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Abstract: Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective surgical therapy to treat
Parkinson’s disease (PD). Conventional methods employ standard atlas coordinates to target the STN,
which, along with the adjacent red nucleus (RN) and substantia nigra (SN), are not well visualized on con-
ventional T1w MRIs. However, the positions and sizes of the nuclei may be more variable than the standard
atlas, thus making the pre-surgical plans inaccurate. We investigated the morphometric variability of the STN,
RN and SN by using label-fusion segmentation results from 3T high resolution T2w MRIs of 33 advanced PD
patients. In addition to comparing the size and position measurements of the cohort to the Talairach atlas, prin-
cipal component analysis (PCA) was performed to acquire more intuitive and detailed perspectives of the
measured variability. Lastly, the potential correlation between the variability shown by PCA results and the
clinical scores was explored. Hum Brain Mapp 35:4330–4344, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Chronic deep brain stimulation (DBS) of the subthalamic
nucleus (STN) is an effective alternative treatment for Par-
kinson’s disease (PD) patients that have adverse responses
or resistance to the pharmaceutical treatment [Kleiner-Fis-
man et al., 2003; Vingerhoets et al., 2002]. Often the thera-
peutic benefits of DBS in reducing motor-function-related
symptoms are closely related to the precise placement of
the DBS electrode to the motor sub-region of the STN,
while avoiding adjacent nuclei (e.g., substantia nigra) and
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white matter tracts as their stimulation can cause unde-
sired side effects [Montgometry, 2010]. Classical pre-
surgical targeting for STN DBS relies on indirect inference
of the nucleus location, based on the locations of other
neuroanatomical landmarks, such as the anterior commis-
sures (AC) and posterior commissures (PC) seen in the
patient’s T1w MRI or ventriculography. For better target-
ing quality, many groups [Acar et al., 2007; Guehl et al.,
2007; Lanotte et al., 2002; McClelland et al., 2005] pro-
moted using the mid-point of the AC-PC line, or the mid-
dle commissure (MC) point as the reference landmark
instead of the AC and PC points. The relative spatial rela-
tionship between the STN and the landmarks is often
derived from brain atlases such as the Talairach [Talairach
and Tournoux, 1988] or Schaltenbrand [Schaltenbrand and
Wahren, 1977] atlases. Because both of these atlases have
shorter AC-PC lines, some groups infer the location of the
STN by scaling the atlas to align the AC and PC points
[Guehl et al., 2007; Nowinski et al., 2004]. During surgery,
the precise stimulation site is refined with physiological
micro-electrode recording (MER), which may require creat-
ing multiple parallel electrode insertion trajectories. Evi-
dently, an accurate presurgical plan is instrumental to
reduce the number of re-insertions, and thus reduce the
surgical time and risks. Although such indirect inference
can be helpful in identifying the STN, which, together
with substantia nigra (SN) and red nucleus (RN), are not
readily visible on standard clinical T1w MRIs, the assump-
tion that their sizes and locations with respect to brain
landmarks stay fairly fixed may not hold across different
individuals. This can be particularly true for patients with
advanced PD, which may introduce further global and
local morphological changes to the brain [Camicioli et al.,
2003; Hutchinson and Raff, 2000; Nagano-Saito et al., 2005]
in addition to normal aging [den Dunnen and Staal, 2005;
Keuken et al., 2013; Kitajima et al., 2008; Murphy et al.,
1992; Scahill et al., 2003]. An evaluation of the assumption
for indirect localization, with an analysis of the size and
location variability for these nuclei in comparison to the
standard atlases [Schaltenbrand and Wahren, 1977; Talair-
ach and Tournoux, 1988] will likely facilitate the surgical
planning for STN DBS.

With the help of chemical stains, histology is the gold
standard for neuro-anatomical, neurochemical and neuro-
architectonic analysis and this technique has been applied
to the study of anatomical variability of deep brain struc-
tures in fixed or frozen postmortem brains [Den Dunne
and Staal, 2005; Massey et al., 2012]. However, four rea-
sons justify the need of anatomical variability studies
based on MRI of in vivo brains. First, due to the limited
availability of brain donors and costs associated with prep-
aration and analysis of potentially thousands of histologi-
cal slices, it is difficult for histology-based studies to
include a large number of subjects. Second, the brain is
susceptible to changes and deformation due to external
forces, tissue preservation methods, and environmental
changes (i.e., temperature, humidity, pressure). Once the

brain is extracted from the skull, the morphometric prop-
erties of the brain structures may alter, and measurements
may be different from the situation in vivo. Third, histolog-
ical sections are often prepared with slices in one direction
(coronal, sagittal, or transverse). This limits the accuracy of
3D analysis of the nuclei of the same subject, unlike the
MR images that can be isotropic. Finally, MRI is still used
for pre-surgical planning. Therefore, morphometric vari-
ability analysis of the midbrain nuclei using MRI remains
important for clinical considerations.

To date, a few previous endeavors [Ashkan et al., 2007;
Daniluk et al. 2010; Patel et al., 2008; Richter et al., 2004;
Zhu et al., 2002] have reported the size and location vari-
ability with respect to the standard atlases for the STN by
using 1.5 T T2w MRI with a 2 or 3 mm axial-slice thick-
ness and manual structural contour identification. How-
ever, for a small nucleus like the STN as well as for the
commissure points, the partial volume effects associated
with a 2 or 3 mm slice thickness may make accurate delin-
eation of STN boundaries challenging. The later 3T or
higher-field MRI scanners that allow better image contrast,
signal-to-noise-ratio (SNR) and resolution can be better
suited for the task. Although some [Forstmann et al., 2012;
Keuken et al., 2013; Kitajima et al., 2008; Massey et al.,
2012] have attempted variability analysis with high-field
MRI, the selections of stereotactic space as well as land-
marks often differ from clinical practice, and furthermore,
there is a lack of patient data.

In this article, we investigate the morphometric variabili-
ty of the STN and the neighboring SN and RN that are
directly visualized by 3T T2w MR images (1 mm isotropic
resolution), and compare the results within the Talairach
AC-PC based coordinate system. Instead of 2D manual
contour identification [Ashkan et al., 2007; Daniluk et al.
2010; Richter et al., 2004; Zhu et al., 2002], we employed
an automatic majority-voting label-fusion segmentation
technique [Aljabar et al., 2009; Heckemann et al., 2006;
Rohlfing et al., 2004; Rohlfing and Maurer, 2007] to iden-
tify the nuclei in 3D. Besides measuring the nuclei’s rela-
tive locations with respect to the commissure points as
commonly practiced in DBS presurgical planning, we per-
formed principal-component analysis (PCA) to obtain
more in-depth and intuitive perspectives of their morpho-
metric variability. Finally, the computed principal compo-
nents were correlated with patients’ clinical information to
explore the possible link between the morphometric vari-
ability and disease progression.

METHODS AND MATERIALS

Patients and MRI Protocols

For the analysis, 33 PD patients (19 male and 14 female,
age 5 61 6 8 years) that received DBS procedures at the
CHU Rennes (France) were scanned before surgery with a
Philips Achieva 3T MRI scanner for both T1w MRIs
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(TR 5 8.4 ms, TE 5 3.7 ms, flip angle 5 8�, acquisition
matrix 5 240 3 240, 160 axial slices, 1 mm3 isotropic resolu-
tion) and turbo spin echo (TSE) T2w MRIs (TR 5 3,035 ms,
TE 5 80 ms, flip angle 5 90�, acquisition matrix 5 256 3 256,
36 coronal slices, 1 mm3 isotropic resolution). While the
T1w MRI covers the entire head, the T2w MRI only images
a coronal slab of the brain that contains the relevant nuclei.
In Figure 1, coronal and sagittal slices of the T1w and T2w
MR images, which cut through the RN and SN, are shown
for a PD patient. The presurgical unified Parkinson’s dis-
ease scale (UPDRS) III scores were evaluated as 8.35 6 5.37
and 30.89 6 14.35 (information missing for six patients) for
with and without medication (on-Dopa and off-Dopa),
respectively. All patients gave informed consent and the
project was approved by the local research ethics board.

Automatic Segmentation

In earlier investigations [Ashkan et al., 2007; Daniluk
et al. 2010; Richter et al., 2004] structure identification was
conducted with manual contour drawing or landmark
picking (e.g., selecting the most anterior point of a struc-
ture) in the axial slices, and no volumetric segmentation or
evaluation was involved. Manual segmentation can be
good to identify structures, but automatic segmentation
can provide more consistent results against inter- and
intra-rater segmentation quality incoherence while saving
both labor and time. Previously, automatic segmentation
techniques have contributed to morphometric studies
relating to neurological diseases and brain development
[Hu et al., 2013; Morra et al., 2009]. Among the proposed
methods, label-fusion techniques have gained the popular-
ity with the robust performance in identifying structures
that are typically difficult to segment solely by image
intensity features. In this article, we employed the
majority-voting label-fusion method [Aljabar et al., 2009;
Heckemann et al., 2006; Rohlfing et al., 2004; Rohlfing and
Maurer, 2007] to segment the RN, SN, and STN. Before
segmentation, the T1w and T2w images were pre-

processed for all patients. All images were first denoised
by the nonlocal mean filter technique proposed by Coupe
et al. [2008], and then corrected for field inhomogeneity
[Sled et al., 1998]. Each patient’s T1w and T2w MRIs were
rigidly coregistered using a normalized mutual informa-
tion objective function [Studholme et al., 1999]. The
essence of label-fusion is to deform multiple atlases (seg-
mented labels and MRI volumes) to the target subject’s
anatomy and determine the final segmentation based on
the consensus of all customized atlases in order to mitigate
imperfect registration and label interpolation in the single
atlas deformation. In this project, 10 out of the total of 33
subjects were selected to form the label-fusion atlas library,
where each subject’s brain was brought to the MNI305
space by a 9-parameter linear registration. Then, for each
subject, the SN, RN and STN were segmented manually in
the stereotactic space in both hemispheres with ITK-SNAP
(http://www.itksnap.org) by an experienced neurosur-
geon (CH). To further enrich the library, left-right mir-
rored versions of these atlases were also included,
effectively doubling the original library size.

For each subject to be segmented, the library atlases
were first registered to the target patient’s anatomy with a
global affine registration using T1w MRI, and then
deformed through local T2-T2 nonlinear registration with
SyN [Avants et al., 2008] in the central region of the brain.
Here, instead of using the conventional nearest-
neighborhood interpolation, we used tri-linear interpola-
tion to deform the labels. This adds certain level of fuzzi-
ness to the atlases. The procedure is repeated for all 20
atlases in the template library. A demonstration of the
label fusion procedure is shown in Figure 2.

To obtain the final segmentation at each voxel location in
the patient’s image, the structural label with the maximum
counts determined voxel’s label (i.e., a simple voting
scheme). Some subjects from the cohort of 33 patients formed
the atlas library. In these cases, the label-fusion segmentation
was performed in a leave-one-out manner, where the effec-
tive library would exclude the subject to be segmented.

Figure 1.

Examples of T1w and T2w MRI images from one Parkinson’s disease patient in the study. From

left to right: A. a coronal slice of T1w MRI cutting through the region of the red nucleus and

substantia nigra; B. a sagittal slice of T1w MRI cutting through the region of the red nucleus and

substantia nigra; C. a coronal slice of T2w MRI corresponding to A; and D. a sagittal section of

the T2w MRI corresponding to B. Note that the T2w acquisition does not cover the entire

brain.
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Validation of Automatic Segmentation

The automatic label-fusion segmentation method used
to delineate the RN, SN, and STN was validated in a
leave-one-out manner using the 10 patients’ MRIs, which
formed the atlas library. To avoid resampling errors and
ensure the quality of comparison, the RN, SN, and STN
were automatically segmented in the stereotactic space
(MNI305) transformed volumes, where manual segmenta-
tions were performed. The comparison between the auto-
matic and manual segmentation was performed with three
metrics: (1) Dice overlap coefficient, or kappa 5 2*a/(b 1 c)
where a is the volume of the intersection of two segmenta-
tions, and b and c are volumes of each segmentation; (2)
95% Hausdorff distance, and (3) Euclidean distance
between the centers of mass (COM) of the manual and
automatic segmentations.

Coordinate Spaces

Any variability estimated will depend on the choice of
coordinate space. Hence, selecting a coordinate space is
important for understanding the anatomical variability
and its potential link to other factors, such as the clinical
information. In stereotactic neurosurgeries, the commis-
sure points were frequently employed as the landmarks to
infer the location of the subcortical structures, and thus
these landmarks are natural choices to define a coordinate
space to evaluate variability. To verify the spatial relation-
ship and size differences between the nuclei and the
Talairach atlas, which is often employed in the conven-

tional DBS planning, we analyzed the variability in two
different AC-PC aligned spaces. For both spaces, AC and
PC points were manually identified for each subject, and
the brain was reoriented in the same manner as specified
in the Talairach atlas [Talairach and Tournoux, 1988]. That
is to say that the superior edge of AC and the inferior
edge of PC were aligned at the centerline of the same axial
plane, perpendicular to the mid-sagittal plane of the sub-
ject’s brain.

For the first space, the brain reorientation employed a
rigid transformation. For the second space, in addition to
the rigid transformation, all brains were scaled uniformly
in three dimensions so that all AC-PC distances were nor-
malized to be 23 mm as measured in the Talairach atlas
[Talairach and Tournoux, 1988], and the AC-PC lines were
aligned at exactly the same location for all patients. To
avoid confusion, here we refer to the first and second
space as the “AC-PC native space” and “AC-PC normal-
ized space”, respectively. Automatic segmentations were
performed for each patient in these two spaces separately.
Although we mainly employed the “AC-PC normalized
space” to analyze the position and size variability, it is still
important to acquire the nuclei sizes in the “AC-PC native
space” in the absence of the scaling factor for comparison.
Therefore, both of them were necessary for this study.

Distance-Based Variability Analysis

As used in many clinical papers [Ashkan et al., 2007;
Daniluk et al., 2010; Richter et al., 2004], measuring Euclid-
ean distances between points within the structure of

Figure 2.

Demonstration of majority-voting label-fusion procedure for a Parkinson’s disease patient, whose

brain MRIs are in the “AC-PC normalized space.”
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interest and other anatomical landmarks is a straightfor-
ward approach to explore the anatomical variability in
terms of both position and size. For both coordinate
spaces, we measured nuclei sizes in term of volume (in
mm3) as well as the extents of their 3D dimensions defined
by the smallest rectangular box that contains the nucleus.
The position variability of the nuclei was explored only in
the “AC-PC normalized space.” Because in DBS planning,
the position of the STN is often inferred from the MC
point, we measured the relative position between the cen-
ter of mass (COM) of the nuclei and the geometric center
of the “bounding box” to the MC point. The measure-
ments were compared against the Talairach atlas [Talair-
ach and Tournoux, 1988], and the comparison was studied
with one-tailed one-sample t tests.

PCA-Based Variability Analysis

Although the distance measurements offer quantitative
comparison between subjects and standard atlases, the
interpretation is less intuitive for 3D volumes. Alterna-
tively, more detailed and intuitive morphometric variabili-
ty analysis for the nuclei can be achieved using PCA,
which is able to isolate shape variations that are independ-
ent in a high-dimensional space and offers the possibility
to rank them according to their level of contribution to the
overall variability. To bridge the volumetric segmentation
and PCA, we employed the concept of a level-set [Osher
and Sethian, 1988]. Thus, for each structure, a signed dis-
tance transformation function (negative inside, positive
outside and zero at the boundary) is computed, and is
served as the input for PCA. An example of the distance
transformation is demonstrated for the left red nucleus
with a coronal view in Figure 3. As a result, the analysis is
based on continuous-valued fields instead of landmark
points identified on the surface of the 3D segmentation.
The application of level-set functions has the advantage of
obviating the need to identify corresponding landmark

points in the same structure of different subjects, which is
very difficult for small structures.

Therefore, for a dataset of N patients, the distance trans-
form function of patient i and structure L is denoted as
/i;L, where i 5 {1,2, ., N} and L 5 {Left RN, Right RN, Left

STN, Right STN, Left SN, Right SN}. Given the average

level set function �/L5 1
N

X
i
/i;L, eigenvalues fkj;L gj51;2;::;M

and the corresponding orthonormal eigenvectors (or prin-
cipal components) fPj;Lgj51;2;...;M

are found for the matrix

K5 1
N21 SLST

L , where SL5½~/1;L;
~/2;L; . . . ; ~/N;L� and

~/i;L 5/i;L2�/L. This is achieved by decomposing K so that

K5UKUT with K being the diagonal matrix containing the
eigenvalues and U being the orthonormal matrix that has
the corresponding eigenvectors. Note that here, the eigen-
vectors fkj gj51;2;::;M

are arranged in the descending order.

Given a shape wL, it can be represented as a linear com-
bination of PCA components, as

wL5�/L1
X

j

wj;LPj;L

where �/L is the mean level-set function, Pj;L is the prin-
cipal components, and wj;L5Pj;L � wL is the reconstruction
coefficient of Pj;L. By changing the principal components
and their associated reconstruction coefficients, different
variants of the structural shapes can be obtained. Two per-
spectives were explored with PCA in the “AC-PC normal-
ized space.” First, the specific variation type with respect
to each principal component (or variation mode in the
context of shape analysis) was examined. This is achieved
by acquiring the level set function �/L63

ffiffiffiffiffiffiffiffiffi
kj;L

p
Pj;L, which

represents the positive (and negative) 3-fold standard
deviation for the shape variation of the jth variation mode
Pj;L. The specific type of shape variation is visually identi-
fied by comparing the binary shapes obtained by thresh-
olding the level-set function �/L13

ffiffiffiffiffiffiffiffiffi
kj;L

p
Pj;L and

�/L23
ffiffiffiffiffiffiffiffiffi
kj;L

p
Pj;L with the value of 0.8. Second, the relation-

ship between the variation modes (in the form of level-set)

Figure 3.

Structural segmentation and distance transformation. A. segmentation of the left red nucleus

overlaid on the coronal slice of the T2w MRI; B. distance transformation of the left red nucleus

label with the color map shown on the right. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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and the disease progression was experimentally explored.
Here, the Pearson correlation between the reconstruction
coefficient wj;L of the jth variation mode Pj;L and the
UPDRS-III scores while controlling for sex and age was
computed for each structure under study, and the results
with statistical significance (P< 0.05) were reported.

RESULTS

Automatic Segmentation and Validation

The automatic segmentations for the SN, RN and STN
for one patient registered to the MNI305 space are shown
in Figure 4, along with the manual segmentations in the
corresponding views.

The segmentation validation results are shown in Figure
5 for all three evaluation metrics as boxplots with the
mean values and standard deviations in the same graphs.

Distance-Based Variability Analysis

The AC-PC distance is an important measurement for the
application of Talairach atlas. In the “AC-PC native space,”
the AC-PC distance (mean 6 standard deviation) is meas-
ured at 24.18 6 1.81 mm with a range of 21.52–28.32 mm. In
the Talairach atlas, the AC-PC distance is 23 mm, which is
at the 27% percentile of the cohort under study.

With a fairly large variability in the AC-PC distance,
fitting of the atlas often employs the process of scaling

the AC-PC line so that the commissures will overlap
those of the patient. In this context, variability was exam-
ined in the “AC-PC normalized space.” In general, two
main factors are often investigated for the anatomical var-
iability, size, and position. With regard to the nucleus
size, we first took the measurement in terms of the
medio-lateral (M-L), antero-posterior (A-P), and supero-
inferior (S-I) dimensions of a smallest rectangular bound-
ing box that completely contains the nucleus. The 3D
dimensions of the bounding boxes were measured in
both “AC-PC native space” and “AC-PC normalized
space.” To take advantage of the volumetric segmenta-
tion, we also measured the volumes of the nuclei in mm3.
Unfortunately, it was not possible to compare this value
to a corresponding metric from the Talairach atlas. Both
of the size measurements are detailed in Table I, along
with the corresponding available metrics obtained from
the Talairach atlas.

From Table I, it is shown that the mean nuclei sizes are
smaller in the “AC-PC normalized space” than the “AC-PC
native space” due to the AC-PC distance normalization. Except
the medio-lateral dimension, the STN sizes measured from the
Talairach atlas are on average smaller than the cohort in both
coordinate spaces. Through t tests, we found that the sizes of
the nuclei are significantly different from those in the Talairach
atlas (except the A-P dimensions of the left and right RN in
the “AC-PC normalized space,” the M-L dimension of the left
and right STN in the “AC-PC native space,” and the A-P
dimension of the right SN in the “AC-PC native space”).

Figure 4.

Demonstration of automatic segmentation results with one PD

subject in MNI305 space. First column (from top to bottom):

T2w MRI slices of the subject in axial, sagittal and coronal views;

Second column: automatic segmentation results in the corre-

sponding view of the first column; Third column: manual seg-

mentation results in the corresponding view of the first column;

Fourth column: 3D volumetric rendering of manual and auto-

matic segmentation. Here the label colors are shown as:

cyan 5 left STN, green 5 right STN, yellow 5 left SN, red 5 right

SN, purple 5 left RN, and blue 5 right RN.
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The second main factor of anatomical variability is posi-
tion. To study the position variability, the analysis was
only conducted in “AC-PC normalized space.” Because in
DBS planning, the MC point is often used to infer the loca-
tion of the STN, the distances between the nuclei’s center
of mass (COM) and the MC point in the M-L, A-P, and S-I
directions are reported in Table II. Here, we see that on
average, the left STN is 10.08 mm lateral, 0.94 mm poste-
rior, and 5.00 mm inferior to the MC point while the right
STN is 10.18 mm lateral, 0.71 mm posterior, and 5.06 mm
inferior to the MC point. However, the center of the STN is
12 mm lateral, 2 mm posterior, and 4 mm inferior to the
MC point on the Talairach atlas [Ashkan et al., 2007]. Our

measurements do not correspond with those from the
standard atlas, and the average STN position is more
medial, more anterior, and more inferior to that in the
Talairach atlas. While the previous reports [Ashkan et al.,
2007; Daniluk et al., 2010] also attempt to utilize the esti-
mated COM to measure the relative distances between the
nuclei and the MC point, it is possible that this disagree-
ment may be due to the fact that the COM of the nucleus is
difficult to estimate on the 2D atlas. For the same reason,
our measurements of the other nuclei locations in terms of
the COM relative to the MC point were not compared with
the atlas. Instead, we measured the location for geometric
center of the “bounding box” of each nucleus relative to the

Figure 5.

Results of automatic segmentation validation as boxplots. From top to bottom: kappa overlap

coefficient, Euclidean distance between center of mass (COM), and 95% Hausdorff distance. The

value of mean 6 standard deviation for each result is shown beside the corresponding boxplot.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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MC point, which is more easily quantified objectively. From
Table III, it is demonstrated that such definition for the
position of the STN is again significantly different (P< 0.05)
between the cohort and the Talairach atlas.

PCA-Based Variability Analysis

The experiments above give an idea of the positions and
extents of the STN, RN and SN, but don’t give any insight
into how the shapes of these structures vary in the PD
population. To address this limitation, PCA analysis was
performed in “AC-PC normalized space” for each struc-
ture with the left and right side analyzed separately. The
PCA analysis decomposes the anatomical variability into
ranked variation modes, and thus allows a more intuitive
view on the nature of the variability. For all structures of
interest, the first 5 and the first 10 components account for
95–98% and roughly 99% of the total variability, respec-
tively. The eigenvalues of the first 10 components for all
structures are illustrated as bar plots in Figure 6.

Through investigating the ordered eigenvalues of the
structures using one-tailed paired sample t tests, the eigen-

values of the RN are significantly lower (P< 0.05) than
those of the SN and STN on the respective side. This
implies that in terms of variability, the RN is less variable
than the SN and STN. To demonstrate the variation
modes, the first six most prominent shape variations for
all structures are shown from Figure 7 to 9, with the
degree of threefold standard deviation (negative and posi-
tive) from the mean shape. Through the evolution between
the two extreme shape variations (negative and positive
deviations) for each mode, we can identify the specific
type of shape variation that is represented by a mode. In
the same figures, the mean shapes are overlaid on the
average of all 33 AC-PC normalized T2w MRIs, and they,
not surprisingly, fit the averaged T2w MRI after AC-PC
normalization. However, owing to the structural variabili-
ty remaining after the linear AC-PC scaling alignment, the
nuclei in the averaged T2w MRI appear blurry.

In general, for each structure, the first three shape varia-
tions are mostly related to the spatial displacements while
the later principal components account for relatively more
subtle global and local shape variations. More specifically,
for the RN, the A-P position displacement appears most
significant, and the M-L and S-I displacements are

TABLE I. Measurements of nuclei sizes as maximum extents in the medio-lateral, antero-posterior and supero-

inferior dimensions, as well as the nuclei volumes measured in mm3

Nucleus Medio-lateral (mm) Antero-posterior (mm) Supero-inferior (mm) Size (mm3)

Left RN 6.91 6 0.77 (7.5) 8.30 6 0.73 (8.0) 6.79 6 0.65 (8.5) 203.36 6 25.75
6.53 6 0.53 (7.5) 8.00 6 0.56 (8.0) 6.53 6 0.72 (8.5) 176.94 6 32.13

Right RN 6.88 6 0.65 (7.5) 8.24 6 0.61 (8.0) 6.79 6 0.60 (8.5) 203.45 6 26.18
6.62 6 0.60 (7.5) 8.03 6 0.62 (8.0) 6.47 6 0.61 (8.5) 177.05 6 31.54

Left STN 9.00 6 0.87 (9.0) 9.70 6 0.73 (8.5) 6.82 6 0.85 (5.5) 156.36 6 20.66
8.68 6 0.82 (9.0) 9.52 6 0.87 (8.5) 6.44 6 0.75 (5.5) 136.52 6 26.23

Right STN 9.09 6 0.88 (9.0) 9.55 6 0.75 (8.5) 6.64 6 0.74 (5.5) 155.73 6 21.72
8.67 6 0.75 (9.0) 9.20 6 0.70 (8.5) 6.35 6 0.74 (5.5) 135.68 6 29.32

Left SN 10.85 6 0.94 (12.0) 12.73 6 0.84 (13.0) 8.09 6 0.98 (9.5) 285.33 6 32.68
10.42 6 0.94 (12.0) 12.44 6 0.99 (13.0) 7.85 6 0.96 (9.5) 250.36 6 46.00

Right SN 10.88 6 1.17 (12.0) 12.76 6 0.87 (13.0) 8.21 6 0.78 (9.5) 285.52 6 32.21
10.32 6 0.96 (12.0) 12.52 6 0.89 (13.0) 7.94 6 1.00 (9.5) 248.57 6 46.27

Note that each value is shown as mean 6 standard deviation. Here, the measurements in “AC-PC native space” are shown in black
fonts while those in “AC-PC normalized space” are shown in bold italic fonts with underlines. The measurements from the Talairach
atlas are listed in the parentheses.

TABLE II. Measured distances (mean 6 standard deviation) between the COM of the nuclei and the middle commis-

sure point in the medial-lateral, anterior-posterior, and superior-inferior directions

Nucleus Lateral to MC (mm) Posterior to MC (mm) Inferior to MC (mm)

Left RN 4.88 6 0.51 7.38 6 1.05 4.90 6 0.75
Right RN 4.93 6 0.53 7.24 6 0.94 4.86 6 0.77
Left STN 10.08 6 1.04 0.94 6 1.02 5.00 6 0.89
Right STN 10.18 6 1.00 0.71 6 0.94 5.06 6 0.93
Left SN 8.89 6 0.87 4.90 6 1.29 8.48 6 1.00
Right SN 8.91 6 0.79 4.86 6 1.15 8.46 6 1.10
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secondary. It is interesting that for the RN, the second and
third mode appear very similar in nature, but the direction
of the displacement in space varies. For the SN and STN,
a mix of A-P and S-I position difference is the most domi-
nant. However, for the SN, the importance of S-I and M-L
displacements come in the second and third while for the
STN, after the first mode, the contribution of the M-L dis-
placement is more than the S-I displacement. Overall,
within the principal component representation of the posi-
tion variability, the variability often involves displace-
ments in three principal directions (medio-lateral, infero-
superior, and antero-posterior), but a prevailing trend in
one or two directions can still be easily identified.

An additional observation is that while on average the
variation modes appear similar between the left and right
side, the symmetry does not hold all the time. Example of

this phenomenon can be seen when comparing bilaterally
the third modes of the SN and STN, as well as in the later
principal component representations. Despite the symme-
try assumption in many atlases, it is not surprising to dis-
cover asymmetric anatomical variability in these nuclei as
in many other structures in the human brain.

Correlation

To explore the influence of the disease over the variations
revealed by PCA analysis, we computed the Pearson corre-
lation between the reconstruction coefficients for each varia-
tion mode and the clinical information (on-Dopa and off-
Dopa UPDRS III) of the patients while controlling for age
and sex. Given the exploratory nature of this analysis, the
partial correlations with a significant level (P< 0.05),

TABLE III. Measured distances (mean 6 standard deviation) between the geometry centers of the nuclei and the

middle commissure point in the medial-lateral, anterior-posterior, and superior-inferior directions

Nucleus Lateral to MC (mm) Posterior to MC (mm) Inferior to MC (mm)

Left RN 4.85 6 0.51 (4.75) 7.30 6 1.09 (7.5) 4.95 6 0.78 (5.25)*
Right RN 4.92 6 0.55 (4.75)* 7.17 6 0.92 (7.5)* 4.92 6 0.77 (5.25)*
Left STN 9.80 6 1.01 (9.50) 2.14 6 1.10 (1.25)* 4.97 6 1.01 (3.75)*
Right STN 9.83 6 0.96 (9.50)* 1.96 6 1.05 (1.25)* 4.97 6 0.92 (3.75)*
Left SN 9.16 6 0.89 (9.00) 4.83 6 1.36 (6.00)* 7.57 6 0.88 (8.25)*
Right SN 9.12 6 0.79 (9.00) 4.70 6 1.29 (6.00)* 7.67 6 1.03 (8.25)*

An asterisk (“*”) indicates that the measurement disagrees with that from the Talairach atlas with statistical significance (P< 0.05).

Figure 6.

Bar plot showing the eigenvalues of the first 10 principal components from the PCA analysis of

each nucleus.
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uncorrected for multiple comparisons, are shown in Table
IV. It is mentioned earlier that for all structures of interest,
the first 10 variation modes account for about 99% of the
observed variation. Therefore, to avoid noise that may mis-
lead the interpretation, the correlations are only listed for
the relevant first 10 variation modes in Table IV. The varia-
tion modes showing significant correlations are different
between the case of on- and off-Dopa UPDRS III scores, and
furthermore, the examination results are not symmetric
between the left and right side. More specifically, as the on-
Dopa UPDRS III score increases, the positions of the right
RN (Mode 3), right STN (Mode 2), and right SN (Mode 3)
become more lateral, and the superior portion of the right
RN is reduced (Mode 4). As of the off-Dopa UPDRS III
scores, with higher scores, the right STN is more infero-
posterior (Mode 1), the left STN size is smaller (Mode 7),
and the right RN is more posterior (Mode 1).

DISCUSSION

Label Fusion

For the purpose of nuclei segmentation, we employed
the majority-voting label-fusion technique despite that a
number of more recent and sophisticated label-fusion tech-
niques [Artaechevarria et al., 2009; Chen et al., 2012;
Coupe et al., 2011; Isgum et al., 2009; Wang et al., 2011,
2013; Warfield et al., 2004] have demonstrated superior
performance by exploring statistical behaviors of the
images and atlases. Two reasons contribute to our selec-
tion of segmentation method. First, the relatively simple
majority-voting segmentation has shown robust perform-
ance [Aljabar et al., 2009; Collins and Pruessner, 2010;
Heckemann et al., 2006; Rohlfing et al., 2004; Rohlfing and
Maurer, 2007]. Second, a complete comparison of these

Figure 7.

PCA analysis results for the left (top three rows) and right (bot-

tom three rows) RN showing effects of the first six variation

modes and the mean shape overlaid on an average of AC-PC

normalized T2w MRIs. For each variation mode shown, the cyan

color label represents mean shape minus threefold standard

deviation while the red color label represents mean shape plus

threefold standard deviation. Note that in each group of figures

demonstrating the left or right RN, the cross-hair cursor is

placed at the same position, and the three rows show the axial,

sagittal, and coronal views (from top to bottom) of the nucleus.
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new methods is not available, and the performance of the
more sophisticated segmentation techniques depends on
successful reimplementation. It is true that majority-voting
label-fusion techniques have never been used in segment-
ing midbrain nuclei. However, a comparison of different
algorithms is beyond the scope of this article. By visual
inspection, the selected segmentation method demon-
strates satisfactory results according to the manual seg-
mentation protocols adopted by the neurosurgeon who
labeled the relevant structures for the atlas library. From
quantitative validation, we have achieved fairly satisfac-
tory results for such small structures, compared with pre-
vious publications in terms of kappa [Haegelen et al.,
2012] and the Euclidean distance between COMs [Brunen-
berg et al., 2011]. In this study, to further ensure the seg-
mentation accuracy, T2-T2 nonlinear registration was used
instead of the more common T1-T1 registration seen in
DBS applications.

Stereotactic Spaces

The selection of coordinate space affects the final results
of the morphological study. In an ideal mathematical anal-
ysis, one would identify the minimum variance frame
[Bookstein, 1977] of selected landmarks, and report vari-
ability within this coordinate system. However, our goal
was to identify anatomical variability in a coordinate sys-
tem that is commonly used in stereotaxic neurosurgery.
While it is true that the use of an AC-PC based coordinate
system mixes displacement and shape information, it is
precisely the result of this mixing that is required by the
neurosurgeons when determining optimal targets for deep
brain surgery. While both are employed in DBS planning,
the Schaltenbrand atlas [Schaltenbrand and Wahren, 1977]
is more commonly seen in the previous studies of mid-
brain nuclei anatomical variability [Ashkan et al., 2007;
Castro et al., 2006; Daniluk et al., 2010; Richter et al., 2004]

Figure 8.

PCA analysis results for the left (top three rows) and right (bot-

tom three rows) SN showing effects of the first six variation

modes and the mean shape overlaid on an average of AC-PC

normalized T2w MRIs. For each variation mode shown, the cyan

color label represents mean shape minus threefold standard

deviation while the red color label represents mean shape plus

threefold standard deviation. Note that in each group of figures

demonstrating the left or right SN, the cross-hair cursor is

placed at the same position, and the three rows show the axial,

sagittal, and coronal views (from top to bottom) of the nucleus.
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than the Talairach atlas [Talairach and Tournoux, 1988].
However, we referred to the latter for our analysis. In con-
trast to the Talairach atlas, which only contains one
healthy aged female subject without Parkinson’s disease,

the Schaltenbrand atlas was created with different subjects
for different sections. To obtain more consistent dimension
measurements, the Talairach atlas may be a better choice.
However, the locations of the RN, SN and STN in the

Figure 9.

PCA analysis results for the left (top three rows) and right (bot-

tom three rows) STN showing effects of the first 6 variation

modes and the mean shape overlaid on an average of AC-PC nor-

malized T2w MRIs. For each variation mode shown, the cyan

color label represents mean shape minus threefold standard devi-

ation while the red color label represents mean shape plus three-

fold standard deviation. Note that in each group of figures

demonstrating the left or right STN, the cross-hair cursor is

placed at the same position, and the three rows show the axial,

sagittal, and coronal views (from top to bottom) of the nucleus.

TABLE IV. Table of variation modes that have statistically significant (P < 0.05) correlations with on- and off-Dopa

UPDRS III scores

Nucleus On-Dopa UPDRS III Off-Dopa UPDRS III

Left RN
Right RN Mode 3 (0.35) Mode 4 (0.55) Mode 1 (0.34)
Left STN Mode 7 (0.45)
Right STN Mode 2 (0.43) Mode 1 (0.36)

Left SN
Right SN Mode 3 (0.38)

Note that the value of correlation is shown inside the parenthesis after the respective variation mode number. Here, only the first 10
variation modes are shown in the table.
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Talairach atlas do not represent the mean coordinates of a
population since it was derived from the anatomy of a sin-
gle individual, and these coordinates are different from
the mean coordinates found in our study. Furthermore,
the definitions of AC-PC line and thus the MC point in
these two atlases differ [Weiss et al., 2003], making it diffi-
cult to simultaneously compare the two atlases to the
measurements of the cohort in the same coordinate space.
Besides the histology-derived stereotactic spaces, there
also exist MRI-derived stereotactic spaces, such as the
ICBM152 [Fonov et al., 2011] and MNI305 spaces [Collins
et al., 1994]. These newer stereotactic spaces resemble the
brain orientation of the Talairach space, and the stereotac-
tic space realignment for any upcoming subject is achieved
fully automatically. Variability analysis [Forstmann et al.,
2012] has also been previously conducted using such ste-
reotactic space. Yet, often due to the availability of the
software and the long history of successful applications in
neurological studies, the histology-derived atlases [Schal-
tenbrand and Wahren, 1977; Talairach and Tournoux,
1988] are still more commonly employed.

Morphometric Variability

While T2w MRI is still the most common way to image
the midbrain nuclei in the clinics, as the medical imaging
technology advances, there have been a number of MRI
methods [Brunenberg et al., 2011; O’Gorman et al., 2011;
Xiao et al., 2012] designed to directly visualize the STN.
Consequently, this raised the debate of whether direct tar-
geting using these MRI methods is superior to the classical
landmark-based indirect targeting method. On one hand,
some studies [Richter et al., 2004; Zhu et al., 2002] support
the use of direct visualization; on the other hand, a num-
ber of studies [Acar et al., 2007; Guehl et al., 2007; Lanotte
et al., 2002; McClelland et al., 2005] have reported success-
ful application of indirect targeting. As a result, an investi-
gation is still necessary, especially with better imaging
methods and high field scanners becoming increasingly
available.

Similar to a previous study [Richter et al., 2004], the
measured STN size is smaller than or similar to that of the
Talairach atlas [Talairach and Tournoux, 1988] in the M-L
dimension, but larger in the I-S and A-P dimensions. We
find the geometric center of the STN is more posterior, lat-
eral and inferior to that in the Talairach atlas. This con-
firms the study by Richter et al. [2004]. Unfortunately,
most previous studies only focused on the analysis of the
STN, and their AC-PC line alignment may differ from the
method described in this article, especially when using the
Schaltenbrand atlas [Schaltenbrand and Wahren, 1977] as
the reference. It is difficult to compare our results, and
especially those of the RN and SN, to previous publica-
tions. Nevertheless, the additional measurements of the
RN and SN, and the comparison to the Talairach atlas
with a larger population than in [Richter et al., 2004] pro-

vide valuable complementary knowledge to the applica-
tion of atlases.

As far as the cohort is concerned, the Talairach atlas
[Talairach and Tournoux, 1988] does not match our meas-
urements. One possible reason for the disagreement is that
the subject for atlasing lacks of sufficient representative-
ness of the population under study (i.e., PD). This is a uni-
versal issue for all single-subject derived atlases. In this
sense, unbiased anatomical atlases [Fonov et al., 2011; Hae-
gelen et al., 2012] that represent the averaged anatomical
features of the population of interest (i.e., advanced PD
patients) may be more desirable as both aging and disease
progression may alter the anatomy due to global and local
tissue degeneration and atrophy. Whether targeting the
STN with such unbiased atlas is superior than direct visu-
alization will require further evaluation beyond the scope
of this article. At the moment, the evidence presented here
supports the use of direct targeting method over the
landmark-based indirect targeting based on the Talairach
atlas.

Another issue related to the analysis is image distortion.
For the image protocols involved, a distortion study was
conducted using a LEGO phantom, and the procedure is
detailed in [Caramanos et al., 2010]. Through the analysis,
an average distortion below 0.5 mm was measured within
the field of view for both T1w and T2w MRI protocols pre-
sented. For the central region, where our analysis was con-
ducted, the distortion is close to 0.2 mm. Compared with
the magnitude of our measurements, this will not likely
influence our final conclusion that the metrics obtained
from the cohort differ from the Talairach atlas.

In this study, PCA offers a new perspective on the issue
of anatomical variability of the midbrain nuclei compared
with the conventional coordinate analysis. When corre-
lated with clinical information (UPDRS III scores) in our
exploratory analysis, one can identify specific types of
shape variation that are possibly related to the disease pro-
gression. In addition, the intuitive nature of the analysis
results allows visual identification of the subtle morpho-
metric changes possibly due to disease progression. With
the help of PCA, we discovered the lateral displacement of
the nuclei with disease progression on the right side likely
due to the enlargement of the third ventricle [Daniluk
et al., 2010], but the asymmetry of this discovery requires
further investigation. The off-Dopa UPDRS III scores were
shown to be related to the STN with size reduction on the
left side and position alteration on the right side, as well
as position shift of the right RN. The difference between
the on- and off-Dopa results is very likely due to the inter-
play between the structure changes and the influence of
external dopamine supply. It should also be noted that the
morphometric alterations of the nucleus for PD should be
a result of shape changes of both the nucleus itself and the
surrounding structures (i.e. ventricle enlargement and
brain atrophy). The PCA exploratory analysis may offer a
potential method for disease prediction of Parkinson’s dis-
ease. However, it is important to note two important
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limitations of our study: First, we have reported prelimi-
nary results on only 33 subjects: more subjects are needed
to confirm the results and to expand the analysis. Second,
we have reported significant correlations with uncorrected
P values to identify potential relations between shape and
disease progression. Given the large number of correla-
tions computed, some of these results may be due to
chance. To better understand and further confirm these
correlations, a larger patient population is required. For
this study, only the motor-function-related UPDRS III
scores were used because among all the UPDRS assess-
ment subscores, this metric is obtained most objectively by
the neurologist while the rest were self-evaluated by the
patients, and the motor function disability is more promi-
nent than other cognitive and psychological symptoms
for PD.

CONCLUSION

In conclusion, we analyzed the sizes and positions of
the STN and the adjacent RN and SN by using the label-
fusion technique to automatically segment structures from
high resolution 3 Tesla TSE T2w MRIs. From the analysis,
significant differences were discovered between the stud-
ied cohort and the Talairach atlas, and the discovery sup-
ports the use of MRI-based direct targeting method for
locating the SN, RN, and STN. In addition to conventional
coordinate measurement, we employed PCA analysis to
obtain more intuitive and detailed information regarding
the morphometric variability of the nuclei, and correlations
between the PCA components and UPDRS III scores were
found.
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