0.01 on 

average. Across-subject resting-state FC similarity dropped from r=0.15 to r=−0.009 on 

average.

Statistics

All statistical inferences with empirical fMRI data that produced p-values were made using 

two-tailed one-sample t-tests relative to 0 (N=100; degrees of freedom: 99) or, where 

indicated, permutation tests. Pearson correlation (r) was used as a measures of pattern 

similarity, with p-values only calculated for group-level inferences using two-sided one-

sample t-tests on the Fisher’s z-transformed r-values. All Fisher’s z-transformed r-value 

distributions were confirmed to be approximately normally distributed using histograms and 

Q-Q plots. Across-task average predicted-to-actual similarities were reported as the primary 

results, with single-task predicted-to-actual similarities reported to confirm the primary 

results were not driven by a subset of tasks. P-values were calculated for the across-task 

average predicted-to-actual similarities, rather than for each task separately, to reduce the 

number of reported p-values and therefore the multiple comparisons needing to be corrected. 

The same statistical approach was used for the computational model analyses, with the 

exception of a single analysis with non-normally-distributed comparisons that was also 

analyzed using Spearman’s rank correlation (which does not assume a normal distribution).
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Note that data collection and analysis were not performed blind to the conditions of the 

experiments. Other than selection of the “100 unrelated” subset of the HCP data (see Data 

Collection section), no subjects or data points were excluded from analysis.

The average-then-compare r-values are reported as effect sizes of pattern similarity (squaring 

their values produces percent linear variance explained), rather than their associated p-

values. Their p-values were not calculated due to the compared patterns possibly not being 

normally distributed (a requirement for Pearson correlation p-values but not effect sizes), as 

well as this not being a population (random effects) statistical inference. P-values below 

0.00001 were reported as p<0.00001 based on the convention that typical data analysis 

approaches likely do not have a level of precision consistent with such small values, such 

that reporting such small values would be misleading. Exact p-values can be calculated 

based on the reported t-values.

Correcting for multiple comparisons for each analysis was unnecessary (and not possible) 

due to lack of thresholding and calculation of only a single p-value per analysis. As an 

additional level of statistical caution, however, we used a conservative Bonferroni correction 

for multiple comparisons across all calculated p-values reported in this study (12 total). This 

revealed an uncorrected p<0.004 threshold. All p-values reported as statistically significant 

were below this threshold, such that all significant p-values were statistically significant 

(p<0.05) after correcting for multiple comparisons across all analyses.

Activity flow mapping with global signal regression

We chose to not use global signal regression (GSR) for the primary analyses, due to 

controversy with this resting-state FC preprocessing step. Specifically, GSR is known to 

introduce anti-correlations into FC graphs60. However, there is evidence that some of the 

introduced anti-correlations are real67, that GSR may increase the accuracy of some FC 

patterns68, and that GSR reduces the impact of motion artifacts69. Therefore, we also applied 

activity flow mapping to data that had been preprocessed using GSR, testing whether the 

primary conclusions are unchanged when including this preprocessing step. We focused on 

the correlation-based FC results, given that multiple regression FC already implicitly 

removes the global signal by controlling for signals in all other regions. Note that unlike 

GSR, however, multiple regression FC does not (via averaging all time series into a global 

signal time series) regress out portions of regions’ time series from themselves. Thus, 

multiple regression FC may reduce introduction of negative FC.

As expected, we found that the primary conclusions were unchanged (and even slightly 

improved) when using GSR. Specifically, we found (as reported in Results) that the 

predicted activation patterns were similar to the actual activation patterns with GSR: across-

task average r=0.50, t(99)=45.32, p<0.00001. This was slightly better than the results when 

not using GSR (average r=0.48). Again like the results when not using GSR, these 

correlations were higher when comparisons were computed after averaging the predicted 

and actual activation patterns across subjects: across-task average r=0.73 (53% variance 

explained). This was again slightly better than the results when not using GSR (average 

r=0.66). Overall these results support the conclusion that the choice of whether or not to use 

GSR does not substantially affect the outcome of activity flow mapping.

Cole et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2017 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Activity flow mapping over resting-state FC networks allows prediction of held-out 
task activations
A) We developed a prediction-based approach that links resting-state FC to task activations 

to assess the relevance of FC to cognitive task activations. The prediction of a single region’s 

activation amplitude for a single task is depicted. Importantly, the to-be-predicted region’s 

activation amplitude is held out from the prediction calculation. B) This approach was 

validated using a simple computational model of large-scale neural activity. Whole-brain 

predicted-to-actual Pearson correlations (r-values) for distinct model parameters are shown. 

The success of activity flow mapping depended on the relative degree of local (within-

region/recurrent) versus distributed (across-region) processing. This demonstrates that the 

success of activity flow mapping with empirical fMRI data would be non-trivial. C) Three 

structural connectivity graph communities (blocks along diagonal) were created, with the 

first split into two communities via synaptic strength modifications. D) Resting-state FC 

(Pearson correlation) was computed based on simulated time series using the computational 

model, revealing a strong correspondence with the underlying synaptic strengths. Note that 

other factors not modeled here (e.g., concentrations of neuromodulatory neurotransmitters) 

likely also influence resting-state FC. The global coupling and local processing parameters 

were set to 1.0 for this example. E) Simulated task-evoked activations were produced by 

stimulating groups of 5 nearby units in 6 separate “tasks”. The activity flow mapping 

procedure produced above-chance recovery (mean across-task Pearson correlation r=0.56, 
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t(298)=11.7, p<0.00001), of the actual activations using the resting-state FC matrix shown in 

panel D.
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Figure 2. Activity flow mapping predicts cognitive task activations with empirical fMRI data
A) We used a standard set of functionally defined regions of interest with associated resting-

state FC network assignments30. B) The across-subject average resting-state FC matrix 

(Pearson correlations) among the 264 regions shown in panel A. Results were similar when 

using global signal regression during preprocessing (see Supplemental Information). C) 

Pearson correlation-based resting-state FC was used to predict activation patterns across the 

7 tasks (mean activity amplitude of each region for each task). Across-task activation 

similarities were removed to emphasize task-specific activations (see Supplementary Fig. 1). 

The high correspondence between predicted (left) and actual (right) activation patterns 

(average prediction accuracies r=0.66, based on across-subject mean predicted and actual 

activations) suggests resting-state FC shapes activity flow in task contexts.
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Figure 3. Using multiple regression to estimate resting-state FC increases prediction accuracy
A) We applied standard multiple linear regression to estimate each region’s FC in the same 

simulated data shown in Figure 1. This increased prediction accuracy from r=0.56 (with 

Pearson correlation FC) to r=0.71 in this example. B) The multiple regression FC matrix 

from the real resting-state fMRI data. The across-subject average regression coefficient 

matrix is shown. Some community structure was apparent, despite the increased sparseness 

relative to when Pearson correlation was used (Fig. 2B). C) Prediction accuracy was also 

increased with real fMRI data: from an average of r=0.66 (using Pearson correlation FC) to 

an average of r=0.91 (with multiple regression FC).
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Figure 4. Predicting voxelwise activation patterns
We used multiple regression-based resting-state FC with a voxelwise activity flow mapping 

approach, again finding above-chance prediction accuracy across the 7 tasks. Activity flow 

mapping with the motor (A) and relational reasoning (B) tasks are illustrated. Note that 

voxels within the same region and within 9 mm of that region were excluded from prediction 

calculations to reduce the influence of spatial autocorrelations (see Methods). Also, due to 

fewer time points than predictors, only a subset of the data could be used to compute 

voxelwise multiple regression FC (see Methods). Even with 90% of the variance (r=0.95; 

r2=0.90) being explained there appear to be meaningful differences in the remaining 10% of 

variance (B), such as a lack of primary motor cortex activation for the reasoning task. This 

suggests there may be important roles for task-evoked FC and/or local within-voxel 

processing that does not flow to other brain regions. See Supplementary Figure 4 for 

predicted and actual activation maps for all 7 tasks.
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Figure 5. Illustration of activity flow mapping of single region
Voxelwise prediction of a single region is illustrated. The region of interest was defined 

based on positive activation during the motor task (A). The same procedure was used for 

prediction of voxels (Fig. 4). B) Multiple-regression-based resting-state FC using the region 

of interest’s average time series as a seed. The average across all 100 subjects is shown. C) 

Activity flow estimates to/from the region of interest during the motor task. Note that the 

small values indicate that the prediction is based on a highly distributed activation pattern, 

with each activity flow estimate contributing only a small amount (full range: −0.0095 to 

0.015). Also note the (infrequent) occurrence of negative FC multiplied by negative 

activations leading to positive activity flow estimates. These cases may reflect disinhibition 

– in which a source of inhibition has reduced activity. Alternatively, they may reflect 

inhibitory activity flow from (rather than to) the to-be-predicted region. This illustrates that 

activity flow estimates are non-directional, and that future research will be important to 

further investigate the implications of these cases. While not exact, the prediction is in the 

same range as the region of interest’s actual activation amplitude during the motor task. Note 

that the whole-brain motor task activation amplitude range was −23.6 to 16.3.
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