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Abstract

We studied how the posterior parietal cortex combined new information with ongoing activity 

dynamics as mice accumulated evidence during a virtual-navigation task. Using new methods to 

analyze population activity on single trials, we found that activity transitioned rapidly between 

different sets of active neurons. Each event in a trial — whether an evidence cue or a behavioral 

choice — caused seconds-long modifications to the probabilities that govern how one activity 

pattern transitions to the next, forming a short-term memory. A sequence of evidence cues 

triggered a chain of these modifications resulting in a signal for accumulated evidence. Multiple 

distinguishable activity patterns were possible for the same accumulated evidence because 

representations of ongoing events were influenced by previous within and across trial events. 

Therefore, evidence accumulation need not require the explicit competition between groups of 

neurons, as in winner-take-all models, but could instead emerge implicitly from general dynamical 

properties that instantiate short-term memory.

Introduction

In cortical microcircuits, ongoing activity patterns are combined with new inputs to perform 

many complex neural computations, including evidence accumulation during decision-

making1,2. To understand how ongoing activity is combined with external inputs, 

considerable focus has been placed on the posterior parietal cortex (PPC)3,4, which is 

thought to be necessary for visual decision-making tasks in rodents5-8. Previous work has 

emphasized models in which evidence accumulation occurs as a winner-take-all competition 

between neuronal activity patterns associated with different decisions2. This view predicts 

that as evidence is accumulated, activity converges to one of several attractor states, each 

associated with a different decision. Winner-take-all dynamics have commonly been 

implemented as a highly structured competition between distinct recurrently connected 

pools of neurons with mutual inhibition across pools9,10. Predictions of these models, 
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including long-lasting firing rate changes in homogenous pools of individual neurons, have 

been supported by some experimental data3,4,11. However, recent work showing the 

prevalence of time-varying activity patterns in neuronal populations8,12-15 provides initial 

suggestions of potential alternatives. For example, alternate implementations of winner-take-

all competitions could also be possible, such as competitions between sequences of 

population activity. Or, entirely different algorithms for evidence accumulation might be 

present that do not require winner-take-all mechanisms.

Here, we expanded the study of evidence accumulation in two ways. First, previous work 

has often emphasized independent recordings from selected subsets of individual neurons, 

typically summarized as averages across trials and cells. However, because animals make 

decisions on single trials using populations of neurons, we developed new experimental and 

computational methods to reveal structure in the moment-to-moment changes in population 

activity. Second, because models proposing mechanisms other than winner-take-all 

competitions have not emerged, we not only compared our data with winner-take-all 

dynamics but also took an exploratory approach aimed at uncovering results that might 

motivate new conceptual models for evidence accumulation. The starting point for our 

conceptual framework was our previous work in the mouse PPC in which neuronal activity 

was described as a trajectory through time-varying population activity patterns8.

We found that the PPC had long timescale dynamics in the form of orderly transitions 

between transient and largely different patterns of population activity. As a result, the 

representation of new inputs depended both on the identity of the input and the near-past 

activity patterns in the population. PPC activity never reset but rather functioned as a 

continuous record of recent events. In addition, multiple task-relevant features were 

represented simultaneously such that individual task features (e.g. choice) did not converge 

to single activity patterns but instead were represented across trials by many different 

activity patterns. Our results motivate a new model in which a winner-take-all competition 

between distinct pools of neurons would not be necessary. Rather, evidence accumulation 

may emerge from general, long timescale dynamical properties, which would naturally form 

a history of the sequence of past events and thus create a short-term memory from which 

information, such as accumulated evidence, could be read out.

Results

We developed a navigation-based evidence accumulation task in which a head-restrained 

mouse ran down a virtual-reality T-maze. The mouse was presented with six visual cues that 

could each appear on the left or the right wall at fixed locations (Fig. 1a-b; Supplementary 

Fig. 1; Methods M.2). To receive a reward, the mouse had to turn toward the direction that 

had more cues. Task difficulty was modulated by varying the net evidence, defined as the 

difference between the number of left and right cues (six total cues per trial). Mice 

performed the task with high accuracy by accumulating multiple pieces of evidence per trial, 

with a bias toward earlier segments (Fig. 1c; Supplementary Fig. 2; Methods M.2.4.1).
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Distributed population representations of choice- and net evidence-related information

We first examined the distribution of activity patterns in individual neurons. We used 

calcium imaging to measure the activity of ~350 neurons simultaneously in layer 2/3 of the 

PPC and estimated spike counts using deconvolution of the fluorescence traces16 (Methods 

M.3; Supplementary Fig. 3, Supplementary Table 1). Consistent with our previous work, 

most neurons were transiently active for less than 10% of the trial on average, and different 

neurons were active at different points in the trial, such that across the population, activity 

tiled the full trial duration8 (Fig. 2a-b; Supplementary Figs. 4, 5a-b). To test for differences 

in activity between trials with different choices and net evidence, we used a support vector 

machine (SVM) to predict choice based on a single cell’s activity and a support vector 

regression (SVR) model to predict net evidence from a single cell’s activity (Methods M.

4.4.2-3). Some neurons had a statistically significant choice classification accuracy, and 

some neurons had a significant relationship between the actual net evidence and the net 

evidence predicted from their activity (choice 29.4%, net evidence 22.7%; 5% expected by 

chance; Fig. 2c-d). When we plotted the mean activity patterns for the significantly choice-

selective neurons, we identified choice-specific sequences of activity8 (Supplementary Fig. 

4c-d).

We next considered the entire population of neurons to determine if task-relevant 

information was present only in the fraction of cells that had high selectivity or if neurons 

that did not have statistically significant selectivity might contribute small amounts of 

information to a population code. The population activity (concatenated activity of all 

individual neurons) contained information about the choice and net evidence on single trials, 

as revealed using a SVM classifier for choice and a SVR model to predict net evidence (Fig. 

2e-f). Information about choice and net evidence could not be explained only by behavioral 

differences between trials of different choices and net evidence, such as differences in 

running patterns in the maze (see results in Methods M.2.5; Supplementary Fig. 5g-h). We 

examined the distribution of information within the population by applying the population 

activity classifiers for choice and net evidence to increasingly larger subsets of neurons, 

beginning with neurons with the lowest individual classification accuracy. The accuracy of 

both classifiers increased with the incorporation of neurons that individually represented 

choice and net evidence poorly (Fig. 2g-h). Using the 40% least selective neurons, we were 

able to predict the mouse’s choice with ~75% accuracy (Fig. 2g; for further results see 

Methods M.4.4.4 and Supplementary Fig. 5j). These results suggest a population 

representation in which information is distributed across heterogeneous and variable 

neurons5,17-22.

Clustering-based methods for analyzing population activity dynamics on single trials

Given that neuronal activity was in large part heterogeneous across neurons and variable 

between trials and that task-relevant information was distributed across neurons, we focused 

on how the population activity pattern changed from moment to moment. Because methods 

to analyze moment-to-moment transitions between transient population activity patterns 

have not been commonly used previously, we developed a new analysis framework. We 

defined the population activity pattern within a given time period as a vector of each 

neuron’s estimated spike count. We conceptualized the population activity as a trajectory 
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involving transitions from one activity pattern to another. To facilitate the analysis and 

visualization of transitions between patterns, we reduced the dimensionality of the 

population activity using a clustering algorithm to group similar population activity patterns 

(Fig. 3a; Methods M.4.6 and related discussion).

Specifically, the number of clusters was determined using the affinity propagation clustering 

algorithm23. Our results were consistent across a wide range of cluster numbers and affinity 

propagation settings (Supplementary Fig. 6j; Methods M.4.6.2). Clustering was performed 

independently for ten epochs in the trial. For each epoch, the estimated spike count on each 

of m trials for each of n simultaneously imaged neurons was calculated, resulting in m 
points in an n-dimensional space (Fig. 3a). We clustered these m points such that each 

cluster corresponded to a different set of trials with similar population activity patterns at a 

given epoch. For visualization, each cluster was represented as a circular node with area 

proportional to the number of trials in the cluster (Fig. 3a-d, Supplementary Fig. 6e). 

Transitions between clusters in adjacent epochs were marked as lines with thickness 

proportional to the transition probability (Methods M.4.6.3; Fig. 3b-d).

Single trials could therefore be described as an activity trajectory defined by the sequence of 

clusters visited from epoch to epoch (Fig. 3b-d). These cluster-space trajectories are 

conceptually identical to trajectories that have previously been described using principal 

component analysis and other methods; the only difference is in the dimensionality 

reduction algorithm used5,8,19,24-26. Activity patterns reflecting important task-relevant 

features, including choice and net evidence, were apparent in the cluster space, even though 

clustering was performed on neuronal activity alone without any information about 

behavioral parameters (Fig. 3b-d; Supplementary Fig. 6a-d). For choice, for example, 

different paths through clusters emerged for left- and right-choice trials, which is a 

visualization of choice-specific activity trajectories8 (Fig. 3b-d).

Before exploring population dynamics in the cluster space, we sought to gain an intuition of 

how neuronal activity patterns related to the clusters. We visualized the relationship between 

neuronal activity and clusters by calculating for each pair of trials the correlation between 

their population activity patterns at a given epoch. We sorted the matrix of trial-trial 

correlation coefficients by the trials that were clustered together (Fig. 3e-g). This 

visualization revealed that clustering identified structure in the trial-trial activity pattern 

correlations and showed that clusters varied over a wide distribution in how similar they 

were to one another. As expected by the transient activity we observed in individual neurons 

(Fig. 2a-b, Supplementary Figs. 4, 5a-b), the activity patterns in clusters at one epoch were 

largely different from the activity patterns observed in clusters at the subsequent epoch (Fig. 

3h). Consistently, when we clustered activity patterns from all epochs together, rather than 

for single epochs individually, such that the clusters were the same from epoch to epoch, we 

found that the likelihood of a trial staying in the same cluster across consecutive epochs was 

rare (0.9 ± 0.01% of transitions; Supplementary Fig. 6f; Methods M.4.6.4). The activity 

patterns in each cluster were made up of complex combinations of activity levels in the 

population of individual neurons (Fig. 3j, Supplementary Figs. 7a-e). Some individual 

neurons thus had elevated activity in multiple clusters (Fig. 3j, Supplementary Figs. 6g-i, 7a-

e,). A cluster should therefore be considered as a pattern of activity across neurons, such that 

Morcos and Harvey Page 4

Nat Neurosci. Author manuscript; available in PMC 2017 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the patterns between clusters are discriminable from one another. The precise activity 

patterns that defined each cluster were not important for the focus of this work.

Highly variable population activity patterns on trials with identical cues and choices

We used the cluster space to visualize the population activity trajectories on single trials. 

This visualization revealed a high amount of trial-trial variability, as trials with the same 

choice and evidence cues (e.g. correct 6-0 left trials) occupied more than half of all possible 

clusters at each epoch, even at the turn after a choice was made (Fig. 3c-d,i). Trials of the 

same type therefore had distinguishable trajectories of activity patterns and did not converge 

to similar paths through a small set of clusters, which is consistent with previous studies of 

variability in the activity of cortical neurons21,22,27-29.

The trial-trial variability could have resulted from modulations of the tonic firing of a 

specific set of neurons or from major changes in which sets of neurons were active in each 

trial. We found evidence for the second possibility. We calculated the similarity between the 

groups of neurons that were active in pairs of clusters explored on a single trial type (e.g. 

correct 6-0 left trial; Fig. 3j). Specifically, for each pair of clusters in a given epoch, we 

quantified the fraction of neurons that were active in both clusters using a threshold in z-

scored estimated spike counts (threshold = 1.5). Surprisingly, only ~10% of neurons on 

average were active in both clusters in a pair, even when limiting our analysis to trials with 

identical choices and evidence cues (Fig. 3j-k). Many trials of the same type therefore had 

largely non-overlapping populations of active neurons. Consistently, the correlation 

coefficient between the population activity patterns for pairs of trials of the same type at the 

same epoch had a wide distribution, with some trial pairs being highly correlated and others 

having correlation coefficients near zero (Fig. 3l). In addition, we quantified the variability 

as a function of time in the trial using the cluster space defined by clustering activity patterns 

from all epochs together, rather than clustering independently within each epoch (Methods 

M.4.6.4). The variability was estimated at a given epoch as the fraction of clusters explored 

by a population of trials. Surprisingly, when considering all trial types together, the fraction 

of clusters visited did not decrease over the course of the trial (Fig. 3m). The activity 

therefore maintained a high number of distinguishable activity patterns throughout the trial 

and did not collapse to a low-variability representation even at the turn epoch after a choice 

had been made.

Population activity trajectories as orderly, seconds-long sequences of transitions between 
transient activity patterns

Given that a stereotyped sequence of activity patterns was not present for trials with identical 

cues and choices, we sought to understand the cause of the trial-trial variations. We 

generated a new cluster space using only trials of a single type (e.g. left 6-0 trials) to remove 

the variability due to different evidence cues and choices (Fig. 4a). The variability in activity 

trajectories in this case could be due predominantly to biological or measurement noise. If 

so, the transitions from one activity pattern to the next are expected to be unpredictable, such 

that each single trial wanders through a random sequence of activity patterns. Alternatively, 

the variability between trials of the same type could carry information. In this case, each trial 

is expected to traverse an orderly set of activity patterns, such that the transition from one 
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activity pattern to the next is predictable. We tested if we could predict the future activity 

patterns of a trial based on the trial’s current activity pattern. As a first test, we visualized the 

paths of trials starting from a single cluster and found that only a subset of subsequent 

clusters was visited by those trials, even many epochs later (Fig. 4b). This example suggests 

that by knowing the trial’s starting point, we could predict, to some extent, the clusters 

visited by that trial in the future. To visualize if this structure could occur by chance, we 

simulated a ‘noise’ case by shuffling the assignment of trials to clusters at each epoch 

(maintaining the distribution of trials across clusters), thus creating transitions between 

clusters that mimic noise-driven transitions. In the shuffled case, the trials starting in a single 

cluster visited all subsequent clusters, in contrast to what we observed in the real data (Fig. 

4c).

This example suggested that the transitions between activity patterns could be non-random 

and that temporal structure might exist in the variable paths traversed by single trials of the 

same type. We quantified this structure by developing a classifier in cluster space that asked 

if, based on the identity of the cluster occupied by a given trial at the current epoch, we 

could predict the identities of the clusters occupied by that same trial in past and future 

epochs (Methods M.4.7). This analysis therefore tests if the current activity pattern 

contained information about past and future activity patterns within a single trial. For trials 

with identical choices and evidence cues, the classifier predicted significantly above chance 

which cluster a trial occupied 5-6 epochs (~4-5 seconds) into the past and future (Fig. 4d-e). 

Extensive analyses revealed that the temporal structure could not be explained by trial-trial 

differences in behavioral patterns, such as running patterns in the maze, and was not 

imposed by the clustering process (see results in Methods M.2.5; Methods M.4.7.2-3; 

Supplementary Fig. 8a-c). Together, these results indicate that the current activity pattern 

contained information about past activity patterns and influenced the transition probabilities 

to future activity patterns, even when removing the effects of different trial events like 

evidence cues and choice.

The long timescale temporal structure we observed could arise from persistent activity 

patterns, in which single neurons have long-lasting activity across epochs. Alternatively, 

there may exist predictable progressions between time-varying activity patterns, such that 

the PPC has long timescale dynamics via orderly transitions from one short-lived population 

activity pattern to another. Multiple features of the data provided support for the second 

alternative. We found that neurons were transiently active with time-varying activity (Fig. 

2a-b, Supplementary Figs. 4, 5a-b). Also, clusters from different epochs had mostly distinct 

activity patterns (Fig. 3h,j). Furthermore, transitions were just as likely between clusters 

with similar activity patterns as they were between clusters with dissimilar activity patterns 

(Fig. 4f). To further test if the long timescale structure emerged from long-lasting activity in 

individual neurons, we shuffled the trial identities separately for each neuron among trials of 

the same type to disrupt neuron-neuron correlation structure while preserving activity 

patterns in individual neurons (simulating a pseudo-population). The removal of neuron-

neuron correlations eliminated our ability to predict the past and future clusters visited by a 

single trial based on the current cluster occupied by that trial (Fig. 4e). Together these results 

indicate that the temporal structure in single trials did not arise from long-lasting activity in 
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individual cells; rather, orderly transitions occurred between transient patterns of neuronal 

activity with largely different sets of active neurons.

Long-lasting changes in population dynamics due to previous task events

Thus far, our results indicate that long timescale structure exists in the PPC over seconds: the 

activity pattern at a given moment contained information about past activity patterns and 

also influenced the transition probabilities to future activity patterns. These results make 

important predictions about the timescale over which information about transient events is 

maintained in the PPC. An event during a trial is expected to result in a new population 

activity pattern that depends on both the features of the event and the activity pattern 

transition probabilities immediately prior to the event. The activity pattern that results is then 

expected to influence the transition probabilities to future activity patterns. Therefore, by 

helping to create a population activity pattern, a transient event is expected to have a long-

lasting effect by constraining the possible future activity patterns, which in effect forms a 

short-term memory. We therefore hypothesized that transient events should have signatures 

of their occurrence long after they ended. In this case, variability between trials of the same 

type could have emerged as a consequence of differences in recent past events.

To test this hypothesis, we asked if the variability in activity patterns at the beginning of a 

trial could be explained by two prominent past events: the previous trial’s choice and the 

previous trial’s reward outcome (correct or incorrect). Because we were not directly 

analyzing transitions between activity patterns, we performed our analyses on the population 

activity without clustering for simplicity (similar results were obtained with clustering). The 

population activity patterns at the start of a trial, following an inter-trial interval of at least 

two seconds, were highly different for trials that had different choices and reward outcomes 

in the previous trial28,30-33. We visualized this result with dimensionality reduction by factor 

analysis (Fig. 5a; Supplementary Fig. 9c) and quantified the result using an SVM classifier 

based on population activity (Fig. 5b-c). The previous trial’s choice could be decoded above 

chance for as long as ten seconds after the conclusion of the previous trial, including well 

into the current trial (Fig. 5b). This signal did not have an easily detectable behavioral effect 

because a linear model with interactions could not predict the mouse’s choice on the current 

trial based on the previous trial’s choice and reward (R2: 0.02 ± 0.01, mean ± s.e.m., p > 

0.05; Methods M.2.4.2)34. Also, the previous trial’s choice could not be decoded from the 

current trial’s behavioral data (e.g. running patterns; see results in Methods M.2.5; 

Supplementary Fig. 8d-g). PPC activity therefore contained information about events from 

previous trials many seconds after they had ended. As a result, trials with identical cues and 

choices had highly variable activity patterns due to differences in past events.

Predictions and tests for population activity dynamics during evidence accumulation

Although our analyses have focused in large part on comparisons between trials of a single 

type, the features identified have direct implications for evidence accumulation. We have 

shown that activity patterns in the PPC partially define the possible future activity patterns 

over seconds (Fig. 4). Events that help to establish a new activity pattern will therefore 

influence the transition probabilities to future activity patterns, creating a short-term memory 

of the event, as we have shown for choices and reward outcomes across trials (Fig. 5). In this 
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framework, we can consider how evidence accumulation might occur. In response to an 

evidence cue, the network activity pattern would change based on the cue type (left or right) 

and the set of activity pattern transition probabilities at the time of the cue. The response to a 

second cue would follow the same process and thus depend both on second cue’s type and 

on the transition probabilities for the activity pattern resulting from the first cue. Because the 

transition probabilities at the time of the second cue were set in part by the first cue, the 

activity pattern after the second cue would reflect both the first and second cues. Because 

this process cascades, each unique cue sequence would result in a unique activity pattern, 

even for the same net evidence. The activity pattern after all six cues would therefore be 

influenced by the sequence of previous cues. A single abstract variable for net evidence, in 

which the same final net evidence converges to the same activity pattern, regardless of the 

cue sequence, is not expected to be present. Rather, the accumulated evidence cues would be 

represented generically as a sequence of inputs emerging from the long timescale dynamics. 

Our results lead to predictions about population activity during evidence accumulation tasks.

A first prediction is that the population activity pattern should reflect not only the net 

evidence but also the sequence of evidence cues on a trial independent of net evidence. This 

prediction implies that different sequences of cues that result in the same net evidence (e.g. 

left-right-left vs. right-left-left) should generate distinguishable activity patterns. To test this 

prediction, we selected trial epochs with the same current cue (e.g. left) and the same net 

evidence (e.g. +1 left) but with different cue types in the previous epoch, thus isolating 

effects due to the cue history. Trial epochs that had the same cue type in the previous epoch 

had significantly higher trial-trial population activity correlations than epochs with different 

cue types in the previous epoch (p < 10−9, two-sample KS test; Fig. 6a). Activity in an epoch 

could therefore be classified above chance levels based on the type of cue in the previous 

epoch despite identical current cues and net evidences (classification accuracy: 59.0 ± 2.2%, 

mean ± s.e.m.; p < 0.001, permutation test with shuffled trial labels; Methods M.4.4.5). 

While this difference was highly significant, it was relatively modest in amplitude, 

suggesting that it only accounted for a small fraction of the total trial-trial variability. The 

differences for distinct evidence sequences did not appear to reflect different internal 

accumulated evidence values due to unequal weighting of early and late cues (Methods M.

4.4.5). The population activity pattern therefore contained information about the sequence of 

past evidence cues, independent of net evidence.

Another prediction is that the signal for the sequence of past evidence cues (independent of 

net evidence) could underlie evidence accumulation in the population activity. Accumulated 

evidence would therefore be represented implicitly as a sequence of cues rather than 

explicitly as a single, abstract value such as net evidence. This prediction suggests that 

population activity with strong signals for cue histories should also have strong signals for 

evidence accumulation. Taking advantage of the variability across datasets, we found that 

our ability to decode the sequence of past cues (given the same net evidence) was strongly 

correlated with the decoding of net evidence (r = 0.84, p < 0.001; Fig. 6b). This result 

indicates that the cue-driven modifications to activity pattern transition probabilities leading 

to a cue history signal might also serve as a mechanism underlying evidence accumulation.
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A final prediction is that if the current activity pattern influences the transition probabilities 

to future activity patterns, then both the current activity pattern and the type of evidence cue 

should influence the activity pattern following a new evidence cue. We compared trials with 

identical net evidence at the same epoch and asked if we could predict the population 

activity pattern following a new evidence cue (either left or right cue) based on a) the 

distribution of trials across clusters alone (chance), b) the new cue type alone (cue only), c) 

the current activity cluster alone (cluster only), and d) both the current activity cluster and 

the new cue type (cue + cluster) (Methods M.4.7.1). We performed this analysis in the 

cluster space to facilitate the analysis of transition probabilities between activity patterns. 

Based on the new cue’s type, there was an increase in the ability to predict the identity of the 

next epoch’s activity cluster, indicating that evidence cues triggered changes in population 

activity (p < 0.001 for cues 2-6; two-sample Student’s t-test; Fig. 6c). However, the identity 

of the current activity cluster was more predictive of the next epoch’s activity cluster than 

was the new cue’s type (p < 0.001 for all cues; two-sample Student’s t-test; Fig. 6c). 

Therefore, although new inputs influenced the future population activity pattern, the past 

population activity pattern had a larger effect, consistent with a role for the current activity 

pattern in defining the set of possible future activity patterns.

Discussion

Our work identified two features of PPC activity that together motivate a novel model for 

how evidence accumulation is performed in neuronal circuits. First, we have shown that each 

event during a trial, such as a new evidence cue or behavioral choice, modified the dynamics 

of the PPC over a timescale of seconds (Figs. 4, 5, 6a-c). Surprisingly, these events did not 

change the tonic activity of a specific set of neurons; rather, each event altered the set of 

activity patterns that the population could occupy in the future and thus the transition 

probabilities between complex population activity patterns, often involving transitions 

between different sets of active neurons (Fig. 3h,j; Fig. 4e-f). This finding leads to a 

potentially generalizable rule in which transient inputs and activity patterns in the PPC 

‘reverberate’ as long-lasting changes in the set of possible activity pattern transitions and 

trajectories, resulting in a short-term memory of each past input and activity pattern (Fig. 6d-

f). This process was seemingly continuous in that the PPC activity pattern never appeared to 

reset, even after a trial was finished; rather, the PPC activity maintained an ongoing record 

of recent past events thus forming a continuous, gap-free short-term memory. Our findings 

support and extend previous work that showed evidence accumulation signals in the PPC3,4 

by proposing that accumulation might occur generally by means of ‘reverberation’ of 

network activity changes and by demonstrating that this accumulation could occur as long 

timescale dynamics mediated by orderly transitions between transient and highly different 

activity patterns.

Second, we have shown that trials with identical evidence cues and choices were highly 

variable, such that these trials did not converge to a single, low-variance activity pattern, but 

were instead represented by widely varying patterns of population activity (Fig. 3). The 

diversity of activity patterns emerged because the PPC had information about many signals, 

including past events such as previous choices, reward outcomes, and evidence cues. 

Variability can therefore be considered, in part, as signals for non-measured or hidden 
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parameters, beyond those parameters directly tested in an experiment (e.g. choice or net 

evidence)19,20. The presence of hidden signals impacts our interpretation of neuronal activity 

in that it may be inaccurate to consider activity in layer 2/3 of PPC as specific for a set of 

measured task parameters and to think of the representation of those parameters as a small 

set of noisy network activity patterns. For example, the neuron-neuron activity correlation 

structure remaining after the subtraction of activity resulting from a selected subset of task 

variables, typically referred to as ‘noise correlations’, may reflect, in some cases, ‘residual 

correlations’ due to additional signals in the PPC. Together, our results therefore combine 

and put into a new context features identified in previous studies, including heterogeneous 

activity patterns across neurons5,17,18,20, distributed representations of task stimuli including 

for non-relevant inputs19,20, activity-dependent processing of stimuli35,36, and the encoding 

of previous stimuli that indicates stimulus reverberation30-33,37-43.

Our findings are inconsistent with key features of winner-take-all models2,9,10. First, 

traditional winner-take-all models predict that on different trials with the same choice the 

population activity converges to the same, low variance pattern (attractor, which could 

potentially take multiple possible forms, such as a point in activity state space or a 

trajectory), which is predicted to erase the history of previous events. In contrast, we found 

that the same trial types (and choices) did not converge to a single pattern and instead 

consisted of highly different activity patterns (Fig. 3). In addition, throughout a trial, history 

signals were present for many events, including the sequence of previous cues and outcomes 

from previous trials (Fig. 5, 6a). Second, published models propose that neurons have 

homogeneous and long-lasting activity patterns. Instead, consistent with our previous 

results8, we found that neurons in the PPC were highly heterogeneous, with transient and 

time-varying activity (Fig. 2a, Supplementary Figs. 4, 5a-b). Finally, most implementations 

of winner-take-all competitions involve mutual inhibition between competing pools of 

neurons that should result in negative population activity correlations between trials with 

different choices. Instead, we observed a correlation coefficient close to zero for such trial 

pairs (r = -0.01 ± 0.003, mean ± s.e.m. across datasets). Although our results are inconsistent 

with current implementations of winner-take-all dynamics, they could be consistent with 

emerging models in which a winner-take-all circuit is embedded within a network with 

history-dependent dynamics44 or in which activity in a winner-take-all circuit is drawn 

towards, but never converges to, dynamically changing attractors.

We propose a potentially generalizable rule for PPC dynamics in which inputs that trigger a 

change in activity have a long-lasting effect on future activity patterns due the long timescale 

dynamics of changes in transition probabilities (Fig. 6d-f). In the case of evidence 

accumulation, the evidence cues would not be privileged over other inputs; rather, evidence 

cues, like all other inputs, would help generate new activity patterns and thus new transition 

probabilities to future activity patterns. With multiple evidence cues offset in time, the 

changes in the transition probabilities would cascade such that the activity pattern following 

a sequence of cues would in part be defined by, and thus contain information about, the 

precise order of cues. Different sequences of cues would therefore result in unique activity 

patterns, as we have shown (Fig. 6a). As a result, the same net evidence, choice, and likely 

decision variable would not converge to the same activity pattern from trial to trial, but 

rather would form a diverse set of activity patterns. We predict that prior to learning of a 
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task, these activity patterns would not be associated with one another. Rather, through 

learning, the weights of connections onto a downstream readout network could be modified 

to establish a decision plane for choice or a manifold for net evidence. The readout network 

would therefore be able to associate the initially arbitrary sets of activity patterns with a 

task-specific meaning and behavioral output, as has been demonstrated in computational 

models26,45,46 (Fig. 6d). The low-dimensional projection in the readout network could be 

consistent with previous recordings of ramping activity during evidence accumulation 

tasks3,4,11,47. Our model argues that the PPC has the general role of a ‘reverberator’ of its 

inputs due to intrinsic long timescale dynamics and that evidence accumulation can be 

considered as a sequence of cues that establish a cue-sequence-dependent activity pattern. 

Evidence accumulation would thus occur as a specific example of a general dynamics 

feature. This new model is consistent with the theoretical framework developed in reservoir 

computing45,48,49.

Our proposed algorithm offers significant advantages over a winner-take-all competition. In 

a winner-take-all competition, evidence accumulation would occur through an explicit, 

abstract signal for accumulated evidence. Such a signal is typically implemented in a highly 

specialized network architecture that is fine tuned for a specific type of input, such as visual 

cues during virtual navigation in our case9,10. In contrast, our proposed model would allow 

the same network to flexibly scale for decision-making with multiple alternatives and to 

perform computations relevant to many diverse and novel tasks. This flexibility could be 

achieved through plasticity in readout weights, rather than through the construction of a new 

circuit architecture for each task19,46,48,50. We consider this advantage important for the 

PPC, which contains many signals in the same population of neurons and thus likely 

contributes to many learned behaviors in parallel.

Data and Code Availability

The data and code that support the findings of this study are available from the 

corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A navigation-based evidence accumulation task in virtual reality
a, Schematic of an example 2-4 right trial in a virtual T-maze. Asterisk marks the reward 

location. b, Sequence of trial events. c, Performance for the five mice imaged (mean ± s.e.m, 

7-12 sessions).
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Figure 2. Distributed representation of task-relevant information across PPC neurons
a, Normalized mean activity across all trials for all neurons pooled across all datasets (n = 

3840 cells from 5 mice). Traces were normalized to the peak of each cell’s activity, 

averaged, and sorted by the peak’s maze position. b, Single trial activity for three example 

neurons. Top panels: each row is an individual trial. Bottom panels: mean ± s.e.m. For each 

net evidence condition (e.g. 2L), the mean spike count was calculated by combining the 

activity at all cue epochs matching the given net evidence. c, Histogram of SVM 

classification accuracy for choice for individual neurons (black) and with shuffled trial labels 

(gray), based on the average activity within each left 6-0 and right 0-6 trial. d, Histogram of 

SVR model performance using all trial types, quantified as the correlation between the 

actual net evidence and the net evidence predicted by the SVR model, for individual neurons 

(black) and with shuffled net evidence labels (gray). e, Classification accuracy (mean ± 

s.e.m., n = 11 datasets) for choice using an SVM based on population activity. Independent 

classifiers were trained and tested at each maze position. f, Actual net evidence vs. net 

evidence predicted by a SVR classifier trained on population activity across all cue epochs 

and trial types. Error bars represent mean ± s.e.m. across datasets (n = 11). g-h, Peak 

classifier accuracy for choice (g) and the predicted vs. actual net evidence correlation 

coefficient (h) for classifiers constructed with increasing numbers of neurons, added from 

least to most selective (based on histograms from panels (c) and (d)). Real data (black) and 

data with shuffled trial labels (gray) are shown. Shaded error bars represent mean ± s.e.m. 

across datasets, and max individual neuron classification accuracies/correlations were the 

mean across datasets.
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Figure 3. Clustering neuronal activity across trials reveals trial-to-trial variability
a, Schematic demonstrating clustering procedure (Methods M.4.6). At each of ten spatially-

defined maze epochs, clustering grouped individual trials with similar population activity 

patterns. Clusters at each maze epoch were represented as a column of nodes with area 

proportional to the number of trials in each cluster. Nodes were colored based on the fraction 

of trials within each cluster resulting in a left choice. Nodes were sorted vertically from 

largest to smallest left choice probability. b, Example transition matrix constructed from all 

trials in a single dataset. Edge widths between nodes represent the forward transition 

probability. c-d, Transition probabilities for left 6-0 (c) and right 0-6 (d) trials using the 

clusters derived from all trials as in b. e-g, Example trial-trial population activity correlation 

matrices at the trial start epoch (e), cue 4 epoch (f), and the turn epoch (g) sorted by cluster 

identity. Red squares indicate pairs of trials that were in the same cluster. h, Example trial-

trial population activity correlation matrix for two consecutive epochs (trial start epoch 

compared to cue 1 epoch). Trials were sorted according to the cluster identity during the trial 

start epoch. Because trials were sorted identically in both epochs, trial pairs along the 

diagonal would be expected to have high correlations if trial activity was similar in 

consecutive epochs. In contrast, the low correlations along the diagonal suggest that trials 

had highly different population activity in consecutive epochs. i, Fraction of clusters visited 

at each epoch decreased to only 0.5, suggesting that much trial-trial variability remained 

even at the turn. j, z-scored activity of cells in two clusters during correct left 6-0 trials at the 

cue 1 epoch (black and green) and one cluster at the cue 2 epoch (purple). Cells were sorted 

according to their activity in the black cluster. k, Overlap fraction of active neurons (z-score 

> 1.5) within the same cluster (intra-cluster) and across clusters (inter-cluster), defined as: 

(number of neurons active in both clusters / number of neurons active in either cluster). 

Small inter-cluster overlap suggested that a largely distinct group of neurons was active in 

each cluster. Overlap fractions were calculated separately for correct left 6-0 and right 0-6 

trials. Shuffled overlap index was calculated by shuffling the assignment of trials to clusters. 

***P < 0.001, two-sample Student’s t-test. Gray points are individual cluster pairs and black 

points are means within each group. l, Distribution of pairwise trial-trial population activity 

pattern correlations for pairs of trials with identical cues and choices at the turn epoch for all 

6-0 trials (black) and only trial pairs in the same cluster (gray). m, Fraction of clusters 
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visited at a given epoch when clustering was performed on all epochs together (Methods M.

4.6.4). All trial types were included. Individual lines represent datasets (n = 11).
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Figure 4. Long timescale temporal structure in PPC activity
a, Example transition matrix constructed only from left 6-0 (both correct and error) trials in 

a single dataset. The nodes at the trial start had high left choice probabilities because the 

only trials included in this analysis were left 6-0 trials, which almost always resulted in a left 

choice. b-c, Transition probabilities of all trials starting from a single cluster for real (b) and 

shuffled (c) data. In shuffled data, the assignment of trials to clusters was randomized, 

maintaining the distribution of trials across clusters. d, Based on the cluster identity for a 

trial at a given epoch, the accuracy of correctly predicting that trial’s past and future cluster 

occupancies (Methods M.4.7.1). Predictability across many epochs suggests long timescale 

temporal structure in single trial activity trajectories. Accuracies were pooled across left 6-0 

and right 0-6 trials that were clustered and considered separately. Error bars represent the 

median and 99% confidence intervals from data in which the assignment of trials to clusters 

was shuffled. e, Same as in d, but averaged across all datasets (n = 11). To combine across 

datasets with different chance classifier performance, accuracies were converted into the 

number of standard deviations above the shuffled distribution. To create the pseudo-

population, trial identities were shuffled (within a trial-type category) independently for each 

neuron to break neuron-neuron correlation structure but to preserve each neuron’s activity 

within the trial (Methods M.4.7.2). Error bars represent mean ± s.e.m. across datasets. f, 
Relationship between the population activity correlation of clusters in adjacent epochs and 

the transition probability between them. Transitions were not more likely between clusters 

with more similar population activity patterns. r = 0.02, p > 0.05, n = 3967 consecutive 

cluster pairs.
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Figure 5. Neuronal population activity in the current trial reflects the previous trial’s choice and 
outcome
a, Population activity patterns on different trials at the trial start epoch colored by the choice 

and outcome (reward or no reward) of the previous trial. Dimensionality was reduced using 

factor analysis for visualization purposes. Each circle is one trial. b-c, Both the previous 

trial’s choice (b) and if the previous trial was rewarded (c) could be classified based on the 

population activity. Independent SVM classifiers were trained and tested at each maze 

position. Error bars represent mean ± s.e.m. across datasets (n = 11).
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Figure 6. Analysis of neuronal activity related to evidence accumulation
a, Cumulative distribution of the pairwise trial-trial population activity correlation 

coefficient for epochs with the same (black) or different (green) previous cues, keeping net 

evidence, current cue, and epoch constant (e.g. LRLXXX vs. RLLXXX trials at cue 3). p < 

10−9, two-sample KS test, n = 11 datasets. b, For each dataset, the ability to classify net 

evidence (correlation coefficient for predicted vs. actual net evidence using SVRs, as in Fig. 

2f) was compared with the ability to classify the previous cue’s identity (independent of 

maze epoch, current cue identity, and net evidence, as in (a)). Pearson’s correlation r = 0.84, 

p < 0.001, n = 11 datasets. c, For a single trial at a given epoch, the accuracy of predicting 

the next epoch’s cluster identity for that trial based on chance (black), the evidence cue type 

only (orange), the current cluster identity (green), or both (purple). Individual datasets (open 

circles) and means (filled circles) are shown. d, Schematic illustrating that because the 

population activity depends on both the inputs and the near-past population activity, trials 

with the same sequence of cues, but different starting points due to different past events, will 

take different paths through activity space and result in distinguishable activity patterns 

(compare red and dark red trials). Each large circle surrounding small circles represents the 

population activity pattern at a given time point, with each small circle schematizing the 

activity of a neuron. Activity patterns are transient and change over the course of a trial (see 

red trajectory). Despite multiple activity patterns for choice, a decision plane (gray) can be 

drawn which separates activity patterns according to a given variable. Different decision 

planes can exist for other variables (e.g. previous trial’s choice). e, Schematic depicting that 

trials with the same starting point and net evidence, but different sequences of cues, will take 

different paths through activity space, resulting in multiple, distinguishable activity patterns. 

f, Schematic demonstrating that transient events have a long-lasting impact on population 

activity by creating a new activity pattern with different transition probabilities to future 

activity patterns. For example, if the network receives input B, the network transitions to the 

cyan activity pattern. Trials in the cyan activity pattern at t1 are most likely to transition to 

the orange activity pattern at t2, less likely to transition to the green activity pattern, and 

never transition to the purple activity pattern. The identity of the input can therefore be 

decoded at t2 as a result of these non-random transitions. The thickness of each arrow 

indicates the transition probability. The transitions between t0 and t1 indicate the change in 

activity due to one of two inputs. The circles follow the schematization from (d). Because 

Morcos and Harvey Page 20

Nat Neurosci. Author manuscript; available in PMC 2017 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the transition probabilities are probabilistic, memory of the inputs decays as activity patterns 

diverge, leading to a decrease in the discriminability of inputs A and B.
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