
INTRODUCTION

Alzheimer’s disease (AD) is a debilitating neuropsychiatric 
disorder characterized by the multifaceted decline in cogni-
tive and behavioral functions. Since its discovery by Dr. Alois 
Alzheimer in 1906, AD has become the most common neu-
rodegenerative form of dementia that is responsible for 50 to 
70% of all dementia cases worldwide.1 Over decades of re-
search, many hypotheses on the etiology of AD have been 
proposed. Early models focused on the functional decline of 
specific neuronal systems (e.g., cholinergic and GABAergic 
neurons) in the prefrontal lobe and hippocampus.2-4 Today, 
an established hallmark neuropathologic feature of AD is 
neuronal death caused by plaques of extracellular amyloid-β 
(Aβ) peptides and intracellular neurofibrillary tangles (NFTs) 
of abnormally hyperphosphorylated tau proteins.5 In the past 
two and half decades, the amyloid cascade hypothesis has re-
ceived the most support in the field of AD research.6 But af-
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ter years of clinical examination, existing hypotheses and 
pharmacological treatments fail to capture the whole picture 
behind AD.7 With increasing human longevity and growth of 
the older populations in the society, AD without cure remains 
as one of the greatest obstacles in modern medicine. Novel 
stem cell techniques that target neurogenesis hold potential 
for treating AD patients. This review focuses on the current 
progress, remaining challenges and perspectives in develop-
ing stem cell treatment for AD.

AD PATHOGENESIS AND CURRENT 
TREATMENTS

The two key biochemical features of AD are 1) extracellu-
lar Aβ plaques and 2) intracellular NFTs.5,8 The formation of 
Aβ plaques are a consequence of misguided production of 
the amyloid peptide. In unaffected individuals, amyloid pre-
cursor protein (APP) is cleaved by α-secretase or β-secretase 
to yield soluble sAPPα or sAPPβ peptides, both of which pro-
mote neural survival and growth. In AD, another pathway 
occurs where APP is sequentially cut by β-secretase and γ- 
secretase to produce insoluble Aβ40/42.9-11 These aberrant pro-
teins are rich in β-sheets in contrast to α-helices as in healthy 
amyloid peptides.12 Aβ travels through the bloodstream to 
stimulate additional production of Aβ in other cells and its 
neurotoxicity causes death of neurons widely across the cen-
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tral nervous system (CNS).13 Intracellular NFTs, on the other 
hand, are formed by atypical hyperphosphorylation of the 
tau protein, a microtubule-associated protein (MAP) that 
supports other cytoskeletal structures and regulates various 
functions in neurons.8 Hyperphosphorylation of intracellular 
tau is caused by atypical hyperactivation of protein kinases 
(e.g., PKC and PKA) and leads to cellular apoptosis and neu-
ronal loss.14,15 The amyloid cascade hypothesis puts Aβ for-
mation at the pathologic center of AD progression.6

Based on available biochemical and genetic data, physi-
cians generally categorize AD into two types: early-onset or 
familial AD (FAD) and late-onset or sporadic AD (SAD). 
FAD is a rare form of AD that affects patients under the age 
of 65.16 Three genes involved in the production of Aβ—amy-
loid precursor protein (APP), presenilin 1 (PS1) and preseni-
lin 2 (PS2)—have been strongly implicated in this type of 
AD.17,18 Mutations or overexpression of PS1 (chromosome 
14) or PS2 (chromosome 1), which comprise the γ-secretase 
complex, or APP (chromosome 21) have been linked with 
Aβ aggregation and neurodegeneration.19 SAD in contrast 
occurs in older individuals and accounts for almost 90% of 
AD instances. Apolipoprotein E (APOE), triggering receptor 
expressed on myeloid cells 2 (TREM2) and CD33 that are re-
lated to tau modification and microglial phagocytosis of AB, 
are the most significantly associated genes to SAD as discov-
ered in genome-wide association studies (GWAS).20-23

In addition to such biochemical changes in the brain, dys-
functions in the metabolism and processing of biomolecules 
including protein, cholesterol and glucose are also common-
ly observed in AD patients.24 Proteostasis failure such as the 
breakdown of the ubiquitin-proteasome pathway triggers 
uncontrolled cell death and higher formation of NFTs.25-28 
Inability to process gangliosides aggravates the conversion of 
non-toxic APP precursors to insoluble, toxic Aβ.29,30 Further-
more, disrupted glucose metabolism has been shown to cause 
aberrant synthesis and modification of tau proteins.31,32 Met-
abolic dysfunctions lead to increased levels of cytokines and 
reactive oxygen species (ROS) and produce deteriorating 
chronic neuroinflammation in patients with AD.33,34

Despite the long years of research and therapeutic trials in 
AD, an effective treatment is yet to be developed. Current FDA-
approved treatments can temporarily delay the progression 
of AD by inhibiting neuronal death related proteins and re-
storing the functions of cholinergic neuronal systems.35,36 But 
even cocktail treatments present insufficient efficacies to han-
dle the rising number AD patients in the older populations.37,38 
Pharmaceutical companies around the world shared efforts 
to develop novel treatment regimes that use passive anti-am-
yloid immunotherapy or Aβ-targeted protein chaperones and 
they are currently under clinical trial phases.39 However, a 

growing consensus in the field is that current pharmaceuti-
cals are introduced too late in the progression of AD and that 
new treatments should target earlier stages in the progression 
of the disease before widespread neurodegeneration and overt 
dementia occur.40 Stem cell therapy, with its capacity to gener-
ate various types of neurons and glial cells, has lately received 
considerable attention as a potential therapeutic option for re-
versing neuronal loss in AD, and studies using animal models 
show promising results. Although long-term investigations 
are necessary to comprehend its safety and efficacy before 
human clinical trials, stem cell based therapy holds potential 
as a next generation treatment for AD.

STEM CELL THERAPY FOR AD

Treatment of AD with stem cell technology depends on the 
neurogenesis capacities of stem cells. The strategy is to utilize 
stem cells to physically replace the neurons that are lost in the 
neurodegenerative stages in AD. In recent findings, the impor-
tance of glial cells and intercellular binding proteins in shap-
ing the external environments of neurons have been suggest-
ed. The decline of microglia, astrocytes and oligodendrocytes 
that support the neuronal networks in the CNS through im-
mune, nutritional and homeostatic mechanisms are correlat-
ed with the neuroinflammatory biochemistry of AD.41,42 Addi-
tionally, the deterioration of central binding proteins between 
neurons such as Slitrk and LAR-RPTP contributes to the wide-
spread neuronal loss.43-45 Through transplantation or in situ 
regeneration of lost neurons and key proteins that support 
them, there is hope to rebuild the integrity of the CNS and to 
alleviate the decline in cognitive functions in AD patients. The 
four types of stem cells that can be generated from the human 
body—neural stem cells (NSCs), mesenchymal stem cells 
(MSCs), embryonic stem cells (ECSs) and induced pluripotent 
stem cells (iPSCs)—each holds unique properties that could 
be utilized in the stem cell therapy regime in a variety of ways 
(Figure 1).46

NSCs
Found in small amounts in the mammalian brain, NSCs 

are multipotent stem cells that can be differentiated into all 
types of cells found in the CNS.46 The self-renewal and differ-
entiation potentials of NSCs have been established both in 
vitro and in vivo.16,47 Although limited in their differentiation 
capacities compared to ESCs and iPSCs, NSCs are the ideal 
candidates for replacing neurons in the human brain due to 
their relatively low risks in tumorigenesis and immunogenici-
ty.48,49 Potential treatment methods with NSCs involve the in-
duced differentiation of neurons or glial cells through the ex-
posure of specific morphogens followed by overexpression of 
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the healthy cells in patients. In rodent models, the overexpres-
sion of NSC-derived cholinergic neurons and choline acetyl-
transferase (ChAT) restored cognitive performance and syn-
aptic integrity.50,51 A limitation of this type of stem cells, 
however, is their small number in human brain tissue. If their 
proliferation could be induced and controlled through growth 
factor exposure, genetic or epigenetic manipulations, NSCs 
could be developed into an effective addition to current AD 
treatments.

MSCs
MSCs are another multipotent line of stem cells found in 

the human body (Lanza and Atala, 2014).52 They generate di-
verse cell types at the bone marrow, lungs, umbilical cord, 
blood, adipose tissue and muscle tissue.53 Given their greater 
availability compared to NSCs, MSCs may be a promising 
source for therapeutic stem cell treatments. But a drawback 
is that they can only give rise to a limited number of lineages 
and display limited survival and short half-lives post-trans-
plantation, particularly depending on the donor cell popula-
tion and harvest and culture locations.54-56 In rodent studies, 
bone marrow MSCs (BMSCs) and umbilical cord blood MSCs 
(UCB-MSCs) could be used to generate cholinergic neu-
rons.57-59 Treatment using MSCs in mice also contributed to 
the clearance of abnormal Aβ plaques via microglial activa-
tion, prevented neuronal death and increased neuronal dif-

ferentiation.60,61 In addition, MSCs safely restored cognitive 
functions such as memory in rodent analyses.61,62 MSCs have 
been shown to further play roles in activating proinflamma-
tory cytokines that are beneficial to the recovery of damaged 
neuronal environments.63-65 Identifying morphogens in dif-
ferentiating MSCs to a larger range of neural cells would be 
key in developing MSCs as effective therapeutic treatments.

ESCs
Extracted from the inner cell mass (ICM) of blastocysts, 

ESCs are pluripotent stem cells that innately give rise to to all 
cell types in the development of an embryo.66 Given their po-
tent differentiation capacities, direct transplantation of ESCs 
has high risks of teratoma formation and thus strict control 
and maintenance of stability in differentiation are main areas 
for improvement with ESC techniques.67,68 Several rodent 
studies suggest that ESC-derived NSCs can be safely trans-
planted without tumorigenesis, but further research is needed 
to confirm these results.69,70 Moreover, unlike NSCs and MSCs, 
ESCs carry the added risk of transplantation rejection and 
immune responses.71,72 Although the brain is immune-privi-
leged, the human leukocyte antigen (HLA) profile of donor 
cells must be considered in transplantation to avoid immune 
rejection.71 Experimentation with human ESCs (hESCs) have 
so far have been able to successfully produce dopaminergic 
neurons, spinal motor neurons and astroglial cells.73-77 Re-

Figure 1. Schematic diagram showing the potential applications of stem cell therapy in Alzheimer’s disease.
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search with hESCs in FDA-approved clinical trials, however, 
is ethically controversial and must be approached more care-
fully than other types of stem cells.78,79

iPSCs
iPSCs are an intriguing line of stem cells that are repro-

grammed from adult fibroblasts.80 In iPSC technology, new 
stem cells that possess pluripotency comparable to that of 
hESCs are created through the overexpression of four tran-
scription factors (TFs)—Oct3/4, Sox2, Klf4 and c-Myc.81 In 
2006, Professor Shinya Yamanaka’s research team generated 
the first iPSCs through retrovirus induced overexpression of 
these four TFs, but this initial formula exhibited low success 
rates.82 So far, novel methods such as inducing serum starva-
tion and aligning cell cycle rhythms or inducing gene expres-
sion through plasmids and adenoviruses have significantly 
improved the reprogramming techniques.83-85 Screening meth-
ods for successful reprogramming such as tetraploid comple-
mentation have also been developed.86,87 Early iPSC protocols 
solely relied on the complete reprogramming of somatic cells 
to pluripotent stem cells, but recently developed methods also 
capture somatic intermediates and transdifferentiate them 
into induced neural precursor colonies (iNPCs), which are 
similar in their differentiation potential to NSCs.88 In regards 
to immune reactions, research with iPSCs have shown incon-
sistent results. Some rodent studies found little or no immune 
recognition against transplanted iPSCs while others found 
major histocompatibility complex (MHC) incompatibility of 
donor and acceptor to elicit immune rejection reactions.22,69,89 
The unresolved question of immunogenicity with iPSCs must 
be unraveled before any clinical trials can be started.

Challenges and promises
Despite the excitement for cell replacement therapy for AD, 

several challenges remain in its development. An overarch-
ing issue in all stem cell based treatments is donor-to-donor 
variation. Data from transplantation experiments strongly 
indicate the importance of considering genetic and epigenetic 
backgrounds of donor cells. In generating neurons and glial 
cells for transplantation, the genetic defects that cause bio-
chemical symptoms of AD (e.g., APP, PS1, and PS2 in SAD) 
must be corrected in the donor cells.90 This could be achieved 
by DNA editing with molecular scissors such as CRISPR. 
Epigenetic memory of donor cells was shown to affect gene 
expression and cellular stability following transplantation and 
reprogramming, posing unexpected risks for tumorigene-
sis.91,92 Selecting for purity of donor cells in some studies 
could reduce heterogeneity and improve functional integrity 
in the iPSC products.93 For this purpose, genome-wide refer-
ence maps on epigenetic prints such as DNA methylation are 

under development.94 Another question in stem cell treat-
ment is determining the target for transplantation. Given the 
widespread neurodegeneration throughout the CNS in AD, 
it is difficult to determine the ideal location for introducing 
the new population of neurons while minimizing stability 
and rejection risks. The hippocampus and lateral ventricles 
which are known to contain NSCs in the human brain are 
possible candidates.95 Additional setbacks pertaining to ESCs 
and iPSCs are possibilities of transplantation rejection tumor 
development. In iPSC research, in vivo or in situ reprogram-
ming have been proposed as solutions.96 By reprogramming 
cells within their endogenous locations, immune responses 
and risk factors introduced in the in vitro processes could alto-
gether be avoided.

Stem cell technology could also be utilized to model AD to 
further extend our understanding of the complex disease 
and to identify potential pharmaceutical agents. Through 
GWAS and meta-analysis studies, some risk factors and gene 
candidates in the pathogenesis of AD have been discov-
ered.97,98 But given the multifaceted nature of neurodegerna-
tive disorders and the lack of effective pharmaceuticals, our 
knowledge on AD progression appears to be inadequate. The 
amyloid cascade hypothesis is currently the most dominant 
theory on AD pathophysiology, but certain cases of AD pa-
tients without Aβ deposition suggest the possibility of a AD 
mechanism not related to Aβ such as the suspected non-am-
yloid (or Alzheimer’s disease) pathophysiology (SNAP).99 
Operating on cultured populations from stem cells could be 
useful in identifying defects responsible for Aβ and NFTs 
that current medications fail to target as well as examine the 
possibility of other modes of pathogenesis.100 Cultured neu-
rons from patients’ stem cells could also be implemented in 
screening for drug efficacies and the development of person-
alized treatment.

CONCLUDING REMARKS

Stem cell therapy is an expanding area of research that holds 
vast potential for treating a variety of illnesses such as neuro-
degenerative disorders. Up to date, stem cell technology is 
only at its developmental stages but rapid developments and 
advances indicate its potential uses in direct as well as indirect 
treatments of AD. Combined with the knowledge from past 
decades of research on AD, stem cell therapy is a prospective 
next generation treatment for AD. 
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