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Abstract

Aims/hypothesis—We previously reported that obese individuals with the metabolic syndrome 

(at risk), compared with obese individuals without the metabolic syndrome (healthy obese), have 

elevated serum AGEs that strongly correlate with insulin resistance, oxidative stress and 

inflammation. We hypothesised that a diet low in AGEs (L-AGE) would improve components of 

the metabolic syndrome in obese individuals, confirming high AGEs as a new risk factor for the 

metabolic syndrome.

Methods—A randomised 1 year trial was conducted in obese individuals with the metabolic 

syndrome in two parallel groups: L-AGE diet vs a regular diet, habitually high in AGEs (Reg-

AGE). Participants were allocated to each group by randomisation using random permuted blocks. 
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At baseline and at the end of the trial, we obtained anthropometric variables, blood and urine 

samples, and performed OGTTs and MRI measurements of visceral and subcutaneous abdominal 

tissue and carotid artery. Only investigators involved in laboratory determinations were blinded to 

dietary assignment. Effects on insulin resistance (HOMA-IR) were the primary outcome.

Results—Sixty-one individuals were randomised to a Reg-AGE diet and 77 to an L-AGE diet; 

the data of 49 and 51, respectively, were analysed at the study end in 2014. The L-AGE diet 

markedly improved insulin resistance; modestly decreased body weight; lowered AGEs, oxidative 

stress and inflammation; and enhanced the protective factors sirtuin 1, AGE receptor 1 and 

glyoxalase I. The Reg-AGE diet raised AGEs and markers of insulin resistance, oxidative stress 

and inflammation. There were no effects on MRI-assessed measurements; no side effects from the 

intervention were identified. HOMA-IR came down from 3.1±1.8 to 1.9±1.3 (p<0.001) in the L-

AGE group, while it increased from 2.9±1.2 to 3.6±1.7 (p<0.002) in the Reg-AGE group.

Conclusions/interpretation—L-AGE ameliorates insulin resistance in obese people with the 

metabolic syndrome, and may reduce the risk of type 2 diabetes, without necessitating a major 

reduction in adiposity. Elevated serum AGEs may be used to diagnose and treat ‘at-risk’ obesity.

Trial registration—ClinicalTrials.gov NCT01363141

Funding—The study was funded by the National Institute of Diabetes and Digestive and Kidney 

Diseases (DK091231)
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Introduction

Current efforts to arrest the epidemics of type 2 diabetes and cardiovascular disease, as well 

as dementia or Alzheimer's disease, have had limited success [1-3]. Obesity is a prevalent 

component of type 2 diabetes, often coupled with insulin resistance, hypertension and 

dyslipidaemia in a cluster known as the metabolic syndrome, associated with chronic 

oxidative stress and inflammation [4-6]. Overnutrition is thought to be a major cause of 

obesity [5]. However, many obese people do not develop the metabolic syndrome and have 

been labelled ‘healthy obese’ [7-9]. Although excessive consumption of fatty foods is 

considered an important cause of the metabolic syndrome [4, 5], this view has recently come 

under new scrutiny [10, 11]. Thus, there is a need to identify alternative causes and 

treatments for ‘at-risk’ obese people.

Thermally prepared foods are rich in pro-inflammatory AGEs, which are also flavourful, a 

fact that enhances palatability and consumption and therefore may promote weight gain [12, 

13]. Excessive intake of dietary AGEs has directly and causally been linked in both humans 

and mice to high serum AGEs, oxidative stress and inflammation, reduced innate defences, 

and insulin resistance [12-19]. In a cross-sectional study of obese individuals with and 

without the metabolic syndrome, we recently found a direct correlation between AGEs and 

insulin resistance. Obese individuals with the metabolic syndrome had significantly higher 
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dietary AGE intake and serum AGEs, as well as insulin resistance, oxidative stress and 

inflammation, compared with healthy or obese individuals without the metabolic syndrome 

[20]. Two distinct serum AGE markers, carboxymethyllysine (CML) and methylglyoxal 

(MG) derivatives, were markedly elevated in this population and strongly correlated with 

elevated HOMA-IR, oxidative stress and inflammation, and decreased protective or host 

defence factors, such as sirtuin 1 (SIRT1) and AGE receptor 1 (AGER1) [20].

Based on these observations, we hypothesised that high serum AGE levels in at-risk obese 

adults contribute to the risk of type 2 diabetes. We proposed that a 1 year randomised 

interventional trial with dietary AGE restriction (L-AGE) would improve metabolic 

syndrome risk factors.

Methods

Clinical protocol

Selection criteria to participate in the study have already been published [20]. Briefly, 

volunteers aged 50 years or above with at least two of the following five criteria of the 

metabolic syndrome, based on the Third Report of the National Cholesterol Education 

Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in 

Adults (Adult Treatment Panel III) (NCEP ATP III) [21], were recruited from the New York 

City urban community surrounding the Icahn School of Medicine at Mount Sinai: (1) waist 

circumference ≥102 cm in men and ≥88 cm in women; (2) BP ≥130/85 mmHg (or use of 

BP-lowering medication); (3) HDL-cholesterol <1.04 mmol/l in men or <1.29 mmol/l in 

women; (4) triacylglycerol ≥1.69 mmol/l (or use of medication for high triacylglycerol, such 

as fibrates or nicotinic acid); and (5) fasting blood glucose ≥5.55 mmol/l, but an HbA1c 

≤6.5%/47.5 mmol/mol, or use of metformin. Volunteers were screened with a 3 day AGE 

food record and those whose daily intake was ≥12 AGE equivalents per day were invited to 

participate in the study. These participants were then randomised either to an L-AGE diet or 

to their usual diet (Reg-AGE) and used as controls for the next 12 months (Fig. 1). Routine 

blood tests were performed in the hospital clinical laboratory. Only investigators involved in 

laboratory determinations were blinded to the dietary assignment. Participant recruitment 

started in 2011 and the trial finished in 2014.

All volunteers signed a consent form approved by the Icahn School of Medicine at Mount 

Sinai Institutional Review Board. The study was registered in www.clinicaltrials.gov 

(NCT01363141).

L-AGE participants prepared their own food at home after being individually instructed on 

how to reduce dietary AGE intake by modifying the cooking time and temperature without 

changing the quantity, quality or composition of food. They were specifically instructed to 

avoid frying, baking or grilling, and they were encouraged to prepare their food by boiling, 

poaching, stewing or steaming (Table 1). It has been previously demonstrated that switching 

to these suggested methods of cooking limits new AGE formation in foods, especially 

animal food products [15]. Participants received a personal interview with the study dietitian 

every 3 months at the clinic to emphasise instructions and review records. In addition, a 

dietitian contacted them regularly via telephone (twice/week) to evaluate and promote 
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dietary compliance. Together these measures helped avoid undue changes in calorie 

consumption while adhering to L-AGE.

All participants underwent a physical examination and provided a medical history at 

baseline. A fasting blood sample, a 24 h urine sample and previously validated 3 day food 

records were obtained at baseline and at 12 months (end of study). During these visits, 

participants also underwent an OGTT (75 g oral glucose load, followed by serum samples at 

0, 60 and 120 min) and abdominal and neck MRI to define subcutaneous and visceral 

adipose fat distribution and carotid wall artery variables. Routine blood tests were performed 

in the hospital clinical laboratory. HOMA-IR was calculated from fasting blood glucose and 

insulin as previously published [22].

Dietary intake—Assessment of daily dietary AGE content was based on 3 day food 

records and estimated from a database of ∼560 foods which lists AGE values [15] expressed 

as AGE equivalents per day (1 AGE equivalent=1,000 kilounits). The 3 day food record is 

based on established guidelines developed to assist in estimating portions [15]. Nutrient 

intakes, important in monitoring and preventing undue changes in calorie consumption, were 

then estimated from food records using a nutrient software program (Food Processor, 

version 10.1; ESHA Research, Salem, OR, USA).

Imaging studies (MRI)—Subcutaneous and visceral abdominal fat deposits were assessed 

as previously described [23, 24] (electronic supplementary material [ESM] Methods).

Materials—See ESM Methods.

AGE determination—AGEs (CML and MG) in serum, urine and peripheral blood 

mononuclear cell (PMNC) lysates were determined by well-validated, competitive ELISAs 

based on monoclonal antibodies for protein-bound CML (4G9) [25, 26] and protein-bound 

MG derivatives, i.e. arginine-MG-H1, characterised by HPLC [12], shown to detect 

pathologically relevant AGEs in multiple studies [12-15, 27] (ESM Methods).

RNA isolation and qRT-PCR—Total RNA was isolated from PMNCs using TRIzol 

reagent according to the manufacturer's protocol (Sigma-Aldrich, St Louis, MO, USA). 

First-strand cDNA synthesis was performed using SuperScript III Reverse Transcriptase 

(Roche, Indianapolis, IN, USA). AGER1 (also known as DDOST), receptor for AGEs 

(RAGE, also known as AGER) and SIRT1 mRNA expression were analysed by quantitative 

SYBR Green real-time PCR. The transcript copy number of target genes was determined 

based on their Ct values [17, 20, 27] (ESM Methods).

Ex vivo studies

Cell culture—PMNCs from individuals with the metabolic syndrome were separated from 

fasting, EDTA anticoagulated blood by Ficoll-Hypaque Plus gradient (GE Healthcare 

Bioscience, Pittsburgh, PA, USA) and incubated in serum-free culture media AIM-V 

(Invitrogen, Carlsbad, CA, USA) at 37°C with 5% CO2 for 1 h, followed by the addition of 

MG-BSA (60 μg/ml) [12, 14, 16]. MG-BSA contained 22 MG-modified arginine residues 

per mole based on HPLC. MG-BSA was passed through an endotoxin-binding affinity 
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column (Pierce, Rockford, IL, USA) to remove endotoxins [12, 14] (ESM Methods). Cells 

were incubated with or without the SIRT1 inhibitor Sirtinol (10 μmol/l; Calbiochem, La 

Jolla, CA, USA) or a SIRT1 activator, SRT1720 (1 μmol/l; Selleckchem, Houston, TX, 

USA). After 72 h, the cells were harvested for western blotting, the culture medium was 

centrifuged at 1000 g for 10 min and the supernatant fraction was collected for testing 

human TNFα levels with an ELISA kit (Invitrogen) [28]. In a separate study, PMNCs from 

normal volunteers without the metabolic syndrome, described previously [20], were used as 

controls for PMNCs from individuals with the metabolic syndrome. All baseline cellular 

data were collected from PMNCs obtained at study commencement.

Conditioned medium—PMNCs freshly isolated at baseline and at study end were plated 

in serum-free culture media at 37°C with 5% CO2 for 24 h. The media were collected and 

centrifuged to remove cells and other particles and concentrated by Amicon Ultra centrifugal 

filter units (Sigma-Aldrich) for co-culture experiments [14].

Adipocyte culture and treatment—3T3-L1 cells (ATCC, Manassas, VA, USA), 

cultured and differentiated, as described [12], were incubated with DMEM or PMNC 

conditioned medium and diluted at 1:500 with DMEM for 18-24 h. After washing and 

replacing media with Hanks' Balanced Salt Solution for 1 h, cells were stimulated with 

insulin (100 nmol/l) for 30 min before they were harvested.

Western blotting—After incubating PMNCs with MG-BSA and with or without Sirtinol 

or SRT1720 for 72 h, cells were disrupted in lysis buffer. The cellular proteins were 

separated on 8% SDS-PAGE gels, transferred on to polyvinylidene fluoride membranes and 

immunoblotted with the indicated antibodies. To test for NFκB acetylation, 250 μg protein 

lysate was immunoprecipitated by an anti-NFκB p65 antibody at 4°C overnight. Protein A/G 

agarose beads 60 μl were added. The immunoprecipitates were immunoblotted with a 

specific anti-acetyl-NFκB p65 (lysine 310) antibody, 3T3-L1 adipocyte lysates (50 μg) were 

immunoblotted by anti-phospho-Akt (Ser473) antibody or immunoprecipitated (400 μg) by 

anti-insulin receptor-β antibody, followed by immunoblotting with anti-phosphotyrosine 

antibody (4G10; Millipore, Billerica, MA, USA).

Statistical analysis

Of the 383 individuals originally screened for eligibility, 138 were randomised (Fig. 1). 

Participants were considered eligible for analysis if they attended at least the 6 month clinic 

appointment. The pre-specified statistical analysis plan defined the study outcomes to be the 

mean differences between the final recorded values minus the baseline values for the Reg-

AGE and L-AGE groups. The primary outcome variable was taken to be HOMA-IR. Sample 

size was established on the basis of prior studies showing an effect of L-AGE on healthy 

individuals who had a difference in HOMA-IR between those on L-AGE and those on 

normal diets of 4.57 [17]. To find a difference of 4 with 80% power would require a sample 

size of 98. Allowing for ∼20% dropout, a sample size of 120 was proposed (60 in each 

group, to maximise power). Due to a higher per cent dropout in the L-AGE group, the total 

recruitment was increased to 138 (Fig. 1).
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The study statistician performed the randomisation and all statistical analyses (Stata 

software, version 12; StataCorp LP, College Station, TX, USA). Descriptive analyses 

summarised continuous variables at baseline through their mean (SD) and median (first 

quartile, third quartile). Categorical variables were summarised using percentages. On the 

whole, the outcome variables (the differences between the mean within-intervention group 

differences over the length of the trial) were not greatly skewed. Thus, although the primary 

analyses were from t tests, sensitivity analyses were conducted using both general linear 

models, to adjust for sex, race, BMI and baseline age, and non-parametric Wilcoxon tests in 

case of skewed variables.

Results

Human data

General description—Baseline characteristics of cohorts randomised to L-AGE and Reg-

AGE who finished the study (Fig. 1) are shown in Table 2. Both groups included participants 

who had two or more features of the metabolic syndrome and displayed no baseline 

differences in any variables, except for BMI, serum vascular cell adhesion molecule 1 

(VCAM1) and glyoxalase I. We have previously compared this population with a cohort of 

age- and sex-matched volunteers without the metabolic syndrome [20].

Interventional data

AGE restriction markedly improves insulin resistance and modestly reduces body 
weight: The effects of the intervention on the different variables are depicted in Table 3 and 

ESM Table 1. The L-AGE compared with the Reg-AGE diet led to a marked decrease in 

HOMA, fasting plasma insulin and insulin levels at 120 min of an OGTT (Fig. 2a,b). There 

were no end-of-study effects on fasting blood glucose, HbA1c levels or blood glucose at 60 

and 120 min of the OGTT. However, HOMA decreased in 80% of participants on the L-

AGE diet compared with 31% on the Reg-AGE diet.

Both diets were associated with a modest weight loss, which reached significance only in the 

L-AGE group (Table 3; ESM Table 1). Of note, markers of insulin resistance (HOMA and 

fasting plasma insulin), as well as serum AGEs and markers of oxidative stress and 

inflammation, including 8-isoprostanes, RAGE and TNFα, were reduced even in those 

participants on the L-AGE diet who did not lose body weight (n=12). By comparison, there 

were no such end-of-study changes in participants on the Reg-AGE diet who lost weight 

(n=25) (ESM Table 2).

We observed no end-of-study effects on abdominal visceral and subcutaneous fat deposits or 

on carotid wall variables by MRI, and there was no effect on BP, plasma triacylglycerols or 

HDL (Table 3; ESM Table 1).

The effect of the L-AGE diet on HOMA-IR remained highly significant, after adjusting for 

baseline BMI and intake of calories, protein, carbohydrate and fat, as well as age, sex and 

race.
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Dietary AGE restriction improves inflammatory and host defence markers: There were 

marked decreases in circulating AGE markers (serum CML and MG) (Fig. 2c), as well as in 

intracellular AGEs (CML and MG) of PMNCs and in urinary AGEs (CML and MG) in the 

L-AGE group (Table 2). By contrast, in the Reg-AGE cohort, serum AGEs, intracellular 

AGEs and urinary AGEs continued to increase (Table 2; Fig. 2c).

Levels of 8-isoprostanes, as well as TNFα, VCAM1 and RAGE, were decreased in the L-

AGE cohort at the end of the study (Table 2; Fig. 2c,d). On the other hand, the levels of anti-

oxidative stress and inflammatory SIRT1, AGER1, adiponectin and glyoxalase I were 

increased in this group at the end of the study. By comparison, and similar to earlier studies 

[17, 19], in the Reg-AGE group, 8-isoprostanes, RAGE, HOMA-IR and leptin levels 

continued to increase (Table 3; Fig. 2a). There were no differences in lipid levels or renal 

function before and after the study in either group (Table 3).

Sex, race, ethnicity and AGEs: None of the above effects of the L-AGE diet were modified 

after adjusting for sex, age, race or ethnicity. There were no significant side effects reported 

by either group during the intervention, although more participants in the L-AGE group 

were lost to follow-up (Fig. 1).

Ex vivo data

L-AGE intervention ameliorates PMNC host defence deficiency and 
inflammation, and abrogates dysmetabolic effects on adipocytes—PMNCs from 

metabolic syndrome volunteers were compared with PMNCs from healthy individuals, as 

previously described [20]. Cells from those with the metabolic syndrome had lower SIRT1 

and AGER1 and increased TNFα protein levels, consistent with a pro-inflammatory 

metabolic syndrome PMNC phenotype [20], compared with PMNCs from participants 

without the metabolic syndrome (Fig. 3a,b).

Ex vivo stimulation of baseline PMNCs with MG-BSA suppressed SIRT1 and AGER1 

protein levels (Fig. 3c) and increased inflammatory markers (via JNK phosphorylation), 

marked by increased TNFα secretion (Fig. 3d,e). These responses were modulated by a 

SIRT1 agonist and a SIRT1 inhibitor (Fig. 3a–c), directly implicating SIRT1 in these events 

[29].

At study end, PMNCs from L-AGE, but not Reg-AGE, participants, displayed lower TNFα 
secretion (Fig. 4a; ESM Table 1). Moreover, when insulin-stimulated 3T3-L1 adipocytes 

were exposed to the L-AGE conditioned medium from PMNCs obtained at study end, they 

revealed an improved Akt and insulin receptor phosphorylation pattern compared with 

adipocytes exposed to Reg-AGE conditioned medium (Fig. 4b,c).

Discussion

This 1 year intervention shows that dietary L-AGE can improve insulin resistance, a major 

risk factor for type 2 diabetes, in obese people with the metabolic syndrome. It also provides 

clinical evidence that elevated levels of AGEs, related to AGE-rich diets, are a causal factor 

of insulin resistance. Since maintaining weight reduction is a difficult objective, finding that 
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L-AGE mitigates insulin resistance in at-risk obese people introduces a novel additional 

approach (e.g. to calorie restriction or drugs) in the treatment of insulin resistance, and, thus, 

prevention or delay of onset of type 2 diabetes. Since this was possible without a 

modification in energy intake, or substantial weight reduction, L-AGE may offer a feasible 

treatment goal of risk reduction in obese people.

We recently reported that obese individuals with the metabolic syndrome consume 

significantly greater amounts of dietary AGEs compared with healthy obese individuals even 

when consuming similar amounts of calories [20]. Herein, after 1 year of L-AGE, insulin 

resistance markers including HOMA and plasma insulin (fasting and 2 h OGTT) as well as 

leptin markedly decreased to near-normal levels [20]. There was also a modest weight loss 

in the L-AGE group, the impact of which on insulin resistance is uncertain. However, insulin 

resistance changes were independent of BMI, as well as total calorie and nutrient 

consumption. Furthermore, insulin resistance (HOMA, fasting plasma insulin and leptin) 

improved even in those on the L-AGE diet who did not have any change in body weight. 

Moreover, those on the Reg-AGE diet who lost body weight were found at study end to have 

increased levels of markers of insulin resistance or of oxidative stress and inflammation 

(ESM Table 2). Together these findings are consistent with the view that insulin resistance is 

partly independent of adiposity.

In the absence of overt diabetes or renal failure, dietary AGE consumption is shown to 

promote high serum AGE levels, which can influence insulin sensitivity [17-19]; thus, 

dietary AGEs are a risk factor for insulin resistance and the metabolic syndrome, distinct 

from overnutrition. Diets rich in flavourful AGEs [13] may promote food consumption and 

can lead to obesity [20].

The marked reductions in serum and PMNC (intracellular) AGEs, due to the L-AGE diet, 

together with reduced TNFα as well as RAGE levels, in this non-diabetic cohort with the 

metabolic syndrome (normal HbA1c and fasting blood glucose) confirm the view that dietary 

AGEs can foment dysmetabolism via oxidative stress and inflammation [20, 29]. Indeed in 

the L-AGE group oxidative stress and inflammation decreased in tandem with insulin 

resistance, thus delaying progression to type 2 diabetes. By comparison, worsening insulin 

resistance and markers of oxidative stress and inflammation in the Reg-AGE group, also 

noted in shorter trials [17], were possibly due to an expanding net AGE pool from both 

exogenous and endogenous sources. Thus, this 1 year trial temporally documents increased 

risk of progression to type 2 diabetes linked to an AGE-rich diet.

The L-AGE diet benefited several defensive factors which were found to be suppressed at 

baseline [20], including SIRT1, a master regulator of inflammation, insulin action, fat 

mobilisation [7, 30, 31] and cognitive function [32]; AGER1, an AGE receptor that 

antagonises AGEs, oxidative stress and inflammation [33]; and the anti-inflammatory 

adiponectin [34]. Restored SIRT1 and AGER1 have been implicated in the benefits of L-

AGE on the metabolic syndrome as well as on dementia or Alzheimer's disease in mice [14, 

24, 35]. L-AGE increased mRNA levels of GLO1, encoding glyoxalase I, an MG-degrading 

enzyme (thus a protective factor) [36], which is an altogether new and novel finding. Taken 

together, levels of seven genes important in the balance of oxidative stress and inflammation 
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were largely restored to normal by the L-AGE diet at the end of the study. Greater 

bioavailability of native antioxidants under the L-AGE diet might also have contributed to 

those effects.

The effects of L-AGE on PMNCs were likely reflected in peripheral tissues, although we did 

not directly assess adipose tissue [14, 27]. At study end, PMNCs from L-AGE individuals 

secreted less TNFα, such that PMNCs no longer impaired adipocyte responses to insulin. 

Indeed, PMNCs, like macrophages, participate in adipocyte dysfunction [28, 36], and 

chronic dietary AGE excess by inciting PMNC activation can impair adipocyte insulin 

sensitivity [12]. The pro-inflammatory phenotype of PMNCs was reversed at study end by 

the L-AGE diet, strongly concurring at the cellular level with the systemic findings. The net 

effect of L-AGE on the balance of oxidative stress and inflammation involved a robust 

improvement in insulin resistance.

The absence of changes at study end on central fat or carotid wall area by MRI in either 

group may be partly because there were no detectable abnormalities at baseline. Similarly, 

there were no effects on BP, plasma HDL or triacylglycerols, possibly due to the concurrent 

use of BP-and lipid-lowering drugs. We did not find that age, race, ethnicity and sex had an 

effect on the efficacy of the intervention.

AGEs may be estimated by immunochemical (ELISA) [25, 26, 37], chromatographic and 

mass-spectroscopy methods [18, 38]. Herein, AGEs were assessed by ELISA, a standard 

method used extensively to demonstrate their role in chronic disease as well as the benefits 

of AGE modulation in restoring health [12-15, 17-20, 25-27, 29, 33].

Weaknesses of this trial include the relatively small cohort size and the use of HOMA-IR 

instead of direct assessment methods of insulin resistance and sensitivity [39]. This 1 year L-

AGE trial did not directly demonstrate an effect on the rate of progression to overt type 2 

diabetes; however, insulin resistance, and thus risk of type 2 diabetes, decreased in the 

majority (80%) of L-AGE participants, compared with only 31% in the Reg-AGE group. 

More withdrawals in the L-AGE group might have resulted from dietary behavioural 

changes requiring significant effort and time commitment only in this subgroup.

In conclusion, L-AGE is effective against insulin resistance in obese individuals with the 

metabolic syndrome. Longer trials employing L-AGE alone or combined with other 

interventions should determine efficacy on risk of cardiovascular disease and other features 

of the metabolic syndrome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CONSORT study flow diagram

Vlassara et al. Page 13

Diabetologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Effects of L-AGE diet (black bars) vs Reg-AGE diet (white bars) on metabolic variables and 

systemic markers of AGEs, oxidative stress and inflammation (also see Table 2). (a) Markers 

of insulin resistance: per cent changes (means ± SEM) in levels of HOMA, leptin and fasting 

insulin between baseline and end of study (Reg-AGE, n=43; L-AGE, n=51; *p≤0.05). (b) 

Plasma insulin after OGTT: per cent changes (means ± SEM) in plasma insulin levels 0 and 

120 min after OGTT between baseline and end of study (Reg-AGE, n=43; L-AGE, n=51; 

*p≤0.05). (c) AGEs and pro-oxidative stress and inflammation markers: per cent changes 

(means ± SEM) in markers of serum (s) AGEs (CML, MG), plasma 8-isoprostanes (8-iso) 

and PMNC inflammatory factors (TNFα protein and RAGE mRNA) between baseline and 

end of study (Reg-AGE, n=33; L-AGE, n=21; *p≤0.05). (d) Anti-oxidative stress and 

inflammation markers: per cent changes (means ± SEM) in levels of antioxidants and 

markers of host defence, SIRT1, AGER1 and GLO1 mRNA, between baseline and end of 

study (Reg-AGE, n=33; L-AGE, n=21; *p≤0.05)
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Fig. 3. 
Baseline ex vivo cellular data: AGEs suppress host defences and promote inflammatory 

activation of PMNCs in individuals with the metabolic syndrome (MS) compared with 

normal individuals (NL). (a) Expression levels of anti-oxidative stress and inflammation 

factors, SIRT1 (white bars) and AGER1 (black bars), and (b) of the pro-oxidative stress and 

inflammation cytokine TNFα protein in PMNCs freshly obtained at study commencement 

(baseline), from obese study MS participants (MS-PMNCs) (black bar) compared with that 

in PMNCs simultaneously obtained from NL (white bar). Data in (a) are from western blots 

and densitometry, shown as AU or ratio of target protein to β-actin (means ± SEM) and in 

(b) as (means ± SEM) pg/mg cell protein by ELISA (n=10/group, each in triplicate; *p≤0.05 

vs NL). (c) Baseline MS-PMNCs were exposed ex vivo to MG-BSA 60 μg/ml for 72 h, in 

the presence or absence of a SIRT1 activator, SRT1720 (1 μmol/l), or a SIRT1 inhibitor, 

sirtinol (10 μmol/l). Western blots, performed on cell extracts, and density analysis (means ± 

SEM) (n=3–5) are shown as the ratio of SIRT1 (white bars) or AGER1 (black bars) to β-

actin; *p≤0.05 vs non-stimulated MS-PMNCs (control, CL); † p≤0.05 vs MG alone. (d) MS-

PMNC extracts, prepared as in (c), were also probed for levels of p-JNK (black bars) and 

acetylated NFκB p65 at lys310 (Acl-p65) (white bars) by western blots, using the respective 

antibodies and density analyses. Total JNK and p65 served as internal controls (CL). Density 

data (means ± SEM, n=3–5) indicate the ratios of phosphorylated or acetylated protein to 

total protein; *p≤0.05 vs non-stimulated CL; † p≤0.05 vs MG alone. (e) TNFα secreted into 

the culture medium at 72 h from non-stimulated MS-PMNCs (CL, white bar) or MG-

stimulated MS-PMNCs (black bars) at baseline, in the presence or absence of SRT1720 (1 

μmol/l) or sirtinol (10 μmol/l), as above. Assays were performed in triplicate for each 

sample. Data (means ± SEM) are shown as per cent of control (n=7, *p≤0.05 vs CL; †p≤0.05 

vs MG alone). All PMNC samples were collected at study baseline
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Fig. 4. 
End-of-study ex vivo cellular data: L-AGE diet mitigates inflammatory activation of PMNCs 

from individuals with the metabolic syndrome (MS-PMNCs) and improves their impact on 

insulin responses of adipocytes in vitro. (a) TNFα from MS-PMNCs secreted into the 

conditioned media, after 1 year on L-AGE (black bar, n=5) or Reg-AGE diet (white bar, 

n=5). Data are shown as means ± SEM pg/ml medium, each in triplicate; *p≤0.05 L-AGE vs 

Reg-AGE diet. (b) JNK phosphorylation in differentiated 3T3-L1 adipocytes after overnight 

incubation with conditioned medium either from baseline (BL) or end-of-study PMNCs 

from L-AGE (black bar, n=5) and Reg-AGE (white bar, n=5) treatment groups. Cell lysates 

were subjected to western blot and densitometry. As additional control, 3T3-L1 adipocytes 

were incubated with normal culture medium, shown as 0. Density data are means ± SEM 

(n=3–5 independent experiments); *p≤0.05, L-AGE or Reg-AGE vs BL; † p≤0.05, L-AGE 

vs Reg-AGE diet. (c) Serine phosphorylation (at Ser473) of Akt and tyrosine 

phosphorylation of insulin receptor (IR) in 3T3-L1 adipocytes after exposure to conditioned 

medium (CM) overnight as in (b). Cells were incubated in the presence (black bars) or 

absence of insulin (Ins) (white bars) (100 nmol/l, 30 min) and subjected to western blot and 

densitometry (means ± SEM, n=3 independent experiments); *p≤0.05 L-AGE vs BL. PMNC 

samples (n=7) were from the same individuals evaluated at baseline (Fig. 2, n=7). 3T3-L1 

adipocytes incubated with normal CM are shown as 0
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