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The Novel Monoclonal Antibody 9F5 Reveals
Expression of a Fragment of GPNMB/
Osteoactivin Processed by Furin-like

Protease(s) in a Subpopulation of Microglia
in Neonatal Rat Brain

Kohichi Kawahara,1,2 Hiroshi Hirata,1 Kengo Ohbuchi,1 Kentaro Nishi,1 Akira Maeda,1

Akihiko Kuniyasu,3 Daisuke Yamada,2 Takehiko Maeda,2 Akihiko Tsuji,4 Makoto Sawada,5

and Hitoshi Nakayama1

To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of
rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no
cross-reaction with rat peritoneal macrophages (Mu). We identified the antigen molecule for 9F5: the 50- to 70-kDa frag-
ments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys170. In addition, 9F5
immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed
the GPNMB fragments, but type 2 MG and Mu did not, although all these cells expressed mRNA and the full-length protein
for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG,
in contrast to type 2 MG and Mu, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F51

MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-
immunostaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F51

MG were a portion of Iba11 MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to dis-
criminate between rat type 1 MG and other subtypes of MG/Mu and to reveal the role of the GPNMB fragments during
developing brain.
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Introduction

Microglia (MG) are immune cells in the CNS and can

protect it against infection and injuries via phagocytosis,

antigen presentation, and cytokine secretion (Kreutzberg,

1996). During development, MG invade CNS tissue at very

early stages, before or simultaneously with neurogenesis
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(Dalmau et al., 1997). Evidence now suggests that MG at

such developmental stages may be associated with the need to

phagocytose debris and apoptotic neurons after brain develop-

ment and to deliver growth factors and cytokines to support

cell proliferation and neuronal organization (Bessis et al.,

2007; Cuadros and Navascues, 1998; Hanisch, 2002; Streit,

2001). MG are also involved in synaptic pruning in develop-

ing mouse brain (Paolicelli et al., 2011; Stevens et al., 2007).

Recent reports suggest that two or more subtypes of

MG may exist in the CNS. Andjelkovic et al. (1998) sug-

gested that MG have a dual origin, the first being yolk-sac

macrophages (Mu) during the nonvascularized prenatal stage,

followed by the second, as circulating monocytes engraft in

the postnatal brain. Independent studies have also suggested

this hypothesis (for review, see Chan et al., 2007), and fate-

mapping analysis revealed that almost all MG in adult brain

derive from yolk-sac Mu (Ginhoux et al., 2010). Apart from

arguments about the origins of MG, several additional papers

reported on MG heterogeneity. In the absence of pathological

situations, human MG that are positive for MHC class II

and CD4 are preferentially found in white matter, rather

than gray matter, brain regions (Hayes et al., 1987). Rat hip-

pocampal MG express higher levels of mRNAs for tumor

necrosis factor-a, CD4, and Fcc receptor type II (CD32)

than do MG from the diencephalon, tegmentum, cerebellum,

and cerebral cortex (Ren et al., 1999). Bulloch et al. (2008)

showed that CD11c1 dendritic cells reside among the het-

erogeneous MG population in normal mouse brain. These

results strongly suggest that heterogeneity of MG subtypes

exists in the CNS.

We previously demonstrated that interleukin (IL)24-

stimulated uptake and degradation of b-amyloid peptide were

selectively enhanced in one MG subtype, i.e., type 2 MG,

but not in type 1 MG that express CD40 (Shimizu et al.,

2008). We also showed a marked induction of inducible

nitric oxide synthase and tumor necrosis factor-a in type

1 MG compared with type 2 MG under inflammatory

conditions (Kawahara et al., 2009). These results suggest that

these two MG subtypes may play different neuro-

immunomodulatory roles in diseased brains. However, the

lineages and functions of these subtypes in the brain remain

largely unknown. The lack of specific tools to differentiate

such subtypes is a key issue for these investigations. In addi-

tion, the characterization of MG is even more difficult than

that of neurons and other glial cells because MG share several

antigens with peripheral Mu (e.g., CD11b, CD68, Iba1, and

others). Therefore, developing tools to differentiate MG and

Mu accurately and easily is necessary.

Here, we report the development of a novel monoclonal

antibody, 9F5, which not only showed no cross-reactivity

with peritoneal Mu but also recognized a fraction of the total

MG population. We also determined that the antigen protein

for 9F5 consists of fragments of rat transmembrane glycopro-

tein nonmetastatic melanoma protein B(GPNMB)/osteoacti-

vin processed by furin-like protease(s). Type 1 MG but

neither type 2 MG nor Mu expressed the antigen molecule

for 9F5. By using 9F5 antibody, we demonstrated the exis-

tence of truncated GPNMB1 MG in vivo.

Materials and Methods

Animals
Wistar rats and BALB/c mice were obtained from Kyudo and Japan

SLC, respectively. Gpnmb mutant mice [Gpnmb̂tm1(Gfp)Mcf ] were

generated as described in Supporting Information. The day after

overnight mating was considered embryonic day 0 (E0), and the day

of birth was designated postnatal day 0 (P0). Animals were treated

according to the Guidelines of the Institutional Animal Care and

Use Committee of Kumamoto University and UNITECK and the

Animal Care Committee of Niigata University of Pharmacy and

Applied Life Sciences.

Cell Culture
Primary type 1 and type 2 MG were harvested from primary mixed

glial cell cultures prepared from neonatal Wistar rat pups as previ-

ously reported (Sawada et al., 1990; Shimizu et al., 2008; Suzumura

et al., 1987). Type 1 MG were stimulated with Escherichia coli lipo-

polysaccharide (LPS; 0.1 mg ml21; serotype 0127:B8; Sigma–

Aldrich) for 24 hr, and type 2 MG were stimulated with rat IL-4 (5

ng ml21; PeproTech EC) for 96 hr. These MG were stored at

2808C until use. Primary rat neurons, astrocytes, and neuroepithe-

lial cells were prepared and cultured as described previously (Naka-

shima et al., 1999; Tajiri et al., 2004). Primary rat peritoneal Mu
and thioglycolate-elicited Mu were obtained as described previously

(Woo et al., 1990). The murine MG cell lines Ra2, 6-3, and MG5

were maintained as described previously (Kanzawa et al., 2000;

Ohsawa et al., 1997). Monkey kidney COS-7 cells and human

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum. Rat primary type

1 MG was treated with rat recombinant IL-12 (10 ng ml21; R&D

Systems).

Establishment of Mouse Hybridoma Clones
Female BALB/c mice (6 weeks old, n 5 8) were immunized with an

intraperitoneal injection of four kinds of rat primary MG (type

1 MG, LPS-stimulated type 1 MG, type 2 MG, or IL-4-stimulated

type 2 MG) (1 3107 cells/mouse, two mice per group) emulsified

in an equal volume of Freund’s complete adjuvant. After 3 weeks,

the immunization was repeated five times at 2-week intervals with

the cells (5 3106 cells/mouse per immunization) in Freund’s incom-

plete adjuvant. Three days after the final injection, the spleens were

removed and splenocytes were fused with P3U1 myeloma cells by

using polyethylene glycol 1500 (Roche Molecular Biochemicals)

according to an established procedure (Koehler and Milstein, 1975).

Hybridoma cells corresponding to supernatants that had positive

reactions to lysates of rat MG and negative reactions to lysates of rat
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Mu were cloned by using the limiting dilution procedure. One

monoclonal antibody identified in this study was designated 9F5

and was determined to be IgG1 by using IgFast, the Mouse Mono-

clonal Antibody Isotyping Kit (BioCytex). The 9F5 was purified

from ascites by precipitation with 40% saturated ammonium sulfate

and separation via protein A-Sepharose column chromatography

(GE Healthcare UK). For some experiments, 9F5 antibody was bio-

tinylated via EZ-Link Sulfo-NHS-LC-biotin (Pierce Biotechnology)

according to the manufacturer’s recommendations.

Immunoblot Analysis
Immunoblot analysis was performed as described previously (Kawa-

hara et al., 2009). The blotted membraneswere incubated with one

of the following antibodies: 9F5 (1 mg ml21), ED1 (1 mg ml21;

MCA341GA; Serotec), rabbit anti-Iba1 (1 mg ml21;019-19741;

Wako), goat anti-GPNMB (1 mg ml21;AF2330; R&D Systems),

rabbit anti-furin (1:500; PA1-062; Affinity BioReagents), goat anti-

CD40 (1:100; T-20; Santa CruzBiotechnology), goat anti-CD86

(1:500; 421340; Genezyme Techne), or mouse anti-b-actin (1:2,000;

AC15; Sigma–Aldrich) antibodies.

To determine the amount of N-linked glycosylation, the cell

lysate from rat type 1 MG was first denatured in 1% sodium

dodecyl sulfate (SDS) (5 min, 608C). Deglycosylation was then per-

formed with 60 U ml21 peptide-N-glycosidase F (PNGase F;Boeh-

ringer Mannheim) in phosphate buffer [0.2M Na2HPO4-NaOH

(pH 7.5) containing 10 mM EDTA, 0.5% NonidetP-40, and prote-

ase inhibitors] for 24 hr at 378C (SDS concentration during the

PNGase F incubation: 0.05%). O-Glycan chains were analyzed via

digestion with a-2,3,6,8,9-neuraminidase (sialidase; Calbiochem) and

endo-a-N-acetylgalactosaminidase (O-glycosidase; Calbiochem),

according to the manufacturer’s instructions. Removal of sugar

chains was analyzed by using SDS-PAGE and immunoblotting as

described above.

Immunocytochemical Analysis
Mixed glial cells prepared from neonatal Wistar rat brains (P1) were

plated on eight-well Lab-Tek chamber slides (Nalge Nunc Interna-

tional) and cultured for 10 days. Rat type 1 MG, type 2 MG, and

peritoneal Mu were plated on the chamber slides and cultured for 1

day. The cells were then incubated with 9F5 (1 mg ml21; mouse

IgG1), rabbit anti-Iba1 (2.5 mg ml21; Wako), or the isotype

matched controls. Alexa Fluor 488- or 594-labeled second antibody

(1:500; Molecular Probes) was used. For double-staining with 9F5

and anti-lysosomal-associated membrane protein-1 (LAMP-1; 1

mg ml21; Ly1C6, mouse IgG1;Stressgen Bioreagents), the Zenon

labeling kit (Molecular Probes) was used. Stained cells were observed

with a confocal laser scanning microscope (Fluoview, Olympus).

Plasmids and Transfection
The rat Gpnmb cDNA clone was isolated via RT-PCR with total

RNA from rat type 1 MG. PCR was carried out with rat Gpnmb

primers corresponding to nucleotides 53-1860 (GenBank, accession

no. BC061725). The product obtained was inserted into pGEM-T

easy vector (Promega Corp.) to yield pGEM-T-rGpnmb. To con-

struct pcDNA3.1-Gpnmb, Gpnmb cDNA was released by EcoRI

digestion and then subcloned into the EcoRI site of pcDNA3.1 (1;

Invitrogen). Expression plasmids for rat a1-PDX, a variant of a1-

antitrypsin (AVPM352/RVPR352), and murine furin were used (Tsuji

et al., 2002). The a1-PDX cDNA and furin cDNA were subcloned

into the BamHI/EcoRI sites and into the HindIII/XbaI sites of

pcDNA3.1(1), respectively. Small interfering RNA (siRNA) target-

ing for human furin (21 oligonucleotides; Pesu et al., 2006) was

obtained from Sigma–Aldrich. COS-7 cells were transfected with

plasmids via Effectene Transfection Reagent (QIAGEN) according to

the manufacturer’s protocol. HEK293 cells were cotransfected with

plasmids and siRNA by using TransMessenger Transfection Reagent

(QIAGEN). As a negative control, the same amount of insert-less

plasmid was transfected.

For the immunostaining assay, at 72 hr after transfection, cells

were fixed in 4% paraformaldehyde in PBS for 10 min and treated

with PBS containing 0.05% Triton X-100. Cells were then incubat-

ed with 9F5 (1 mg ml21) and goat anti-GPNMB antibody (AF2330,

1 mg ml21) and then with Alexa Fluor488- or 594-labeled antibodies

against mouse or goat immunoglobulins (1:500; Molecular Probes).

Fluorescence intensities were quantified as described previously

(Kawahara et al., 2012). After photomicrographs were imported into

the Scion Image system (NIH), they were quantified via NIH

ImageJ software (National Institutes of Health; http://rsb.info.nih.

gov/nih-image/). A manually set threshold intensity was kept con-

stant, and the number of pixels in 9F5- and anti-GPNMB antibody-

immunostained cells in an area measuring 400 3 400 mm2 was

determined. At least three areas were quantified per one transfection.

The total data for three or four experiments were expressed as

means 6 SEM.

RNA Blot Analysis
The total RNA from cells and rat brain were prepared by using the

Isogen reagent (Nippon Gene) according to the manufacturer’s rec-

ommendations. After electrophoresis through formaldehyde-

containing agarose gels, RNAs were transferred to nylon membranes.

Digoxigenin-labeled antisense RNA probes were synthesized, via a

transcription kit (Roche Molecular Biochemicals), from rat Gpnmb

cDNA at nucleotide positions 1208-1860 (GenBank, accession no.

BC061725) and rat Glyceraldehyde-3-phosphate dehydrogenase cDNA

at nucleotide positions 239–1042 (GenBank, accession no.

M17701). Hybridization, washing, and chemiluminescent detection

of the membranes were performed as recommended by Roche Diag-

nostics. Filters were analyzed with LAS-1000 Plus (Fuji Photo Film).

Immunoprecipitation and Amino Acid Sequence
Analysis
Antibodies were bound to Protein G-Sepharose 4 Fast Flow gel (GE

Healthcare) by incubating 10 ml of ascites fluid (diluted 1:10 in

Tris-buffered saline) with 30 ml of the swollen gel in buffer A

[10 mM Tris-HCl (pH 7.2), 150 mM NaCl and 0.1% (v/v) Triton

X-100] for 2 hr. The gel was washed with buffer A before adding

lysates of type 1 MG for overnight incubation at 48C. After the sam-

ple was washed with buffer A, immunoprecipitated proteins were

extracted from the gel with a sampling buffer for SDS-PAGE

[50 mM Tris-HCl (pH 6.8), 4% (w/v) SDS, and 12% (v/v)
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glycerol] for 10 min at 608C and were separated by SDS-PAGE and

then transferred to PVDF membranes. The blotted membranes were

stained with Coomassie Brilliant Blue R250, and the major bands

with an estimated molecular weight (mol wt) of 50–70 kDa were

extracted and analyzed by using a microsequencer (Procise 492; Per-

kin Elmer Applied Biosystems).

Immunohistochemical Analysis
Wistar rats and mice were anesthetized with pentobarbital and per-

fused through the left cardiac ventricle with 4% paraformaldehyde

in PBS. The brains were removed and cryoprotected in sucrose.

Frozen sections (20 mm) were cut on a cryostat and thaw-mounted

on glass microscope slides (S9445; Matsunami Glass Industries).

Fixed sections were incubated at room temperature for 1 hr in 5%

normal goat serum in PBS, followed by overnight incubation in

one of the following antibodies: 9F5 (1 mg ml21), biotin-

conjugated 9F5 (1 mg ml21), anti-Iba1 (2.5 mg ml21), rabbit anti-

NG2 (0.5 mg ml21; AB5320; Chemicon International), mouse

anti-nestin (1:2,000; Rat-401; Chemicon International), goat anti-

glial fibrillary acidic protein(GFAP) (2 mg ml21; sc-6170;Santa

Cruz Biotechnology), rabbit anti-laminin (2.5 mg ml21; L9393;

Sigma–Aldrich), anti-MITF (1:30; C5 1 D5; GeneTex), or goat

anti-GPNMB (1 mg ml21; AF2330; R&D systems) antibodies. The

sections were washed in PBS three times for 10 min each time, fol-

lowed by a 2-hr incubation with Alexa Fluor488- or 594-

labeledsecondary antibodies, or Alexa Fluor488- or 594-labeled

streptavidin (1:400; Molecular Probes). The specimens were exam-

ined with the confocal laser scanning microscope (Fluoview FV-

300, Olympus; LSM700, Carl Zeiss).

The extravidin-biotin peroxidase technique was used for some

sections tovisualize the label. Endogen peroxidase activity was elimi-

nated from these sections by incubating them with 0.3% hydrogen

peroxide in methanol for 15 min. The sections were incubated at

room temperature for 1 hr in 5% normal goat serum in PBS and

then reacted with 9F5 (1 mg ml21), ED1 (2.5 mg ml21), OX6 (5

mg ml21; MCA46GA; Serotec), or anti-Iba1 (2.5 mg ml21) at room

temperature for 2 hr. After excess antibody was washed out with

PBS, the sections were incubated with the corresponding biotiny-

lated secondary antibody (1:200, Chemicon International) for 1 hr.

The sections were incubated with extravidin-peroxidase complex

(Vector Laboratories) at room temperature for 30 min. The presence

of peroxidase was revealed by incubation with a diaminobenzidine

solution withnickel enhancement or with a diaminobenzidine solu-

tion. Finally, sections were coverslipped with NEW MX (Matsunami

Glass Industries).

Statistical Analysis
All data were expressed as means6 SEM. For comparisons of three

or more groups, we applied Dunnett’s multiple comparison test after

one-way ANOVA. All statistical analyses including a two-way

ANOVA with the Bonferroni post hoc test were performed with

GraphPad Prism (GraphPad Software). Significance was defined as

P values of <0.05.

Results

Characterization of Monoclonal Antibody 9F5 By
Western Blotting: Its Selective Reactivity With
Type 1 MG
We separated types 1 and 2 MG from a rat mixed glial cell

culture using a described method (Sawada et al., 1990; Shi-

mizu et al., 2008; Suzumura et al., 1987). We confirmed that

the expression levels of CD40 and CD86 were higher in type

1 MG than those in type 2 MG (Fig. 1C,D), as previously

reported (Kanzawa et al., 2000). Each MG preparation was

then used to generate new monoclonal antibodies. We used

four kinds of cells as antigens: stimulus-(2) type 1 MG and

type 2 MG, and selectively activated cells of each subtype:-

type 1 MG stimulated with LPS (Kawahara et al., 2009) and

type 2 MG stimulated with IL-4 (Shimizu et al., 2008).

By immunizing BALB/c mice with LPS-stimulated type

1 MG, we obtained the monoclonal antibody 9F5. First, 9F5

reactivity with type 1 and type 2 MG was examined by WB

blot (WB) analysis. Figure 1Aa showed that 9F5 reacted with

50- to 70-kDa polypeptides of type 1 MG under DTT (2)

conditions. Under DTT (1) conditions, 9F5 showed no reac-

tion, indicating that 9F5 recognized a nonreduced epitope of

antigen in type 1 MG. In contrast, the antibody against Iba1

reacted with types 1 and 2 MG in a similar fashion (Fig.

1Ab). After LPS stimulation of type 1 MG, anti-Iba1-reactive

proteins were increased, whereas 9F5-reactive proteins were

unchanged. This result suggests that expression of antigen

molecules for 9F5 and anti-Iba1, was differentially regulated

in type 1 MG. Figure 1B shows comparative results of WB

analyses with 9F5 and ED1 (another antibody recognizing

Mu/MG) in MG, Mu, neurons, and astrocytes under DTT

(2) conditions. ED1 reacted with peritoneal Mu and

thioglycolate-elicited Mu as expected and reacted similarly

with types 1 and 2 MG. In contrast, 9F5 reacted differently:

most strongly with type 1 MG, faintly with type 2 MG, and

barely with thioglycolate-elicited Mu. The 9F5 reactivity with

type 2 MG, although faintly, will be described in Discussion.

The 9F5 did not react with peritoneal Mu, neurons, and

astrocytes. These results indicate that 9F5 reactivity is highly

selective for type 1 MG. Neither 9F5 nor ED1 reacted with

mouse MG cell lines, such as 6-3 and Ra2, as expected,

because both antibodies were obtained from immunized

mice.

Immunocytochemical Reactivity of 9F5 With
Different MG Preparations and Peritoneal Mu

To evaluate immunocytochemical reactivity of 9F5, we first

tested 9F5 with mixed cell preparations including MG and

astrocytes. As Fig. 2Aa shows, 9F5 stained the cells. However,

double-immunostaining with 9F5 and anti-Iba1 revealed that

9F5 reacted with Iba11 cells, but the number of 9F51 cells
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FIGURE 1: Analysis of 9F5 selectivity for rat type 1 microglia (MG) by Western blot (WB) analysis. A: WB analyses with 9F5 (a) and anti-
Iba1 antibody (b) under DTT (1) (lanes 1–4) and DTT (2) (lanes 5–8) conditions. Cell extracts (20 mg) were from rat type 1 MG (lanes 1,
5), lipopolysaccharide (LPS)-stimulated rat type 1 MG (lanes 2, 6), rat type 2 MG (lanes 3, 7), and interleukin (IL)24-stimulated rat type
2 MG (lanes 4, 8). B: WB analyses with 9F5(a), ED1 (b), and anti-b-actin (c) antibodies under DTT (2) conditions. Extracts (20 mg) were
from mouse 6-3 MG (lane 1), mouse Ra2 MG (lane 2), rat type 1 MG (lanes 3, 13), LPS-stimulated rat type 1 MG (lane 4), rat type 2 MG
(lane 5), IL-4-stimulated rat type 2 MG (lane 6), rat neurons (lane 7), astrocytes (lane 8), peritoneal rat macrophages (Mu) (lane 9), LPS-
stimulated peritoneal rat Mu (lane 10), thioglycolate-elicited rat Mu (lane 11), and rat neuroepithelial cells (lane 12). C, D: WB analyses
with anti-CD40 (Ca), anti-CD86 (Da), or anti-b-actin (Cb, Db) antibodies. Extracts (40 mg) were from rat type 1 MG (lane 1) or rat type
2 MG (lane 2).Cell extracts from 6-3 and Ra2 were used as positive and negative controls for immunoblotting with anti-CD40 antibody.
The 6–3 and Ra2 cells were treated with LPS [0 mg ml21 (lane 3, 8), 0.01 mg ml21 (lane 4, 9), 0.1 mg ml21 (lane 5, 10), 1 mg ml21 (lane 6,
11), and 10 mg ml21 (lane 7, 12)] for 12 hr.



FIGURE 2: Immunocytochemical staining of rat type 1 MG with 9F5. A: Mixed glial cells (DIV10) were incubated with 9F5 (a) or anti-Iba1
antibody (b). Fluorescence signals are shown individually (a, b) and after merging (c). B: Rat primary type 1 MG (a–d), rat type 2 MG (e–
h), and peritoneal rat Mu (i–l) were incubated with 9F5 or anti-Iba1 antibody. Mouse IgG1 and rabbit IgG were used as negative controls
(d, h, l). Fluorescence signals are shown individually and after merging. C: Rat type 1 MG were double-stained with 9F5 (a) and anti-
lysosomal-associated membrane protein-1 (anti-LAMP-1) antibody (b). [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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was lower than that of Iba11 cells (Fig. 2Ac). To clarify

which MG type in the mixed cells was responsible for 9F5

staining, we evaluated rat primary types 1 and 2 MG, which

were separated from the mixed cells (Fig. 2B). For this analy-

sis, astrocytes were excluded because all 9F51 cells were

included as part of the anti-Iba1-positive cells (anti-Iba1

being an MG marker) (Fig. 2Ac). Peritoneal Mu were used

as another control. Rat primary type 1 MG, type 2 MG, or

peritoneal Mu were evaluated by double-staining with 9F5

and anti-Iba1. The 9F5 strongly reacted with type 1 MG

(Fig. 2Ba). Type 2 MG and peritoneal Mu, however, showed

very weak reactivity with 9F5 (Fig. 2Be,i). In contrast, anti-

Iba1 strongly reacted with all MG/Mu populations (Fig.

2Bb,f,j). Only type 1 MG were double-positive for 9F5 and

anti-Iba1 (Fig. 2Bc). In addition, 9F5 immunoreactivity co-

localized with the lysosomal protein Lamp-1 (Fig. 2C), which

suggests that the antigen molecule for 9F5 is localized in lyso-

somes. 9F5 1 Iba11 MG (type 1) had a rounder and more

amoeboid shape (Fig. 2Bc) compared with 9F5-Iba1 1 MG

(type 2), which had a more ramified form (Fig. 2Bg).

Although 9F5 reacted more weakly with type 2 MG in

immunoblot analysis (Fig. 1Ba), we observed that 9F51 cells

in the type 2 cultured cells showed round and amoeboid

shape of MG cells (Fig. 2Be–g), suggesting the possibility

that cultured type 2 cell preparations were contaminated with

a little of 9F51 type 1 MG. To confirm this, we further

stained the cells with antibody against CD40, a marker for

type 1 MG (Kanzawa et al., 2000), and observed that

CD401 cells were expressed in a round and amoeboid shape

of MG in mouse mixed glial cell culture (Supporting Infor-

mation Fig. 3B). We examined the CD401 cells in mouse

mixed glial cell culture, because anti-rat CD40 antibody for

immunocytochemistry was not commercially available. These

data indicate that 9F5 is selective for a round and amoeboid

shape of MG (type 1) in vitro, and will be a useful tool for

MG research.

Identification of Rat GPNMB Starting at Lys-170 as
the Antigen Protein for 9F5
To identify this antigen protein, samples immunoprecipitated

with 9F5 were subjected to SDS-PAGE, and major bands with

estimated mol wt 50–70 kDa were analyzed by using an N-

terminal amino acid sequencer (Fig. 3). Edman sequencing of

the bands revealed an amino acid sequence of

KWNFVYVFHTLGQYFQKLGRXSARVS (Fig. 3C), which

corresponds to Lys-170 to Ser-195 of rat GPNMB/osteoactivin.

To confirm that the GPNMB fragments are the antigen

for 9F5, we constructed cDNA for rat Gpnmb and expressed it

in COS-7 cells. An immunocytochemical analysis revealed that

the 9F5 antibody reacted with the pcDNA3.1-Gpnmb-trans-

fected cells and that all 9F51 cells overlapped with cells

positive for the anti-GPNMB polyclonal antibody (AF2330;

R&D Systems; Fig. 4A). In a WB analysis using anti-GPNMB

antibody, expression of rat GPNMB with mol wt 125 and 95

kDa was observed in transfected cells (Fig. 4B). In addition, an

immunoprecipitation-WB analysis with 9F5 and anti-GPNMB

antibody, respectively, revealed that the band with estimated

mol wt 50–70 kDa was detected in pcDNA3.1-Gpnmb-trans-

fected cells (Fig. 4C, lane 1). Comparative WB analysis showed

that anti-GPNMB antibody reacted with the mol wt 50- to 70-

kDa fragments of GPNMB, in addition to its intact forms with

mol wt 95 and 125 kDa in type 1 MG (Fig. 4D). Furthermore,

polypeptides of mol wt 50–70 kDa in type 1 MG were immu-

noprecipitated by means of anti-GPNMB antibody and

detected by WB analysis with 9F5 (Fig. 4E). All these results

indicate that antigen molecule for 9F5 consists of the 50- to

70-kDa fragments of rat GPNMB and that the N-terminal

amino acid is Lys-170.

Next, to analyze the expression of Gpnmb mRNA and

GPNMB protein in MG, Mu, and neuronal cells, we per-

formed Northern and WB analyses (Fig. 5). We found one

transcript of �2.3 kb in type 1 MG, but the high expression

level of Gpnmb mRNA was not restricted to type 1 MG (Fig.

5A, lanes 1, 2), in that we also detected it in type 2 MG

(Fig. 5A, lanes 3, 4) and Mu (Fig. 5A, lanes 5, 6, 7). Gpnmb

mRNA was barely detected in the adult rat brain (Fig. 5A,

lane 9) and rat C6 glioma cells (Fig. 5B, lane 10). Figure 5B

shows comparative results of WB analyses with 9F5 and anti-

GPNMB antibody in MG, Mu, neurons, and astrocytes

under DTT (-) conditions. The 9F5 reacted most strongly

with type 1 MG, to a much less degree with type 2 MG, and

barely with Mu (Fig. 5Ba; see also Fig. 1Ba). In contrast,

anti-GPNMB antibody reacted with not only type 1 MG but

also type 2 MG and Mu, and it reacted most strongly with

murine type 1 cell line 6-3 (Fig. 5Bb). 9F5 did not react

with mouse MG cell lines, including 6-3 and Ra2, because

9F5 antibody was obtained from immunized mice. These

results indicate that 9F5 is highly selective for rat type 1 MG

and that the 50- to 70-kDa fragments of GPNMB comprise

a unique protein that is selectively expressed in type 1 MG.

9F5 Recognizes GPNMB Fragments Generated by
Furin-like Protease(s)
To characterize the epitope structure of 9F5 more precisely,

we analyzed the mechanism of generation of the antigen mol-

ecule for 9F5 in type 1 MG. We first investigated the effect

of GPNMB glycosylation on 9F5 immunoreactivity, because

GPNMB is a highly glycosylated protein (Shikano et al.,

2001) and the glycosylated form may differ among MG sub-

types. Treatment with deglycosidases including PNGase F and

sialidase/O-glycosidase (Fig. 6) did not reduce 9F5 immuno-

reactivity to rat type 1 MG, which suggests that rat GPNMB
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glycosylation is not the epitope structure of 9F5. 9F5 did not

react with the full-length GPNMB protein of 125 and 95

kDa, because removal of N-glycosides from GPNMB in rat

type 1 MG showed that (1) the full-length GPNMB (119.6

and 94.9 kDa) shifted to 68.3 and 79.8 kDa, respectively;(2)

major two bands detected by 9F5 (64.6 and 51.7 kDa)

shifted to 58.7 and 46.5 kDa, respectively; and (3) a minor

band detected by 9F5 (137.1 kDa; Figs. 1Ba, 3A, and 5Ba)

shifted to 112.1 kDa after the treatment (Fig. 6Aa). These

data indicate that the 137.1 kDa band is not the full-length

GPNMB but may be the dimer (S-S-linked or dimerized via

sugar chains) of the 64.6- and 51.7-kDa bands.

We next investigated whether 9F5 could recognize

GPNMB fragments processed by furin-like protease(s)

because premelanosomal protein 17 (Pmel 17), which belongs

to the Pmel family including GPNMB, is processed by

FIGURE 3: Identification of rat GPNMB protein for 9F5 antigen by using both immunoprecipitation (IP) and microsequencing. A: Lysates
of rat type 1 MG were immunoprecipitated by 9F5 or control IgG and then immunoblotted with 9F5. Arrows indicate staining specific
for 9F5. Asterisks indicate nonspecific staining. B: Lysates of rat type 1 MG were immunoprecipitated by 9F5, subjected to SDS-PAGE,
and then transferred to PVDF membranes. Membranes were evaluated via immunoblotting (lanes 1, 2) or staining with Coomassie Bril-
liant Blue R250 (CBB) (lanes 3, 4), and the major bands with estimated mol wt 50–70 kDa (lane 3, bands 1–3) were extracted and ana-
lyzed by using a microsequencer (C). Asterisks indicate nonspecific staining. Ca: Yield of phenylthiohydantoin (PTH)-amino acid per cycle
number (bands 2, 3). b: Amino acid sequence comparison of the N-terminal amino acid sequence of bands 1–3 with rat GPNMB
(AAH61725) and rat osteoactivin (NP_579832). Shading indicates the residues matched with rat GPNMB. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 4: Recognition by 9F5 of GPNMB protein in rat GpnmbcDNA-transfected COS-7 cells. A–C: COS-7 cells were transfected with
pcDNA3.1-Gpnmb or a pcDNA3.1 empty vector for 72 hr. A: Cells were double-stained with 9F5 and a commercially available goat anti-
mouse GPNMB polyclonal antibody. d, h: Phase-contrast images. B: Cell lysates were from COS-7 cells transfected with pcDNA3.1-
Gpnmb (lane 1) or pcDNA3.1 empty vector (lane 2) or were from type 1 MG (lane 3). Rat GPNMB proteins were cross-reacted with a
goat anti-mouse GPNMB antibody. Arrows indicate specific staining. C: Lysates of cells transfected with pcDNA3.1-Gpnmb or pcDNA3.1
empty vector were immunoprecipitated by using 9F5 (under DTT (2) condition) and then immunoblotted (IB) with the anti-GPNMB anti-
body (under DTT (1) condition). Lysates from rat type 1 MG was used as a positive control (P.C.) for immunoblotting with anti-GPNMB
antibody. Lower panel shows the IgG (9F5 or control IgG) that was eluted from Protein G column by SDS-PAGE sampling buffer without
DTT. D: WB analysis of rat type 1 MG reactions with 9F5 and anti-GPNMB antibody. E: Lysates of rat type 1 MG were immunoprecipi-
tated via anti-GPNMB antibody and then immunoblotted by using 9F5. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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proprotein convertase/furin (Berson et al., 2003), and rat

GPNMB has a consensus sequence of a furin cleavage site

around Lys170: His-Gly-Arg-Lys169#-Lys170 (the consensus

sequence is underlined; Fig. 3Cb). Overexpression of furin

cDNA significantly increased the fluorescence intensity of

9F5 in pcDNA-Gpnmb-transfected COS-7 cells (F(3,

8) 5 5.506; n 53 wells per group; P< 0.05; Fig. 7), whereas

the fluorescence intensity of anti-GPNMB antibody remained

unchanged after cotransfection. Also, cotransfection of cDNA

for a1-PDX (an inhibitor of proprotein convertases including

furin, PACE4, and PC5) significantly reduced the fluores-

cence intensity of 9F5 in pcDNA-Gpnmb-transfected COS-7

cells (F(3, 10) 5 11.17; n 5 3–4 wells per group; P< 0.01; Fig.

8), whereas the intensity of anti-GPNMB antibody remained

unchanged after cotransfection. Moreover, furin siRNA signif-

icantly reduced the fluorescence intensity of 9F5 in pcDNA-

Gpnmb-transfected HEK293 cells (F(3, 10) 5 9.895; n 53–4

wells per group; P< 0.01; Fig. 9), whereas the intensity of

anti-GPNMB antibody remained unchanged after cotransfec-

tion. These results suggest that furin-dependent proteolysis of

GPNMB, which leads to production of the antigen molecule

for 9F5, occurred in these cells.

Given that furin is a direct target gene for the IL-12/

STAT4 pathway in Th1 cells (Oksanen et al., 2014; Pesu

et al., 2006), we treated type 1 MG with recombinant IL-12.

The cytokine increased both furin protein and antigen for

9F5 of rat type 1 MG with similar kinetics (Fig. 10). These

results suggest that 9F5 immunoreactivity to GPNMB

depended on the activity of furin-like protease(s).

Antigen Molecule for 9F5 Is Selectively Expressed
in a Subpopulation of MG in Developing Rat Brain
Because 9F5 was selective for type 1 MG in vitro (Figs. 1 and

2), we investigated whether 9F5 would react with MG in

developing rat brain. When sagittal sections of postnatal day

5 (P5) brain were stained with 9F5 antibody (Fig. 11), a

number of 9F51 cells occurred in the periphery of several

brain regions including lateral ventricles (LV), corpus cal-

losum (CC), pontine nuclei, and fourth ventricles. However,

the cortex was essentially negative for 9F51 cells. The 9F51

cells had round and/or amoeboid shapes, as seen in the in

vitro cultures (Figs. 2Ba-c and 11).

In the tested LV region, 9F51 cells in coronal sections

of P5 rat brain were further evaluated by double-staining

FIGURE 5: Northern and WB analyses of rat Gpnmb mRNA and
proteins. A: Total RNA (2.0 mg) from rat type 1 MG (lanes 1, 2),
rat type 2 MG (lanes 3, 4), peritoneal rat Mu (lane 5), LPS-
stimulated peritoneal rat Mu (lane 6), thioglycolate-elicited rat
Mu (lane 7), mouse MG5 MG (lane 8), adult rat brain (lane 9),
and rat C6 glioma cells (lane 10) were subjected to blot analysis.
The middle and bottom panels show Northern blot analysis of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ethi-
dium bromide staining of 28S and 18S rRNA, respectively. B: WB
analyses with 9F5 (a), anti-GPNMB (b), and anti-b-actin anti-
bodies (c) under DTT (2) conditions. Extracts (20 mg) were from
mouse 6–3 MG (lane 1), mouse Ra2 MG (lane 2), rat type 1 MG
(lane 3), LPS-stimulated rat type 1 MG (lane 4), rat type 2 MG
(lane 5), IL-4-stimulated rat type 2 MG (lane 6), rat neurons (lane
7), rat astrocytes (lane 8), mouse RAW 264.7 Mu(lane 9), rat Mu

(lane 10), LPS-stimulated rat Mu (lane 11), thioglycolate-elicited
rat Mu (lane 12), and rat neuroepithelial cells (lane 13).
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with anti-Iba1, anti-NG2, anti-nestin, or anti-GFAP antibody,

which are antibodies specific for MG, oligodendrocyte precur-

sor cells, neuronal progenitors, and astrocytes, respectively. As

Fig. 12a–c shows, 9F51 cells were included in the Iba11

cell population. In contrast, 9F51 cells were not stained with

antibodies for NG2 (Fig. 12d–f ), nestin (Fig. 12g–i), or

GFAP (Fig. 12j–l). In addition, 9F5 barely cross-reacted with

peripheral Mu in adult rat spleen and liver (Supporting

FIGURE 6: Immunoreactivity of 9F5 was not affected by deglycosylation of rat GPNMB protein. A: Extracts of rat type 1 MG were
treated with or without N-glycosidase F (PNGase F) overnight at 378C, and they were then subjected to immunoblotting with 9F5 (a),
anti-GPNMB (b), or ED1 (c) antibodies. As reported previously for murine dendritic cells (Shikano et al., 2001), full-length GPNMB (119.6
and 94.9 kDa) in type 1 MG shifted to 68.3 and 79.8 kDa after PNGase F treatment (Ab). B: Extracts of type 1 MG were treated with or
without sialidase and O-glycosidase overnight at 378C, and they were then subjected to immunoblotting with 9F5 (a), anti-GPNMB (b),
or ED1 (c) antibodies. Immunoreactivity of ED1, an antibody that reacts with sialic acid on rat CD68, disappeared after sialidase treat-
ment (Bc).
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Information Fig. 4). These results demonstrated that 9F5

selectively immunostained MG among brain cells.

Different Populations of 9F51 MG and Iba11 MG
in Rat Brains during P1-P28
We then investigated changes in the expression and distribu-

tion of 9F51 MG and compared them with those of Iba11

MG around the supraventricular CC region (Fig. 13), in

which 9F51 MG were most frequently observed (Fig. 11).

This area is also known as the region for fountains of MG,

where amoeboid MG migrate into the brain parenchyma and

mature into ramified MG (Hirasawa et al., 2005).

At P1, 9F51 cells had already existed in CC regions

(Fig. 11). At P1–P7, majority of the 9F51 signals was

FIGURE 7: Overexpression of furin cDNA increases the expression level of 9F5 antigen. COS-7 cells were cotransfected with pcDNA3.1-
Gpnmb/pcDNA3.1 or pcDNA3.1-Gpnmb/pcDNA3.1-furin vector. A: At 72 hr after transfection, cells were double-stained with 9F5 (red)
and anti-GPNMB (green) antibodies. B: The results shown in A were quantified and are given as means 6 SEM (n 5 3). Fluorescence
intensities (9F5 and anti-GPNMB) in cells transfected with pcDNA3.1-Gpnmb/pcDNA3.1were set at 100%. *P < 0.05 by Dunnett’s multi-
ple comparison test. C: Cell lysates were also subjected to immunoblot analysis for GPNMB, furin, and b-actin. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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observed in Iba11 cells (Fig. 13A). 9F51 but Iba1-negative

or weakly positive cells [9F5 1 Iba1(2/1)]were occasionally

observed (Fig. 13A). Therefore, we counted and showed the

9F5 and Iba1 double positive cells(9F5 1 Iba11) as the

9F51 MG in Fig. 13B. The 9F51 MG increased during

P7-P10 and then decreased markedly at P14 (Fig. 13A,B).

The time course of expression level of Gpnmb mRNA in

developing rat brain was consistent with the intensity of the

9F51 signal (Fig. 13C). Most of the 9F51 signals during

P7-P10 were detected in round and amoeboid cells, whereas

9F5-Iba11 MG showed a ramified morphology. Iba11

cells, however, were present in the P1 brain, and they

FIGURE 8: A furin inhibitor decreases the expression level of 9F5 antigen. COS-7 cells were cotransfected with pcDNA3.1-Gpnmb/
pcDNA3.1 or pcDNA3.1-Gpnmb/pcDNA3.1-a1PDX vector. A: At 72 hr after transfection, cells were double-stained with 9F5 (red) and
anti-GPNMB (green) antibodies. B: The results shown in A were quantified and are given as means 6 SEM (n 5 3–4). Fluorescence intensi-
ties (9F5 and anti-GPNMB) in cells transfected with pcDNA3.1-Gpnmb/pcDNA3.1 were set at 100%. **P < 0.01 by Dunnett’s multiple
comparison test. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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increased during P7-P10, as did 9F51 cells, but the maxi-

mum number of Iba11 cells occurred during P14. The

number of Iba11 cells subsequently decreased, but some

Iba11 cells were present even at P28. The increase in the

number of 9F51 cells during P7-P10 were also observed in

other regions including around lateral and third ventricles,

but not in hippocampus and choroid plexus (Supporting

Information Fig. 5). These results suggest that 9F51 cells

FIGURE 9: A furin siRNA inhibits the expression level of 9F5 antigen. HEK293 cells were cotransfected with pcDNA3.1-Gpnmb/control
small interfering RNA (siRNA) or pcDNA3.1-Gpnmb/furin siRNA. A: At 72 hr after transfection, cells were double-stained with 9F5 (red)
and anti-GPNMB (green) antibodies. B: The results shown in A were quantified and are given as means 6 SEM (n 5 3–4). Fluorescence
intensities (9F5 and anti-GPNMB) in cells transfected with pcDNA3.1-Gpnmb/pcDNA3.1 were set at 100%. **P < 0.01 by Dunnett’s multi-
ple comparison test. C: Cell lysates were also subjected to immunoblot analysis for furin and b-actin. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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were restricted to a subpopulation of MG (9F5 1 Iba11

amoeboid cells) at P7-P10 in developing rat brain and that

they may play a major role in CC regions during the

period.

Expression of 9F51 Cells in Rat Brains at E10
and E14
To determine the timing in development when 9F51 cells

appeared, cryostat sections of E10 and E14 brains were

double-stained with 9F5 and anti-Iba1 (Figs. 14 and 15). In

the E10 rat neural tube, Iba1 1 9F5- cells were present (Fig.

14, region a). Although 9F5 1 Iba11 cells did not occur in

the E10 neural tube, double-positive cells were present out-

side the brain at this stage (Fig. 14, region b). In contrast,

9F5 1 Iba11 cells appeared in the E14 rat brain parenchyma

(Fig. 15). This result suggests that 9F51 cells may infiltrate

the brain after E10. In addition, cells of 9F5 1 Iba12 or

9F5 1 Iba1(2/1), were observed in E14 rat brain (Fig. 15,

regions a and b).

Expression of 9F51 Cells in E14 Rat Brain and Eyes
At mouse stages E10-E18, Gpnmb mRNA was specifically

expressed in retinal pigment epithelium (RPE) (B€achner

et al., 2002). In agreement with this result, high positive 9F5

staining was found in E14 rat retinal cells, which were obvi-

ously Iba1-negative (arrows in Fig. 16a–f ). The 9F5 1 Iba11

MG-like cells were also observed both outside and inside the

retina (some are indicated by arrowheads in Fig. 16a,d).

Higher magnification photomicrographs (Fig. 16d–f ) showed

that 9F5 immunoreactivity was somewhat localized in the

RPE, possibly on cytoplasmic and punctate structures such as

the melanosome (arrow in Fig. 16d). Anti-laminin antibody

staining revealed that the laminin-positive choroid was the

layer outside the 9F51 cell layer (Fig. 16g–i). Furthermore,

9F5 staining was merged with anti-MITF (microphthalmia-

associated transcription factor) antibody, a marker of RPE

cells (Fig. 16j–l). These results demonstrated that, in the

developing rat eye, the antigen for 9F5 was localized both in

RPE cells and in a subpopulation of “retinal Iba11 MG.”

Discussion

Increasing numbers of studies report that MG are heteroge-

neous populations and that subtypes or subsets may exist and

play different roles in the CNS. However, the lineages and

functions of these subtypes remain largely unknown because

of the lack of suitable tools to differentiate such heteroge-

neous MG populations. The present study describes our gen-

eration of a novel monoclonal antibody, 9F5, to help remedy

this lack.

Truncated GPNMB as the Antigen Molecule for 9F5
We identified rat truncated GPNMB starting at Lys170as the

antigen molecule for 9F5 (Figs. 3 and 4). GPNMB, a heavily

glycosylated type I transmembrane protein, was expressed in

several cells including osteoblasts, melanocytes, and tumor

cells (Anderson et al., 2002; Safadi et al., 2001; Weterman

et al., 1995). Shikano et al. (2001) showed that GPNMB was

expressed at high levels on dendritic cells but lower levels on

Mu. 9F5 strongly reacted with RPECs in E14 rat eye (Fig.

16). This result agrees with the report that Gpnmb mRNA

was expressed in mouse RPECs at E10-E18 (B€achner et al.,

2002). The 9F51 cells also colocalized with cells stained with

a polyclonal anti-GPNMB antibody in E10 rat eye (data not

shown), which confirmed a part of GPNMB as the antigen

protein for 9F5.

Here, we determined the epitope structure of 9F5.

Types 1 and 2 MG, and peritoneal Mu as well, expressed the

mRNA and the full-length protein for rat GPNMB, whereas

9F5 reactivity was selective for type 1 MG (Fig. 5). Although

9F5 reacted with the 50- to 70-kDa fragments, whose N-

terminal amino acid is Lys170 (Fig. 3), it did not react with

the full-length GPNMB protein of 125 and 95 kDa (Fig. 6).

No alternative splicing form of Gpnmb mRNA occurred in

rat type 1 MG (Figs. 3A and 14C). Deglycosylation by the

treatments with PNGase F and sialidase/O-glycosidase (Fig.

6), did not reduce 9F5 reactivity with rat type 1 MG. These

results suggest that 9F5 reactivity with the GPNMB frag-

ments depends on cleavage between Lys169 and Lys170.

We then showed that 9F5 immunoreactivity to the

GPNMB fragments (50–70 kDa) depended on furin-like pro-

teaseactivity (Figs. 7–10). Overexpression of furin cDNA

increased expression of the antigen for 9F5 (Fig. 7), whereas

inhibiting furin with a1-PDX or siRNA abrogated this

FIGURE 10: IL-12 increases both furin and 9F5 antigen of rat
type 1 MG with similar kinetics. Rat type 1 MG were treated
with rat recombinant IL-12 (10 ng ml21) at the indicated hours,
and cell lysates were subjected to immunoblot analysis for 9F5
antigen, furin, GPNMB, and b-actin.
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reactivity (Figs. 8 and 9). IL-12, which induces furin mRNA

(Pesu et al., 2006), also increased expression of antigens for

furin and 9F5 in rat type 1 MG, with similar kinetics (Fig.

10). Thus, furin-like protease cleaves the dibasic motif

(Lys169-Lys170) of GPNMB in type 1 MG, and the 9F5 anti-

gen produced may be a useful marker of furin activity in

MG. Additional studies are needed to inspect whether furin

activity is higher (or an endogenous furin inhibitor such as

FIGURE 11: Immunohistochemical analysis with 9F5 of cryostat sections of a P5 rat brain. Sagittal sections were probed with 9F5 (diaminoben-
zidine-Ni staining). Representative sections from the lateral ventricle (a, b), corpus callosum (c, d), pontine nuclei (e, f), and fourth ventricle (g,
h). b, d, f, h:9F51 cells at higher magnification. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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serpin is lower) in type 1 MG than that in type 2 MG and

peritoneal Mu.

The signals of truncated GPNMB disappeared almost

completely by treating with furin siRNA (Fig. 9A), despite

furin protein was still abundant (Fig. 9C). Because furin

siRNA and Gpnmb cDNA are mainly co-introduced into the

same cells by TransMessenger reagent (Qiagen), furin-

dependent processing must be inhibited in the same cells,

resulting in disappearance of the signals of truncated

GPNMB in the cells. On the other hand, the transfection

efficiency is not 100% in this method. Therefore, it is consid-

ered that the furin expression is not knockdown in the cell,

into which the plasmid-siRNA complex was not introduced,

resulting that furin protein was still abundant.

Furochi et al. (2007) demonstrated that mouse

GPNMB was cleaved at a dibasic motif (Lys459-Lys460) in the

juxta membrane region in mouse myoblasts by a disintegrin

and metalloproteinase-like protease. However, whether this

protease cleaves rat GPNMB at a dibasic motif (Lys169-

Lys170) and produces fragments recognized by 9F5 has not

FIGURE 12: 9F5 selectively immunostains MG among brain cells of a P5 rat brain. Coronal sections around the lateral ventricle were
double-stained with 9F5 and anti-Iba1 (a–c), anti-NG2 (d–f), anti-nestin (g–i), or anti-GFAP (j–l) antibodies. Fluorescence signals are shown
individually and after merging. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 13: Comparative immunofluorescence analysis of cryostat sections from postnatal rat brains with 9F5 and anti-Iba1antibodies. A:
Coronal sections from P3-P14 brains were probed with 9F5 (green) and anti-Iba1 (red) antibodies. Fluorescencesignals are shown individu-
ally and after merging. Inset shows a higher magnification of double-labeled cells. Labeled cells are concentrated in the white matter that
constitutes the stream around the corpus callosum (CC). B: Plots of the number of Iba11 MG and 9F51 MG (9F5 1 Iba11 cells) in the
developing brains from P1 to P28. Data are means 6 SEM (n 5 3). ***P < 0.001 (at day 14), determined by two-way ANOVA with the Bon-
ferroni post hoc test. C: Samples of total RNA (10 mg) from rat brain (P1 to P28) were subjected to blot analysis for Gpnmb mRNA. The
positive control (P.C.) was total RNA (2.0 mg) from MG5 cells. The bottom panel shows ethidium bromide staining of 28S and 18S rRNA.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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been determined. Melanosome-specific protein PMEL 17,

with a relatively conserved sequence to GPNMB (Theos

et al., 2005), undergoes proteolytic cleavage by a furin-like

convertase to form active PMEL 17 in pigment cells (Berson

et al., 2003), which suggests that a furin-like protease forms

the GPNMB fragments in RPECs (Fig. 16).

Physiological Significance of Truncated GPNMB in
Developing Brain
The three-dimensional structure of rat GPNMB has not yet

been resolved. However, Lys170 is believed to locateat the

protein surface, given the furin-like protease processing at

the dibasic motif (Lys169-Lys170). Infection of neonatal rat

glial cells with Toxoplasma gondii caused a marked 136-fold

increase in Lys170acetylation of rat GPNMB (Bouchut et al.,

2015). Mice and humans infected with T. gondii increased

the furin activity of T cells in an IL-12-dependent manner

and augmented host resistance against parasites via secretion

of cytokines including interferon-c (Oksanen et al., 2014).

The 9F51 cells localized in specific areas of neonatal rat

brain including the forebrain subventricular zone, CC, and

retina (areas affected by toxoplasmosis in neonatal human

brain). Lys170 acetylation in toxoplasmosis may disrupt the

interaction between furin and GPNMB, because, the amino

acid substitution with a hydrophobic aliphatic side chain at

the P1’ position (i.e., Lys170) is not suitable as a furin sub-

strate (Nakayama, 1997; Tian, 2009). Because many cyto-

kines are dysregulated in Gpnmb mutant mice (Abdelmagid

et al., 2014; Wilson et al., 2015), future studies are required

to reveal the role of GPNMB and its Lys acetylation for

furin activity required for cytokine maturation in 9F51

MG.

FIGURE 14: Immunofluorescence analysis of cryostat sections of E10 rat brain. Coronal sections of E10 rat brains were probed with 9F5
(red) and anti-Iba1(green) antibodies. Fluorescence signals are shown individually and after merging. The 9F51 cells and Iba11 cells are
shown at higher magnification (regions a, b). Iba1 1 9F52 cells (arrows) occurred inside and outside the neural tube of the E10 rat brain,
whereas 9F5 1 Iba11 cells (arrowheads) were observed outside the neural tube at this stage. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

1956 Volume 64, No. 11

http://wileyonlinelibrary.com


FIGURE 15: Immunofluorescence analysis of cryostat sections of E14 rat brain. Coronal sections of E14 rat brains were probed with 9F5
(red) and anti-Iba1 (green) antibodies. 9F51 and Iba11 cells are shown at higher magnification (regions a-d). Round or amoeboid
9F5 1 Iba1- cells were seen in brain parenchyma near the choroid plexus (arrows in regions a, b). Round- and rod-shaped 9F5 1 Iba11
cells were also present in the brain parenchyma near the amygdala (region c) and around the lateral ventricle (region d), respectively.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIGURE 16: Immunofluorescence analysis of cryostat sections of E14 rat eye. a–f: Coronal sections were probed with 9F5 and anti-
Iba1antibodies and then counterstained with Hoechst 33258 (a, b). Fluorescence signals are shown individually (a, b) and after merging (c).
Arrows indicate 9F5 1 Iba12 retinal cells, arrowheads, some 9F5 1 Iba11 cells. d–f: 9F51 and Iba11 cells are also shown at higher magnifi-
cation. g–i:Coronal sections were probed with 9F5 and anti-laminin antibodies and then counterstained with Hoechst 33258 (g, h). Fluores-
cence signals are shown individually and after merging. j–l:Coronal sections were probed with biotin-conjugated 9F5 and anti-MITF
antibody. Fluorescence signals are shown individually and after merging. Section j–l demonstrated cell-type-specific expression of 9F5 anti-
gen on the retinal pigment epithelium (arrow in c, f) and 9F5 1 Iba11 cells comprising a portion of the Iba11 cells (arrowheads in c, f).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Distribution of 9F51 MG in Neonatal Rat Brain
Given its high selectivity for type 1 MG, 9F5 may be applied

to monitor changes in distribution and morphology of 9F51

MG in neonatal rat brain. The 9F51 MG comprised a frac-

tion of Iba11 total MG during P1-P28 stages of brain devel-

opment, which confirms that MG subtype(s), at least 9F51

and 9F52, exist in vivo. Also, 9F51 MG were round and/or

amoeboid in brain areas including the subventricular zone

and CC regions (Figs. 11 and 12).

In neo- and postnatal brains, the 9F51 cell number

peaked at P10 in the parenchyma around the CC near the

LV, decreased rapidly at P14, and was lower by P21 (Fig.

13). Rat neuronal progenitor cells begin to proliferate at E13,

start to migrate before birth, and begin to differentiate into

neurons just after birth (Ferrer et al., 1990; Spreafico et al.,

1995). Simultaneously with or after differentiation, neuronal

apoptosis occurs; apoptosis peaks during P5-P7 and com-

pletes by P14 (Ferrer et al., 1990; Spreafico et al., 1995). In

our study here, changes in 9F51 cell numbers during devel-

opment showed a similar pattern, although the peak (P7-

P10) came slightly later than the reported period of neuronal

apoptosis. MG functionin axon guidance and clearance of

apoptotic neurons (Hamilton and Rome, 1994; Miller and

Kaplan, 2001). Therefore, 9F51 MG in developing rat brain

may be involved in migration and differentiation of neuronal

progenitor cells and in clearance of dying neurons.

Microglial insulin-like growth factor-1 (IGF-1) is

reportedly required for survival of layer V corticospinal motor

neurons in the developing brain (Ueno et al., 2013). Howev-

er, how IGF-11 MG accumulate around subcortical white

matter during development remained unknown. The distribu-

tion pattern of IGF-11 MG seemed similar to that of our

9F51 MG in developing rat brain, and furin was required

for pro-IGF-1 processing. Amoeboid MG express IGF-1 in

developing rat brain (Kaur et al., 2006), which suggests that

IGF-11 MG may be 9F51 MG. Because GPNMB is

involved in the pathophysiological process in motor neuron

diseases (e.g., amyotrophic lateral sclerosis) (Tanaka et al.,

2012), future investigations must determine how 9F51 MG

contribute to motor neuron survival.

One fate-mapping study revealed that adult MG derive

from yolk-sac Mu (Ginhoux et al., 2010). Monocytes from

aorta-gonad-mesonephros, fetal liver, or bone marrow may

also infiltrate the brain, especially the meninges, choroid plex-

us, and perivascular spaces (Andjelkovic et al., 1998; Prinz

and Priller, 2014; Sheng et al., 2015). Although MG from

yolk-sac Mu contribute to adult brain function, bone

marrow-derived myeloid cells/monocytes of peripheral origin

may also contribute to brain pathology including Alzheimer’s

disease, especially around Ab plaque (Jay et al., 2015; Savage

et al., 2015).

In the E10 rat neural tube, Iba1 1 9F52 cells, but not

9F51 cells, were observed; 9F5 1 Iba11 cells occurred only

outside the neural tube (Fig. 14). At E14, however,

9F5 1 Iba11 cells appeared in brain parenchymal regions,

such as amygdala (Fig. 15, regions c and d). These results

indicate that Iba1 1 9F52 cells, which had invaded brain

parenchyma earlier than 9F51 cells, were already present at

E10, whereas 9F5 1 Iba11 cells remained outside the paren-

chyma until later. In E14 rat brain parenchyma, we observed

three different cells, namely 9F5 1 Iba12, 9F5 1 Iba1(2/

1), and 9F5 1 Iba11 cells (Fig. 15). The 9F5 1 Iba12 cells

were also observed in some parts of P1-P7 rat brain (Fig.

13A). The 9F5 1 Iba1(2/1) cells are thought to be imma-

ture MG that will differentiate into MG. The 9F5-Iba11

cells in E10 brain parenchyma are believed to be resident

MG derived from yolk-sac Mu. Therefore, 9F5-Iba11 cells,

possibly type 2 MG, may be derived from yolk-sac Mu.

However, present data do not give conclusion about this

MG subtype. Future studies must characterize this

subpopulation.

In our study, we detected 9F5 immunoreactivity in

RPECs of E10-E14 rat eye (Fig. 16, data not shown), and in

retinal MG subpopulations in E14 rat eye (Fig. 16d–f ). This

finding is a sharp contrast to anti-Iba1 antibody, which did

not stain RPECs. RPECs originate from the neural tube

(Martinez-Morales et al., 2004). Therefore, present results

suggest that 9F51 MG may be of neuroectodermal origin.

However, both RPECs and 9F51 MG express the same anti-

gen for 9F5, whereas the neuroepithelial progenitor cells do

not (Fig. 1Ba, lane 12). RPECs help to maintain retinal func-

tion. Brain 9F51 MG and retinal RPECs may possess similar

phagocytic functions that are possible to result from the com-

mon antigen for 9F5.

In this study, we did not perform lineage tracking of

9F5-immunoreactive myeloid cells in the CNS. Antigen mol-

ecule for 9F5 is expressed in developing rat brain, but the

molecule was almost disappeared in adult rat brain (Fig.

13B). Because the P7 and P10 rat brains contained many

kinds of proliferating cells (Imamoto and Leblond, 1978), it

is impossible to label specifically 9F5-positive cells by BrdU

method. This problem may be overcome by the genetic fate

mapping studies. However, this technology requires the gener-

ation of many mouse lines: a tamoxifen-sensitive Gpnmb-

CreERT2 mouse line followed by crossbreeding to reporter

lines. Therefore, lineage-tracking study is beyond the scope of

this manuscript, but it is an important question to be solved

in near future.

Lastly, we generated Gpnmb-GFP knock-in mice (Sup-

porting Information Figs. 1–3) to investigate the functional

relevance of GPNMB for microglia in vivo. GFP was

expressed in a subpopulation of Iba11 MG in mixed glial
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cell culture from P3 neonatal brain of heterozygous Gpnmb-

GFP knock-in mice and in the white matter regions including

CC of P5-P7 neonatal brains, but not in liver (Supporting

Information Figs. 2 and 3). Homozygous Gpnmb-KO mice

did not show any growth retardation including body weight

loss in neonatal development (Supporting Information Fig.

1F). However, 23% of homozygous Gpnmb-KO mice (3 of

13 mice) and 8% of the heterozygous mice (1 of 12 mice)

exhibited spontaneous seizure phenotype at age of 10- to

26.5-month old (Supporting Information Table 1, Supporting

Information Videos 1 and 2). The results were consistent

with the characteristics of DBA/2J mice with dysfunctional

GPNMB expression: DBA/2J mice are susceptible to seizure-

inducing model (Ferraro et al., 1999). Collectively, GPNMB

may play some roles to prevent age-related epilepsy in rodent,

but more definitive data is required in the future study.

It remains unknown whether 9F51 MG in developing

rat brain is phenotypically equivalent to that of CD401 type

1 MG in vitro. Definitive evidence is lacking, mainly due to

two reasons: (i) commercial unavailability of anti-rat CD40

antibody for immunohistochemistry, and (ii) unavailability of

lineage analysis tools including a tamoxifen-sensitive Gpnmb-

CreERT2 mouse line. Comprehensive characterization of the

9F51 MG in vivo including lineage analysis should be solved

in near future.

In summary, we developed the new monoclonal anti-

body 9F5 that showed no cross-reactivity with peritoneal Mu
and recognized a fraction of Iba11 MG—round and/or

amoeboid type 1 MG in vitro. We demonstrated the existence

of 9F51 MG in vivo at an early developmental stage of rat

brains and eyes. Because the antigen molecule for 9F5 was

identified as the GPNMB fragments processed by furin-like

protease(s), 9F5 may be useful for elucidating new roles of

9F51 MG during rat brain development, and in possible

relations with neuroinflammation and neurodegenerative

diseases.
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