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Abstract

In many different fields, social scientists desire to understand temporal variation associated with 

age, time period, and cohort membership. Among methods proposed to address the identification 

problem in age-period-cohort analysis, the Intrinsic Estimator (IE) is reputed to impose few 

assumptions and to yield good estimates of the independent effects of age, period, and cohort 

groups. This article assesses the validity and application scope of IE theoretically and illustrates its 

properties with simulations. It shows that IE implicitly assumes a constraint on the linear age, 

period, and cohort effects. This constraint not only depends on the number of age, period, and 

cohort categories but also has non-trivial implications for estimation. Because this assumption is 

extremely difficult, if not impossible, to verify in empirical research, IE cannot and should not be 

used to estimate age, period, and cohort effects.

Introduction

For over a century, social scientists have attempted to separate cohort effects from age and 

period effects on various social phenomena including mortality, disease rates, and inequality 

(e.g., Mason et al. 1973; Holford 1983; Fu 2000; O’Brien 2000; Winship and Harding 

2008). Whereas age effects represent the variation associated with growing older, period 
effects refer to effects due to social and historical shifts such as economic recessions and 

prevalent unemployment that affect all age groups simultaneously. Cohort refers to a group 

of people who experience an event such as birth at the same age. Cohort effects are defined 

as the formative effects of social events on individuals at a specific period during their life 

course (Ryder 1965). Age-period-cohort (APC) models, where the three variables are 

simultaneously considered in a statistical equation, have been the conventional framework 

for quantifying age, period, and cohort effects. Unfortunately, such APC models suffer from 

a logical identification problem: once any two of the three variables (age, period, and cohort) 

are known, the value of the third is determined; this is because Cohort=Period-Age. Because 

of this exact linear dependency, there exist no valid estimates of the distinct effects of the 

three variables.
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Various methods have been developed to address this identification problem. For example, 

Mason et al. (1973) introduced the APC multiple classification model and suggested the 

Constrained Generalized Linear Model (CGLM) as a means of estimating the independent 

effects of age, period, and cohort. More recently, Fu (2000) and Yang and colleagues (2004) 

proposed a new APC method, called the Intrinsic Estimator (IE). They recommended IE as 

“a general-purpose method of APC analysis with potentially wide applicability in the social 

sciences” (Yang et al. 2008, p1699) on the grounds that IE has desirable statistical properties 

such as unbiasedness and consistency.

However, in this article I show that IE cannot be used to recover the true age, period, and 

cohort effects because IE, like CGLM, imposes a constraint on parameter estimation that is 

difficult to verify using theories or empirical evidence; that is, the validity of IE relies on 

assumptions that are very difficult to verify in applied practice. In this sense, IE is no better 

than CGLM. In fact, IE is equivalent to the Principal Component Estimator, an estimator 

with a potential for bias that was noted by its developer (Kupper et al. 1985). Unfortunately, 

this has not been understood by the community of demographers, sociologists, and 

epidemiologists who have used IE in a wide variety of research applications. As I 

demonstrate below, many researchers have misunderstood what IE actually estimates and 

how IE estimates should be interpreted, resulting in inappropriate applications of IE in 

empirical research and potentially misleading substantive conclusions.

This article contributes to the literature in two ways: First, although O’Brien (2011a) 

clarified that IE assumes a special constraint – the null-vector constraint – on parameters, it 

is challenging for researchers to fully appreciate and evaluate the appropriateness of this 

constraint when applying IE in substantive studies. In this article, I derive an easily-

understood form of IE’s constraint on the linear components of age, period, and cohort 

effects so the implications of using IE to estimate the true age, period, and cohort effects can 

be better understood.1

Second, while scholars agree that IE is a constrained estimator, they debate whether IE can 

provide reliable estimates of the true age, period, and cohort trends (see Fu et al. 2011; 

O’Brien 2011b). I address this debate using several types of simulated data generated based 

on social theories. By comparing IE estimates to the true effects in various circumstances, I 

show that IE does not work better than CGLM for recovering the true age, period, and 

cohort trends in empirical research.

This paper is organized as follows. I begin with an introduction of the APC multiple 

classification model and the identification problem. While reviewing the methodological 

challenge that has hampered APC research for decades, this section establishes a framework 

for discussing the nature and limitations of different constrained APC estimators including 

IE and CGLM. I then review how IE’s developers have described IE and how applied 

researchers have understood and used it in substantive studies; the two are often not the 

1One way to characterize the effects of an interval variable like time is to break the effect into two components: linear and non-linear 
(curvature or deviations from linearity) trends. It has been known at least since Holford (1983) that the linear components of age, 
period, and cohort effects cannot be estimated without constraints because they are not identified. In contrast, non-linear age, period, 
and cohort trends can be estimated without bias.
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same. As a result, many scholars have misunderstood IE, so that this technique has been 

misused in empirical research. To clarify this common misunderstanding and avoid further 

misuse, in the section “The Linear Constraint Implied by IE,” I derive the constraint that IE 

imposes on the linear components of age, period, and cohort effects. In the “Application 

Scope” section that follows the technical discussion of IE’s linear constraint, I use 

simulations to demonstrate how this constraint affects estimation of age, period, and cohort 

effects. Based on these mathematical derivations and simulation evidence, I conclude that IE 

cannot and should not be used to estimate true age, period, and cohort effects.

The Identification Problem

I first review the identification problem that IE and other constrained estimators are intended 

to address to develop a framework for understanding the nature of these methods. In APC 

analysis, researchers have conventionally used the Analysis of Variance (ANOVA) model to 

separate the independent age, period, and cohort effects:

(1)

for age groups i = 1,2,…, a, periods j = 1,2, …, p, and cohorts k = 1,2, …,(a + p − 1), where 

. E(Yij)denotes the expected value of the outcome of 

interest Y for the ith age group in the jth period of time; g is the “link function”; αi denotes 

the mean difference from the global mean μ associated with the ith age category; βj denotes 

the mean difference from μ associated with the jth period; γk denotes the mean difference 

from μ due to the membership in the kth cohort. The usual ANOVA constraint applies where 

the sum of coefficients for each effect is set to zero.

For a normally distributed outcome Yij, the ANOVA model above can also be written in a 

generic regression fashion:

(2)

where Y is a vector of outcomes; X is the design matrix; b denotes a parameter vector with 

elements corresponding to the effects of age, period, and cohort groups; and ε denotes 

random errors with distribution centered on zero. Then the estimated age, period, and cohort 

effects can be obtained using the ordinary least squares (OLS) method:

(3)

Unfortunately, the inverse of the matrix (XTX)−1 does not exist because of the age-period-

cohort linear dependency, so the parameter vector b is inestimable. This is the identification 

problem in APC analysis: no unique set of coefficients can be obtained because an infinite 

number of solutions give identical fits to the data.
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This identification problem can be shown more explicitly. For simplicity, suppose the data 

we have are perfect, without random or measurement errors, so that ε = 0; then the problem 

is mathematical rather than statistical, and the regression model is:

(4)

Due to the linear dependency between age, period, and cohort, there exists a nonzero vector 

b0, a linear function of the design matrix X, such that the product of the design matrix and 

the vector equals zero:

(5)

In other words, b0 represents the null space of the design matrix X, which has dimension 

equal to one. (The null space has dimension one by the specification of model (1), and the 

value of b0 is given below.) It follows that the parameter vector b can be decomposed into 

components:

(6)

where s is an arbitrary real number corresponding to a specific solution to equation (4), and 

b1 is a linear function of the parameter vector b, corresponding to the projection of b on the 

non-null space of the design matrix X, orthogonal to the null space. b1 and b0 are thus 

orthogonal to each other. That is, b1 is the part of b that is in the non-null space of the design 

matrix X, orthogonal (perpendicular) to the null space, so that b0 is orthogonal to b1, i.e., b1 · 

b0 = 0.

Given equations (4) and (6), the following equation must hold:

(7)

But Xb0 = 0 and thus s · Xb0 = 0, so equation (7) is true for all values of s. That is, s can be 

any real number, and each distinct value of s gives a distinct solution to equation (4). 

Therefore, an infinite number of possible solutions for b exist, and no solution can be 

deemed the uniquely preferred or “correct” solution without additional constraints on b.

To illustrate, suppose the data have three age groups, three periods, and five cohorts and that 

error is zero for ease of presentation (and without loss of generality). Table 1 presents three 

different parameter vectors bT = (u, α1, α2, α3,β1, β2, β3, γ1, γ2, γ3, γ4, γ5) arising from 

three different values of s, namely 0, 2, and 10. In Table 2’s top panel, the observed value in 

each cell is represented in terms of the unknown parameters αi, βj, and γk,. Table 2’s bottom 

panel shows the fitted values u + αi + βj + γk, based on Table 1’s three different s’s in the 

same tabular form as above. Note that these three sets of fitted values are identical although 

the parameter vectors in Table 1 differ. In fact, these parameter vectors are not just different; 
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their age and period effects change directions depending on s, and the data cannot 

distinguish between different s’s.

Taken together, Tables 1 and 2 show that for a single dataset, an infinite number of possible 

solutions for age, period, and cohort effects exist, and each solution corresponds to a specific 

value of s. Therefore, any solution, or alternatively, none of these solutions, can be viewed as 

reflecting the “true” effects even though different values of s give radically different age, 

period, and cohort effects. In social science research, data inevitably contain random and/or 

measurement errors so researchers will not have the perfect fit of the idealized data above; 

however, the fundamental identification problem remains. Various methods have been 

developed to address the identification problem and find a set of uniquely preferred 

estimates. In the section below, I will consider IE and other solutions to the identification 

problem that impose a constraint on b.

The Constrained Approach: IE and CGLM

A large body of literature dating back to the 1970s has addressed the identification problem. 

Mason et al. (1973) explicated the “identification problem” in APC analysis and proposed 

the Constrained Generalized Linear Model (CGLM), a coefficient-constrained approach that 

has been used as a conventional method for APC analysis. This method places at least one 

identifying restriction on the parameter vector b in equation (2). Usually the effects of the 

first two age groups, periods, or cohorts are constrained to be equal based on theoretical or 

external information. With this additional constraint, the APC model becomes just-identified 

and unique OLS and maximum likelihood (ML) estimators exist. However, such theoretical 

information often does not exist or cannot easily be verified. Also different choices of 

identifying constraint can produce widely different estimates for age, period, and cohort 

effects. That is, CGLM estimates are quite sensitive to the choice of constraints (Rodgers 

1982a,b; Glenn 2005).

More recently, a group of scholars has developed a new APC estimator, called the Intrinsic 
Estimator (IE). They argued that IE has clear advantages over CGLM (called “CGLIM” in 

Yang et al. 2008) and can produce valid estimates of the true age, period, and cohort effects 

(see Fu 2000, 2006; Yang et al. 2004, 2008). The most compelling evidence they provided to 

support this claim is simulation results where IE and CGLM estimates were compared to the 

true effects of age, period, and cohort (see Yang et al. 2008, p1718-1719). They concluded 

that IE outperforms CGLM because IE estimates are closer to the true parameters that 

generate the data than CGLM (ibid., p1719-1722).

This evidence could easily be interpreted as confirmation that IE produces unbiased 

estimates of the true age, period, and cohort effects. Unfortunately, few clarifications are 

provided and the developers of IE are sometimes unclear about what IE actually estimates 

themselves. For example,

“for a finite number of time periods of data, the IE produces an unbiased estimate 

of the coefficient vector.”

(Yang 2008, p400)
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“Because of its estimability and unbiasedness properties, the IE may provide a 

means of accumulating reliable estimates of the trends of coefficients across the 

categories of the APC accounting model.”

(Yang et al. 2008, p1711)

“[T]he IE, by its very definition and construction, satisfies the estimability 

condition. … If other estimators do indeed satisfy the estimability condition, then 

they also produce unbiased estimates of the A, P, and C effect coefficients. If not, 

then the estimates they produce are biased.” (ibid., p1710)

“[P]erhaps most importantly for empirical applications of APC analysis, the IE 

produces estimated age, period, and cohort coefficients and their standard errors in 

a direct way, without the necessity of choosing among a large array of possible 

constraints on coefficients that may or may not be appropriate for a particular 

analysis.”

(Yang et al. 2004, p105)

Many researchers doing substantive APC analyses have interpreted these and other 

statements to mean that IE produces unbiased estimates of true age, period, and cohort 

effects. Consequently, they have used IE in empirical research to address substantive issues 

including mortality, disease, and religious activity (e.g., Keyes and Miech 2013; Winkler and 

Warnke 2012; Schwadel 2011; Langley et al. 2011; Miech et al. 2011). These authors seem 

convinced that IE produces unbiased estimates of age, period, and cohort effects. For 

example,

“[r]ecent advances in modeling APC effects with repeated cross-sectional data 

allow age, period, and cohort effects to be simultaneously estimated without 

making subjective choices requiring constraining data or dropping age, period, or 

cohort indicators from the model. In particular, APC intrinsic estimator models 

provide unbiased estimates of regression coefficients for age groups, time periods, 

and birth cohorts (Fu, 2000).”

(Schwadel 2011, p183)

“[T]he intrinsic estimator provides unbiased estimates of age, period, and cohort 

effects.” (ibid., p184)

“The IE model has been recommended as a better alternative to the widely 

discussed constrained generalized linear model (CGLM) (Yang et al. 2004). We 

used the IE model to estimate individual effects of age, period, and cohort for males 

and females separately.”

(Langley et al. 2011, p106)

“The IE is an approach that places a constraint on the model, but not a constraint 

that affects the estimation of regression parameters for age, period, and cohort in 

any way. That is, the regression parameter estimates are unbiased by the constraint 

placed, and a unique set of regression estimates can be estimated.”

(Keyes and Miech 2013, p2)
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Unfortunately, claims of this sort are incorrect; as I demonstrate below, IE does impose 

constraints that are as consequential as those imposed by CGLM. To help researchers better 

understand the constraint imposed by IE and make informed decisions in choosing an APC 

estimator, I will first derive an easily-understood form of IE’s constraint. Because an 

unbiased and consistent estimator is desirable and necessary to produce reliable and valid 

results, I will then address how IE’s constraint affects these key properties: unbiasedness (Is 

the expectation of IE the “true” age, period, and cohort effects?) and consistency (As the 

sample size increases, does IE converge to the “true” effects?).

The Linear Constraint Implied by IE

To understand IE’s constraint and its implications for estimation, it is helpful to review IE’s 

conceptual foundation and computational algorithm. IE can be viewed as an extension of 

Principal Component (PC) Analysis, a multi-purpose technique that can be used to deal with 

identification problems when explanatory variables are highly correlated. By transforming 

correlated explanatory variables to a set of orthogonal linear combinations of these variables, 

called principal components, PC analysis can be a useful tool for reducing data redundancy 

and developing predictive models.

In contrast, the goal of IE is neither data reduction nor prediction, but estimation of the 

effects of, and capturing the general trends of, age, period, and cohort.2 IE’s computational 

algorithm includes five steps: (a) transform the design matrix X to the PC space using its 

eigenvector matrix; (b) in the PC space, identify the “null eigenvector” – the special 

eigenvector that corresponds to an eigenvalue of zero – and the corresponding null subspace 

(with one dimension) and non-null subspace (with m − 1 dimensions, where m denotes the 

number of coefficients to be estimated); (c) in the non-null subspace of m − 1 dimensions, 

regress the outcome of interest using OLS or ML on the m − 1 PCs to obtain m − 1 

coefficient estimates; (d) extend the m − 1 coefficient estimates to the whole PC space of 

dimension m by adding an element corresponding to the null eigenvector direction and 

arbitrarily setting it to zero; and (e) use the eigenvector matrix to transform the extended 

coefficient vector estimated in the PC space, including the added zero element, back to the 

original age-period-cohort space to obtain estimates for age, period, and cohort effects (see 

Yang 2004; Yang et al. 2008).3

The fourth step, “extend the m − 1 coefficient estimates to the whole PC space of dimension 

m by adding an element corresponding to the null eigenvector direction and arbitrarily 

setting it to zero,” carries the key assumption of the IE approach to APC analysis. This 

assumption is implicit yet has major implications for the validity and application of the IE 

2It is important to distinguish data reduction or prediction from coefficient estimation. Because the identification problem does not 
prevent us from obtaining a set of solutions with good fit to the data, we can still make good predictions. The PC technique treats such 
problems as data redundancy and allows us to obtain one solution. However, as noted above, none of these solutions is the uniquely 
preferred solution, the solution that APC techniques including IE aim to discover. Therefore, providing a solution for the purpose of 
prediction is not the same as finding a uniquely preferred solution for estimation of separate age, period, and cohort effects.
3Alternatively, Yang (2008) described the computational algorithm of IE as follows: after obtaining r−1 coefficients in the PC space 
(w2, …, wr), “[s]et coefficient w1 equal to 0 and transform the coefficients vector w = (w1, …, wr)T” (Appendix, p413), where w1 
corresponds to the null eigenvector direction.
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approach. Specifically, setting the “coefficient of the null eigenvector”, s, to zero is 

equivalent to assuming

(8)

i.e., the projection of b on b0 is zero, where b and b0 were defined in equation (6). Kupper 

and colleagues (1985) provided a closed-form representation for the eigenvector b0. Using 

vector notation,4

(9)

where

For example, when a = 3 and p = 3, that is, for three age groups and three time periods, b0 is

(10)

where A = (−1,0), P = (1,0), and C = (−2,−1,0,1).

What does equation (8) mean? What is the specific form of this constraint for datasets with 

varying number of age, period, and cohort groups? To illustrate, suppose that age, period, 

and cohort each have effects on the outcome variable that show a linear trend. Denote these 

trends as ka, kp, and kc, respectively, the intercepts for the three variables as ia, ip, and ic, and 

the overall mean as μ. Thus the effects associated with the three age categories are ia, ia + ka, 

and ia + 2 · ka, respectively. Similarly, the effects related to the three periods are ip, ip + kp, 

and ip + 2 · kp, respectively. For the five cohorts, the effects are ic, ic + kc, ic + 2 · kc, ic + 3 · 

kc, and ic + 4 · kc, respectively. Then the parameter vector, b, can be written as:

(11)

where the last category of each variable is omitted as the reference group. According to the 

constraint for age effects in model (1), we know that

4Yang et al. (2004, 2008) use , where ||b0|| is the length of b0, so  has a length of 1. b0 is used in this paper because it is 

simply a multiple of  and is simpler for exposition and computation.
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(12)

which implies that

(13)

Similarly, it can be shown using the constraint for period and cohort effects in model (1) that

(14)

and

(15)

Using equations (13), (14), and (15), equation (11) can be simplified as:

(16)

Since the constraint that IE implicitly imposes is b · b0 = 0, by equations (8), (10) and (16), 

the specific form of IE’s linear constraint (LC) for APC data with three age categories, three 

periods, and five cohorts are

(17)

In other words, when age, period, and cohort show linear trends, IE’s implicit constraint is 

that these linear trends must satisfy equation (17). If, in fact, the true age, period, and cohort 

trends do not satisfy this equation, then the implicit LC imposed by IE is incorrect.

To illustrate the implications of IE’s LC, I simulate normally distributed data as follows. For 

those at age i in period j, the mean response is 10 + ka · agei + kp · periodj + kc · cohortij and 

the standard deviation of error ε equals 0.1. The number of age and period groups is fixed at 

three each. I consider three sets of true ka, kp, and kc: (a)ka = 1, kp = 7, kc = 1; (b)ka = 1, kp 

= 7, kc= 10; and (c)ka = 3, kp = 1, kc = 4. For each selection of true ka, kp, and kc, I simulate 

1,000 such data sets by drawing random errors. As shown in Table 3, for dataset 1 the true 
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effects for the three age categories are −1,0, and 1, respectively, so ka, the linear trend in age 

effects, equals 1. The period effects are −7,0, and 7, respectively, so kp is 7. Similarly, since 

the cohort effects are −2,−1,0,1, and 2, kc is 1. Note that for this dataset,

(18)

i.e., the relationship between the linear trends in the true age, period, and cohort effects 

satisfies equation (17), the LC implicit in IE. However, for datasets 2 and 3 generated by the 

other sets of true ka, kp, and kc in Table 3, equation (17) does not hold. Specifically, for the 

second set, ka = 1, kp = 7, and kc = 10, so

(19)

And for the third set, ka = 3, kp = 1, and kc = 4, so

(20)

Table 3 presents IE estimates, averaged over the 1,000 simulated datasets, for the three sets 

of age, period, and cohort effects. The bias of IE is estimated by the difference between the 

truth and the averaged IE estimates. Table 3 shows that for dataset 1, IE yields good 

estimates because the true ka, kp, and kc in the data satisfy equation (17), the implicit LC 

that IE imposes. Specifically, the estimated slopes for age, period, and cohort are k̂a = 0.999, 

k̂p = 7.001, and k̂c = 1.000, respectively. In contrast, IE returns highly biased estimates, very 

different from the true effects, for the second and third datasets because the true ka, kp, and 

kc do not satisfy IE’s LC. For example, for datasets 2 and 3, the estimated age effects, 

averaged over the 1,000 simulations, show a downward trend (k̂a = −5.750 for dataset 2 and 

k̂a = −2.582 for dataset 3) when the true trend is upward (the true age slopes are ka = 1 for 

dataset 2 and ka = 3 for dataset 3).

Note that equation (17) is derived for the simplest scenario where the age, period, and cohort 

trends are purely linear. For more complex scenarios where these trends are not purely 

linear, IE’s constraint depends on the non-linear components of the age, period, and cohort 

effects.5 For example, suppose that age, period, and cohort each have effects on the outcome 

of interest that include a linear and a quadratic trend. Denote the quadratic trends as , 

and , respectively. Using the same derivation above, the specific form of IE’s constraint for 

APC data with three age categories, three periods, and five cohorts is

5The constraint imposed by IE depends on how model (2) is parameterized. If the model is parameterized in terms of orthogonal 
polynomial contrasts for each of the age, period, and cohort effects, as in Holford (1983), then IE imposes a constraint solely on the 
linear contrasts of age, period, and cohort effects irrespective of any non-linear trends that are present. The parameterization used here 
is more common, e.g., Kupper et al. (1985), and in this parameterization, the constraint on the linear components of the age, period, 
and cohort effects depends on the non-linear components when both components are present.
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(21)

That is, when age, period, and cohort effects include quadratic components, these effects 

must satisfy equation (21) in order for IE to yield good estimates. Equation (17) can be 

viewed as a special case of equation (21) when there are no quadratic or higher-order non-

linear components in the age, period, and cohort effects. Alternatively, because the linear 

dependency between age, period, and cohort does not affect the identification of nonlinear 

effects, IE’s constraint can be said to bind only on the linear age, period, and cohort trends, 

and the specific value of the constraint on the linear effects is determined by the non-linear 

effects, which are estimable.

For any coefficient-constraint approach such as CGLM and IE, “the choice of constraint is 

the crucial determinant of the accuracy in the estimated age, period, and cohort effects” 

(Kupper et al. 1985, p822). Since the constraint assumption strongly affects estimation 

results, no matter what constraint a statistical method assumes, that method produces good 

estimates only when its assumption approximates the true structure of the data under 

investigation. It follows that when there are three age groups, three periods, and five cohorts 

and their effects are purely linear, IE can only yield accurate estimates when these linear 

effects of age, period, and cohort satisfy equation (17). Unfortunately, researchers usually 

have no a priori knowledge about true age, period, and cohort effects that would allow them 

to evaluate whether the constraint implied in equation (17) holds. Therefore, researchers 

cannot assess whether IE produces unbiased estimates of age, period, and cohort effects for 

their data. Thus IE is no better than CGLM in this respect.

More importantly, the exposition above indicates that the LC assumed by IE also depends on 

the design matrix, i.e., on the number of age, period, and cohort groups. For example, if we 

add one age group to our example, such that we now have four age groups, three periods, 

and six cohorts, then following the same derivation used above, the LC implied by IE is

(22)

or

(23)

Compared to equation (17) for the case of three age groups, three periods, and five cohorts, 

equations (22) and (23) show that adding an age group dramatically changes the constraint 

so that the true effects satisfying IE’s LC with three age categories no longer satisfy this LC 

when an age category is added. Readers can verify that increasing or reducing the number of 

periods or cohorts also greatly alters IE’s LC.
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These examples demonstrate that not only does IE rely on a constraint like CGLM does, but 

unlike CGLM — where the constraint (e.g., equal effects for the first two age groups) is 

explicit and rationalized by theoretical account or side information — the LC of IE is 

implicit and varies depending on the number of age, period, and cohort groups. Although 

this constraint has been described as minimal (e.g., Schwadel 2011; Yang et al. 2008), in 

fact, as shown, it can have major implications for the quality of substantive results.

Theoretically speaking, the limitation of IE results from a misinterpretation of the constraint 

that IE imposes on parameter estimation. It is true that b0, the null eigenvector, is determined 

by the design matrix, but it is incorrect to conclude that therefore b0 “should not play any 

role in the estimation of effect coefficients” (Yang et al. 2008, p1705). Rather, both the null 

eigenvector and non-null eigenvectors (with nonzero eigenvalues) are determined by the 

design matrix, that is, by the number of age, periods, and cohort groups. To this extent, it is 

no less likely that the data contain a significant component in the b0 direction than in the 

directions of the non-null eigenvectors. The fact that s, the coefficient for b0, can be any real 

number without changing the fitted values Xb simply means that variation in Y in the 

direction of b0 is not estimable. If the data have variation in this direction, IE will mistakenly 

attribute that variation to other columns in the design matrix, causing significant errors in 

estimation.

The Implications of IE’s Constraint: Is IE an unbiased and consistent 

estimator?

Because IE imposes a constraint on the linear age, period, and cohort trends, IE yields 

reliable estimates only when the true trends satisfy its constraint. However, Yang and 

colleagues argue that “[b]ecause of its estimability and unbiasedness properties, the IE may 

provide a means of accumulating reliable estimates of the trends of coefficients across the 

categories of the APC accounting model” (ibid., p1711). In the discussion below, I clarify 

that IE is not an unbiased estimator of the “true” age, period, and cohort effects. I also use 

concrete examples to illustrate that IE is not consistent and explain why IE appears to be 

converging to the truth in Yang et al. (2008)’s article. This section may be particularly 

helpful for non-technical researchers.

Biasedness

By definition, an estimator δ is an unbiased estimator of a parameter θ if the expectation of 

δ over the distribution that depends on θ is equal to θ, or Eθ (δ) = θ. It follows that, for an 

unbiased APC estimator, its expectation must be the true effects of age, period, and cohort.6 

Per this definition, if IE is an unbiased estimator, the expected value of IE must be the true 

age, period, and cohort effects. The following mathematical computation shows, however, 

6Yang and colleagues have used “unbiasedness” in a different sense to mean that the expectation of IE is equal to b1, the projection of 
parameter vector b onto the non-null space of design matrix X (e.g., see ibid. p1709). This is an important distinction because thse true 
parameter vector b can be very different from its projection b1 onto the non-null space, the vector that IE actually estimates. Because 
APC analysts are usually interested in estimating the true age, period, and cohort effects, the classic concept of unbiasedness is more 
relevant to APC research than that used by IE’s proponents. Thus I use “unbiasedness” in its classic sense in the following discussion.
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that the expectation of the IE estimator is not the true effects unless those true effects happen 

to satisfy IE’s implicit constraint.

As noted in the section above, the key computation of IE is to extend the coefficient 

estimates in the PC space, b′

(24)

by adding a zero element such that

(25)

where  corresponds to the projection of the coefficient vector b in the non-null space, 

i.e., b1 in equation (6). IE then transforms the extended coefficient vector  including the 

added zero element, back to the original age-period-cohort space to obtain coefficient 

estimates for age, period, and cohort.

Given that OLS and ML estimators have been proven unbiased in simpler — identifiable — 

problems with normally distributed errors as in equation (2), and since IE uses these 

methods to obtain estimates for b1, whose projection in the PC space corresponds to the 

extended coefficient vector , IE yields unbiased estimates for b1. In other words,

(26)

Based on the preceding discussion of the identification problem, the true parameter space b 
can be decomposed into two orthogonal subspaces corresponding to b1 and b0 in equation 

(6), which is equivalent to

(27)

Substituting equation (27) in (26) results in

(28)

Equation (28) means that the expectation of the IE estimator will be different from the true 

effects b unless s · b0 = 0, i.e., unless s = 0. IE assumes s = 0; thus, IE is a biased estimator 
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when the true value of s is anything but 0. The larger the absolute value of s, the more biased 

the IE estimates become.

For researchers who wish to investigate age, period, and cohort effects for the purposes of 

substantive demographic, social, or other applied research, there exists little theoretical or 

empirical knowledge about the value of s and what b0, the “null eigenvector,” may imply 

about the outcome variable. In specific applications, then, IE must be assumed to be biased, 

resulting in misleading conclusions about the true age, period, and cohort effects unless 

proven otherwise.

Note that IE’s developers argue that IE satisfies the “estimability criterion” proposed by 

Kupper et al. (1985), so IE is in that sense an unbiased estimator. However, estimability of a 

function of b implies unbiased estimation only of the estimable function of b, not necessarily 

of the true parameter b itself. b1, the projection of the parameter vector onto the non-null 

space, is indeed an estimable function of b, the true parameter vector, and thus IE is an 

unbiased estimator of b1. But IE is a biased estimator for the true APC effects when b1 is 

different from b. Therefore, it is not accurate to say that “Kupper et al. (1985) … suggested 

that an estimable function satisfying this condition resolves the identification problem” as 

claimed in Yang and associates (2008, p1703). To emphasize, estimability in the non-null 

space does not imply unbiasedness in estimating the true age, period, and cohort effects. 

Discovering a set of estimable functions is not the same as solving the identification 

problem.

Consistency

In statistics, for an estimator δ to be a consistent estimator of an unknown parameter space 

θ, δ must converge in probability to θ as the sample size grows. If δ is unbiased, consistency 

usually follows immediately. A biased estimator can be consistent if its bias decreases as the 

sample size increases. However, the bias of IE, s · b0, does not necessarily shrink as the 

sample size grows. Thus, IE is not a consistent estimator of the coefficient vector b.

This theoretical argument can be illustrated with simulations. I simulate normally-distributed 

data using the same function as that for Dataset 1 in Table 3: For those at age i in period j, 
the mean response is 10 + 1 · age;i + 7 · periodj + 1 · cohortij and standard deviation of error 

= 0.1. I begin with three age groups and three periods, and then increase the number of 

periods to six and 12, respectively. For each scenario, I simulate 1,000 such datasets by 

drawing random errors. If IE is a consistent estimator, as the number of periods increases, 

the resulting estimates should get closer and closer to the true effects that we know based on 

the simulation function.

Table 4 presents the IE estimates, averaged over 1,000 datasets, for the three scenarios in 

which the number of periods is set at three, six, and 12, respectively. It shows that the IE 

estimates are not converging to the truth and the bias appears to increase as the number of 

periods increases from three to 12. Specifically, when p, the number of periods, equals six 

and 12, although IE correctly captures the direction of the age, period, and cohort trends, 

there is no evidence that these estimates are converging to the truth; the estimated age, 

period, and cohort slopes are k̂a = 2.144, k̂p = 5.857, and k̂c = 2.144, respectively, when p = 
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6; k̂a = 3.017, k̂p = 4.983, and k̂c = 3.017 when p increases to 12. In fact, even with an 

unrealistically large number of periods (e.g., 100 periods), as I show in Appendix Figure 1, 

the IE estimates do not appear to converge to the truth.

The developers of IE correctly note that the estimation of period and cohort effects will not 

improve with more time periods because “adding a period to the data set does not add 

information about the previous periods or about cohorts not present in the period just added” 

(ibid., p1718). However, when they simulated data, the IE estimates for age effects did 

appear to become closer and closer to the true values as the number of periods increased. 

They simulated data using the following function:

(29)

It appears that IE estimates of the age effects converge to the true effects in this simulation 

as the number of periods increases because IE’s implicit LC is not satisfied by the “true” 

age, period, and cohort effects in the simulation mechanism (29) with five periods (b · b0 = 

−0.339), but the true effects do approximately satisfy the LC (b · b0 = −0.036) when the 

number of periods increases to 50. In other words, IE appears to perform better as the 

number of periods increases not because IE is a consistent procedure but because the true 

effects used in the data-generating function (29) conform better to IE’s implicit LC as the 

number of periods increases.

For demographic or social data where the linear trends in the three variables are unknown, 

adding more periods or cohorts promises nothing about the accuracy of the coefficient 

estimation for either age or period or cohort effects. That is, even with a sufficiently large 

sample, researchers using IE to estimate the true age, period, and cohort effects are not 

guaranteed to have desirable results that are close to the true values.

Application Scope: IE vs. CGLM

The preceding discussions of IE’s linear constraint (LC) and statistical properties are fairly 

technical. In this section, I will use several types of simulated data to illustrate how the 

implicit LC of IE affects its ability to recover the underlying age, period, and cohort effects 

in social science research7. This exercise is important because scholars have debated the 

application scope of IE in empirical research. As Fu and associates (2011) suggested, “the 

important statistical issue about APC modeling is how to identify the trend that helps to 

resolve the real-world problem for a given APC data set” (p455). So I examine whether, 

7Yang and colleagues have used empirical data, where the true effects are unknown, to assess the properties and performance of IE 
(see ibid., p1712-1716). However, it is logically impossible to assess the performance of an estimator when the true effects are 
unknown. If such a cross-model validation of IE for a specific empirical dataset were to show that IE yields reasonable estimates, this 
can only depend on having selected examples that are consistent with the IE’s constraint. Therefore, cross-model comparisons using 
empirical data are not an appropriate method to validate IE.
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compared to CGLM, IE yields better (if not unbiased) estimates of the true age, period, and 

cohort patterns that may be observed in empirical research.

IE’s developers provided simulations in which IE estimates are closer to the true age, period, 

and cohort effects than CGLM results. This, they argued, supports their conclusion that IE 

has clear advantages over CGLM. However, as noted above, the true age, period, and cohort 

effects in Yang et al.’s (2008) simulation in fact approximately satisfy the LC that IE 

imposes (b · b0 = −0.036)8. For age, period, and cohort effects that do not satisfy IE’s 

implicit constraint, IE will not necessarily perform better than CGLM and may perform 

much worse. Thus, IE is no better than CGLM because the restriction that IE imposes is 

essentially no different from the constraints assumed in CGLM.

To illustrate, I show simulations, as Yang and colleagues did, to compare the CGLM and IE 

estimates. However, here the data-generating mechanisms satisfy the constraint assumed by 

CGLM but not the constraint assumed by IE. Moreover, I simulate data from four models 

that embody specific social theories and thus conform to empirical reality. The first dataset is 

simulated to represent the observation that overall health for adults deteriorates as they grow 

older, and that while recent development in health knowledge and technology have improved 

health conditions for the entire population, people born in more recent years are likely to be 

healthier than older cohorts. On the other hand, the demographic literature has also 

suggested that age, period, or cohort effects may not all exist (Alwin 1991; Winship and 

Harding 2008; Fabio et al. 2006; Preston and Wang 2006). Accordingly, the other three 

simulations approximate likely empirical situations where one of the three variables has little 

impact on the outcome variable.

Specifically, I fix the number of age groups at nine and periods at 50 in all of these 

simulations with little loss of generality. I then generate 1,000 datasets from each of the 

following four models:

(30)

(31)

(32)

8While Yang and colleagues correctly pointed out that IE estimates the projection of the “true” effects onto the non-null space, they 
compared IE estimates to the “true” parameters, not to the projection (see ibid., p1718-1722). This is key, because the true parameter 
vector can be very different from its projection onto the non-null space (the vector that IE actually estimates). That is, what IE actually 
estimates can be very different from the true APC effects if the true effects do not at least approximately satisfy the LC implicit in IE.
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(33)

For instance, in equation (30), the outcomes for people with age in period are normally 

distributed with mean 

( ) and 

standard deviation σ = 0.1. In equations (31), (32), and (33), one of the age, period, and 

cohort effects is not present while the effects for the other two variables are the same as in 

equation (30). Note that none of these models satisfies IE’s constraint; specifically, for the 

first model, b · b0 = 115.01; for the second, third, and last model, b · b0 = 115.72, 130.41 and 

16.12, respectively.

Figure 1 compares, for the simulated data from the four models, IE estimates and CGLM 

estimates using two different constraints. The IE estimates, averaged over 1,000 datasets, are 

largely away from the true effects for all models because for all four models, the constraint 

that IE assumes is not satisfied. For example, in Scenario 3 in Figure 1, when there is no 

period effect in the data-generating mechanism (32), the IE estimates suggest a substantially 

positive period trend on top of inaccurate estimates for age and cohort effects. In contrast, 

the CGLM assuming equal age effects for the first and third age groups produces close 

estimates for all four models. It is equally important to note that the performance of the 

CGLM estimator also depends on whether its assumption approximates the truth. For 

instance, in Scenario 4, whereas the CGLM that assumes equal age effects for the first and 

third group yields good estimates, the same method with a different constraint, i.e., the age 

effects are the same for the first and second groups, results in biased estimates.

In sum, it must be concluded that a) if there is a priori information or theoretical 

justification, the constrained solution that corresponds to such information (e.g., CGLM 

estimates assuming equal effects for the first and third age groups in data-generating 

functions (30) to (33)) will yield better estimates than IE, and b) without such a priori 
knowledge, IE is not necessarily better than other constrained estimators including CGLM. 

Without such knowledge, neither IE nor CGLM results are valid.

Conclusion and Discussion

In this article, I focus on the Intrinsic Estimator (IE), a statistical method intended to 

separate the independent effects of age, period, and cohort on various outcomes. I have 

discussed the nature and application scope of IE theoretically and illustrated it with 

simulated data. This article has shown that IE assumes a specific constraint on the linear age, 

period, and cohort effects. This assumption not only depends on the number of age, period, 

and cohort groups, but also is extremely difficult, if not impossible, to verify in empirical 

research. This feature of IE is no different from the constraint assumed in CGLM except that 

the CGLM constraint does not change automatically as the numbers of age, period, and 

cohort groups change. The conclusion is that IE is not an unbiased or consistent estimator of 

the “true” age, period, and cohort effects. Therefore, for demographers and social scientists 

whose goal is to understand the “true, simultaneously independent effects” of age, period, 
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and cohort, IE’s strategy of circumventing the identification problem can yield biased and 

potentially misleading estimates.

There is no doubt that Yang and associates have revitalized APC research and inspired many 

scholars. However, IE is nothing new in APC analysis. Kupper and his colleagues introduced 

the IE solution to APC analysts, calling this solution as the Principal Component Estimator 

(PCE) (Kupper et al. 1983, p2795-2797). As O’Brien (2011a, p420) noted, such an estimator 

“produces coefficients identical to those of the recently introduced intrinsic estimator.” 

However, instead of concluding that IE is preferable to CGLM, Kupper et al. (1983) clearly 

stated that PCE (that is, IE) “could lead to more bias than the use of some other constraints” 

(p2797). As a result, Kupper and associates did not advocate PCE/IE as a general solution, 

then or subsequently.

Generally speaking, PCE/IE or any other constrained estimator provides just one possible 

solution from the infinite number of solutions for an under-determined problem (i.e., the 

rank deficiency problem in APC analysis). That said, the PCE/IE solution should not be 

regarded as the true solution or the uniquely preferred solution without theoretical 

justification. In fact, the statistical literature has recognized a variety of constrained 

estimators including other types of generalized inverse solutions. It is important for 

demographers and sociologists to understand that the PCE/IE estimates are not necessarily 

better (i.e., closer to the true parameters) than other constrained estimators.

What should well-intentioned researchers, who wish to investigate the age, period, and 

cohort patterns, do? On the one hand, several alternative methods have been developed, 

some of which are more theoretically driven, taking external information into account9, 

while others are statistical approaches10. Although each of these methods has advantages 

and limitations and a thorough examination is a topic for future research, I caution that 

purely statistical techniques are unlikely to yield accurate estimates. The methodological 

problem of IE and its non-trivial implications for empirical research identified in this paper 

are not unique to IE. The biostatistics literature shows that use of the APC model (1), 

regardless of estimation technique, precludes valid estimation as well as meaningful 

interpretations of the linear components of age, period, and cohort effects (see, e.g., Holford 

1983; Kupper et al. 1985). Therefore, my position is to encourage development of APC 

models that are informed by social theories and thus different from model (1) in basic 

structure.

On the other hand, although the statistical difficulty in quantifying independent effects of 

age, period, and cohort was recognized long ago, decades of effort has only resulted in 

unsatisfactory solutions. Thus it is not unreasonable to ask: Is this unusual challenge 

suggesting a problem that is not statistical but theoretical in nature? In other words, is the 

identification problem pointing to a more fundamental problem in the theoretical framework 

of APC analysis? Should the answers to these questions be positive, the identification 

problem inherent in model (1) “is a blessing for social science” (Heckman and Robb, 1985 

9Examples include “Age-Period-Cohort Characteristic Models” developed by O’Brien (2000) and the “mechanism-based approach” 
proposed by Winship and Harding (2008).
10E.g., “Cross-Classified Random Effects Models” created by Yang and Land (2006, 2008).
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p144) because it warns scientists that they want something — a general statistical 

decomposition of data — for nothing.
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Appendix

Figure 1. 
Simulation Results: Inconsistent IE estimates.
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Figure 1. 
Simulation Results: IE vs. CGLM estimates for age, period, and cohort effects.
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