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Abstract

Women and children in developing countries are often exposed to high levels of air pollution 

including polycyclic aromatic hydrocarbons (PAHs), which may negatively impact their health, 

due to household combustion of biomass fuel for cooking and heating. We compared creatinine 

adjusted hydroxy-PAH (OH-PAH) concentrations in pregnant women in Trujillo, Peru who cook 

with wood to levels measured in those who cook with kerosene, liquefied petroleum gas or a 

combination of fuels. Seventy-nine women were recruited for the study between May and July 

2004 in the first trimester of their pregnancy. Urine samples were collected from the subjects in the 

first, second and third trimesters for OH-PAH analyses. The concentrations of the OH-PAHs were 

compared across the type of fuel used for cooking and pregnancy trimesters. The relationships 

between OH-PAHs levels in the first trimester and concurrently measured personal exposures to 

PM2.5, carbon monoxide and nitrogen dioxide together with their indoor and outdoor air 

concentrations were also investigated. Women cooking with wood or kerosene had the highest 

creatinine adjusted OH-PAH concentrations compared with those using gas, coal briquette or a 

combination of fuels. Concentrations of creatinine adjusted 2-hydroxy-fluorene, 3-hydroxy-

fluorene, 1-hydroxy-fluorene, 2-hydroxy-phenanthrene and 4-hydroxy-phenanthrene were 

significantly higher (p<0.05) in women who used wood or kerosene alone compared with women 

who used liquefied petroleum gas (LPG), coal briquette or a combination of fuels. An increase in 

the concentrations of creatinine adjusted 9-hydroxy-fluorene, 1-hydroxy-phenanthrene, 2-

☆Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the 
Centers for Disease Control and Prevention (CDC). The use of trade names and commercial sources is for identification only and does 
not constitute endorsement by the US Department of Health and Human Services or CDC.
*Corresponding author. Tel.: +1 706 542 4104; fax: +1 706 542 7472. lnaeher@uga.edu (L.P. Naeher). 

Conflict of interest statement
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2016 November 30.

Published in final edited form as:
Environ Int. 2013 March ; 53: 1–8. doi:10.1016/j.envint.2012.11.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hydroxy-phenanthrene, 4-hydroxy-phenanthrene and 1-hydroxy-pyrene in the third trimesters was 

also observed. Weak positive correlation (Spearman correlation coefficient, ρ<0.4; p<0.05) was 

observed between all first trimester creatinine adjusted OH-PAHs and indoor (kitchen and living 

room), and personal 48-h TWA PM2.5. Women who cooked exclusively with wood or kerosene 

had higher creatinine adjusted OH-PAH levels in their urine samples compared to women who 

cooked with LPG or coal briquette.
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1. Introduction

Indoor air pollution is a global problem (Zhang and Smith, 2003), and is responsible for 

2.6% of the disease burden worldwide and nearly 3.6% in developing countries (Torres-

Duque et al., 2008). One of the main sources of indoor air pollution, especially in 

developing countries, is household combustion of unprocessed biomass fuel. It is estimated 

that approximately 50% of the world’s population and nearly 90% of households in rural 

areas of developing countries still rely on wood, dung and crop residues as their source of 

energy (Torres-Duque et al., 2008); 1.6 million deaths are attributable to exposure to indoor 

smoke from combustion of biomass fuel each year and it ranks second among all 

environmental risk factors for the global burden of disease (Naeher et al., 2007; Perez-

Padilla et al., 2010).

The most commonly used unprocessed biomass fuel is wood (Torres-Duque et al., 2008). 

Smoke generated by the combustion of wood and other biomass fuels contains many health 

damaging pollutants including particulate matter, carbon monoxide, aldehydes, nitrogen and 

sulfur oxides, and polycyclic aromatic hydrocarbons (PAH) (Joshi et al., 1989; Naeher et al., 

2007; Venkataraman et al., 2002; Zelikoff et al., 2002; Zhang and Smith, 2007). Household 

biomass fuel combustion compared to the use of cleaner fuels such as gas could contribute 

significantly more to indoor levels of these pollutants, including PAHs (Bhargava et al., 

2004; Hamada et al., 1991; Oanh and Dungs, 1999; Viau et al., 2000). The International 

Agency for Research on Cancer (IARC) classifies some of the individual PAHs as Class II 

carcinogens, and identifies benzo(a)pyrene as a Class I carcinogen (IARC, 2010; Straif et 

al., 2005). Additionally, PAHs have been associated with immunotoxicity (Laupeze et al., 

2002; Oh et al., 2006).

Women and their young children in developing countries are especially vulnerable to 

exposure to indoor air pollution as they usually spend more time than men at home. Women 

are also more likely to do the cooking, and sometimes rely on less clean biomass fuels. 

Exposure to indoor air pollution due to household combustion of wood and other 

unprocessed biomass fuel has been associated with reduced birth weight, (Mishra et al., 

2004; Pope et al., 2010) acute respiratory infection in children, (Mishra, 2003; Smith et al., 

2011) and chronic obstructive pulmonary disease in women (Ekici et al., 2005; Orozco-Levi 

et al., 2006). The International Agency for Research on Cancer (IARC) has also classified 
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emissions from household combustion of coal as carcinogenic to humans (Group 1 

carcinogen) and emissions from household combustion of biomass as probably carcinogenic 

to humans (Group 2A) (IARC, 2010).

In this study, biomonitoring was used to characterize exposure to PAHs in pregnant women 

cooking with different fuels in Trujillo, Peru. PAHs are metabolized in the body to form 

hydroxylated metabolites (OH-PAHs) which are excreted in urine. OH-PAHs have been used 

as biomarkers of PAHs in different exposure situations (Gündel et al., 2000; Kuusimäki et 

al., 2004; Li et al., 2008; Toriba and Hayakawa, 2007), and 1-hydroxy-pyrene (1-PYR) has 

been used in some studies as a biomarker of exposure to PAHs in woodsmoke (Cavanagh et 

al., 2007; Kato et al., 2004; Viau et al., 2000).

In this study, the effect of the cooking fuel type on the pregnant women’s exposures to PAHs 

was assessed by measuring urinary 10 OH-PAHs, metabolites of naphthalene, fluorene, 

phenanthrene and pyrene, throughout the study participants’ gestation period. Additionally, 

indoor and ambient air, and personal exposure monitoring was done for air pollutants in 

order to determine if there was a relationship between indoor air quality and PAH metabolite 

concentrations.

2. Material and methods

This study was part of a larger study conducted by the University of Georgia focusing on the 

exposure of pregnant women to indoor air pollution. We selected pregnant women because a 

growing body of research indicates that the human fetus is vulnerable to air pollution (Bell 

et al., 2007; Bobak, 2000; Brauer et al., 2008; Choi et al., 2008; Makri and Stilianakis, 2008; 

Mishra et al., 2004; Parker et al., 2005; Šrám et al., 2005).

Each woman recruited for this study provided one urine sample for each trimester of 

pregnancy for the analysis of OH-PAHs and other biomarkers of exposure and nutrition. All 

biological samples were handled by local medical personnel trained by the Centers for 

Disease Control and Prevention’s National Center for Environmental Health laboratory 

(CDC/NCEH).

2.1. Study location and subject recruitment

The study was conducted in Trujillo, a coastal city of more than 800,000 and the capital of 

the La Libertad region of Peru. The study participants resided in seven districts within 10 

miles of the city of Trujillo: Trujillo, La Esperanza, El Porvenir, Florencia de Mora, Moche, 

El Milagro, and Alto Trujillo. One hundred women were initially recruited from a target 

population of non-smoking women residing in Trujillo to participate in a larger indoor air 

exposure study. Seventy-nine of these women provided urine samples during the first 

trimester of their pregnancy between April and July of 2004, and were included in the 

urinary OH-PAH study. The women cooked exclusively with wood, kerosene, coal briquette 

or liquefied petroleum gas (LPG), or a combination of fuels. The study was approved by 

Institutional Review Boards from the University of Georgia, the Centers for Disease Control 

and Prevention (CDC), and health authorities at Trujillo City Hall. Informed consent was 

obtained from all subjects.
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2.2. Questionnaire

Questionnaires, written and administered in Spanish, were used to determine residential 

characteristics and to obtain information on fuel type, socioeconomic status (SES), age, 

cooking characteristics such as cooking time and frequency, and possible confounding 

exposures. SES was determined based on observation of residential characteristics; subjects 

were grouped into three categories (poor, middle, and affluent). The questionnaires were 

administered immediately prior to air exposure monitoring in the homes and on the persons 

of the subjects in the first trimester.

2.3. Urine sample collection

Spot urine samples (50 mL) were collected from each study participant once each trimester. 

After collection, samples were aliquoted and shipped on dry ice to the CDC for analyses, 

and were then stored at −70 °C until analyzed. Any personal identifiable information was 

not available to CDC researchers.

2.4. Air pollution exposure monitoring

As part of the larger indoor air pollution study, measurements of daily ambient and indoor 

air pollution as well as personal exposure monitoring were conducted and completed within 

three days before the collection of urine samples in the first trimester. Details of the 

methodology for the personal exposure, indoor and ambient air monitoring will be presented 

elsewhere but are provided briefly below. Real-time CO was measured using Dräger Pac III 

single gas monitors (Draeger Safety Inc., Pittsburgh, PA) outfitted with CO sensors. The 

personal, indoor and ambient PM2.5, CO and OH-PAHs were analyzed in order to determine 

potential correlations.

2.4.1. Personal exposure monitoring—Personal exposures to carbon monoxide (CO), 

nitrogen dioxide (NO2) and particulate matter with an aerodynamic diameter less than or 

equal to 2.5 micrometers (PM2.5) were monitored over 48-h periods and completed within 

three days before the collection of urine samples in the first trimester. Time-integrated PM2.5 

concentrations were measured gravimetrically. Particles were collected on 37 mm Teflon 

filters (Pall, 2.0 μm) loaded into Triplex PM2.5 cyclones (BGI, model SCC 1.062), and air 

was drawn using AirChek 2000 pumps (SKC Inc.) with flow rate set at 1.5 L/min. The 

weights of the particles were determined gravimetrically using the Cahn C-35 microbalance 

following the United States Environmental Protection Agency Guidance document (USEPA, 

1998). CO was measured in real time using Dräger Pac III single gas monitors (Draeger 

Safety Inc., Pittsburgh, PA) outfitted with CO sensors. The datalogger of the instrument was 

set to record CO concentrations every 30 s. Time integrated NO2 personal exposure over the 

48-h period was determined using Palmes Tubes. NO2 was determined 

spectrophotometrically (Milton Roy Company, Spectronic 20D). All the samplers for 

personal exposure monitoring were placed within the breathing zones of the subjects.

2.4.2. Indoor and ambient air monitoring—Concentrations of PM2.5, CO, and NO2 

were measured in the kitchens and living rooms in the homes of the subjects over 48-h 

periods that were concurrent with the personal exposure monitoring. Ambient air 

concentrations of PM2.5 and NO2 were also measured over 48-h periods and concurrently 

Adetona et al. Page 4

Environ Int. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the personal exposure monitoring, on the roof of the City Hall in downtown Trujillo 

and at the local airport station nine miles outside of Trujillo. Additionally, volatile organic 

compounds (VOCs) were collected concurrently with other exposure monitoring in the 

kitchen and in ambient air at the two outdoor locations using passive diffusion stainless 

tubes (90 mm long, 6.3 mm OD and 5 mm ID, Perkin-Elmer) packed with Tenax™ TA 

(60/80 mesh, 200 mg) as an adsorbent. The samples were analyzed using an automated 

thermal desorption system (ATD400) coupled to a Hewlett-Packard model 5890A gas 

chromatograph/VG model Trio 1 mass spectrometer. Indoor and ambient air monitoring of 

PM2.5, CO, and NO2 were done using the same instruments and methods described for 

personal exposure monitoring, except that the monitors were mounted on stationary supports 

for the duration of measurements.

The indoor and ambient air and personal exposures to PM2.5, CO, NO2 were measured in 

order to determine their potential correlations with OH-PAH levels in urine.

2.5. Hydroxy-PAH analyses

Urine samples were analyzed for 10 OH-PAHs using gas chromatography/isotope dilution 

high resolution mass spectrometry (GC-IDHRMS) according to a previously reported 

method (Li et al., 2006). A mixture of 10 13C-labeled internal standards was spiked into 2-

mL urine specimens prior to sample preparation. The methodology for measuring OH-PAH 

metabolites, present in human urine as glucuronide and/or sulfate conjugates, is based on 

enzymatic deconjugation of the samples to yield free OH-PAHs, followed by automated 

liquid-liquid extraction into pentene using the Gilson 215 Liquid Handler (Gilson Inc., 

Middleton, WI). The sample extracts were thereafter evaporated under a chemical fume 

hood. Finally, the extracts were re-constituted in toluene and derivatized to yield the 

trimethylsiloxane derivatives. Analytical determination of the target analytes were 

performed on a MAT95XL high resolution mass spectrometer (Thermo Scientific, Bremen, 

Germany) coupled with a 6890 gas chromatography (Agilent Technologies, Palo Alto, CA, 

USA). The quantification of the 10 target analytes was based on the use of their 13C-labeled 

internal standards to account for potential losses during samples preparation and instrument 

variation. Urinary creatinine was measured on a Roche Hitachi 912 Chemistry Analyzer 

(Hitachi Inc., Pleasanton, CA) by use of the Creatinine Plus Assay (Roche Diagnostics, 

Indianapolis, IN).

2.6. Statistical analyses

Creatinine adjusted concentrations (the weight of OH-PAH per unit weight of creatinine in 

urine: ng/g creatinine) of all the urinary OH-PAHs were calculated in order to correct for 

urine dilution. Statistical significance for all analyses was set at p<0.05. All analyses were 

done using SAS version 9.1 (Cary, NC).

Repeated measures analysis of covariance, using linear mixed effect models, was used to 

analyze the differences of OH-PAHs across trimesters and fuel types. The age of the subject, 

highest grade of education, SES and the district where the subject lived were included as 

covariates in each model. The term for fuel type-trimester interaction was not significant in 

any of the models and was dropped. The models allowed a general, unstructured within-
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subject variance-covariance matrix to allow for possible correlation and non-constant 

variance among each subject’s repeated measures across the three trimesters. The metabolite 

concentrations were log transformed before inclusion in the models, and concentrations 

below the limits of detection (LOD) were calculated as LOD divided by the square root of 2 

(Hornung and Reed, 1990). Post-hoc pairwise comparisons of the means across fuel types, 

and across trimesters were done using Tukey’s honestly significant difference (HSD) 

procedure (Gravetter and Wallnau, 2008) in order to control for the strong familywise error 

rate.

The overall geometric mean for each creatinine adjusted OH-PAH was calculated based 

upon the fitted linear mixed effect model as follows. The model-based estimated log-

concentration means for each cooking fuel type and trimester combination were obtained 

and then averaged over trimester and cooking fuel type to estimate the overall population 

mean OH-PAH level. This was done by taking an equally weighted average across trimester 

to estimate an average value over the entire course of pregnancy. However, averaging across 

cooking fuel types was done in proportion to the sample frequencies of subjects in each 

cooking fuel category. The resulting average of the log-concentration mean was then 

exponentiated to produce a geometric mean. This procedure is based upon a single model fit 

to data from all subjects, and thus produces covariate adjusted geometric means using all 

available data while avoiding the difficulty of computing separate covariate adjusted means 

from the data within each fuel type group, some of which are too small for group-specific 

analyses. Confidence intervals for the OH-PAH means were obtained by exponentiating the 

endpoints of the corresponding intervals for the averaged log-means.

Partial rank correlation was used to determine whether the first trimester urinary and 

creatinine adjusted OH-PAHs correlated with personal exposure to PM2.5, CO and NO2, 

their indoor and outdoor concentrations, and kitchen and ambient air VOC concentrations, 

and whether the OH-PAHs were correlated with each other. Fuel type, which had a 

significant effect on the concentrations of eight of the 10 metabolites, was controlled for in 

the partial correlation analyses.

3. Results

The 21 women who were recruited for the larger indoor air exposure study but did not 

participate in biomarker study were similar with regards to fuel type and education, but 

tended to be younger (age: 21.6 years; CLs: 18.9–24.4 years) compared to the women who 

were also enrolled in the biomarker study (age: 24.9 years; CLs: 23.3–26.6 years). Of the 79 

women who enrolled, 64 further provided urine samples in the second trimester and 59 in 

the third. All the participants in the study were self-reported non-smokers. The average age 

(mean±SD) of all enrolled women was 26±6 years (range: 14 to 46 years). Most of the 

subjects (59%) used gas or combinations of fuels including gas for cooking, while 35% of 

the women uniquely used wood, kerosene or vegetable coal briquettes (Table 1). A majority 

(84%) of the women cooked at least twice daily with an average (mean±SD) cook time of 

84±45 minn (range: 20 to 240 min). The detection frequency was over 95% except for 4-

hydroxy-phenanthrene (4-PHE) and 3-hydroxy-fluorene (3-FLU) which were detected in 

90% and 88% of the samples respectively.
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There were significant differences between cooking fuel types for creatinine adjusted OH-

PAHs (Table 2). Women using wood or kerosene had significantly higher levels of creatinine 

adjusted 2- and 3-FLU and 1-, 2- and 4-PHE compared to women using gas, coal briquette 

or a combination of fuels. Additionally, the concentrations of creatinine adjusted OH-PAHs 

were significantly higher in subjects who used only wood as their cooking fuel than women 

using only gas, except for 1-hydroxy-naphthalene (1-NAP), or combinations of fuels, except 

for 1-NAP and 9-FLU; while women using only kerosene had significantly higher creatinine 

adjusted OH-PAHs compared to women using only gas except for 1-NAP and 1-PYR. None 

of the creatinine adjusted OH-PAHs were significantly different between women using wood 

and those using kerosene as their cooking fuel. However, only four (5%) subjects in the 

study used kerosene exclusively as their cooking fuel. Creatinine adjusted concentrations of 

2-hydroxy-fluorene (2-FLU), 3-hydroxy-fluorene (3-FLU), 1-hydroxy-phenanthrene (1-

PHE), 2-hydroxy-phenanthrene (2-PHE) and 4-hydroxy-phenanthrene (4-PHE) were 

significantly higher (p<0.05) in women that used wood or kerosene alone compared with 

women who used gas, coal briquette or combinations of fuels for cooking.

There were significant changes and an increase in the creatinine adjusted concentrations of 

9-hydroxy-fluorene (9-FLU), 1-PHE, 2-PHE, 4-PHE and 1-hydroxy-pyrene (1-PYR) across 

the trimesters (Table 3) (p<0.05). The concentrations measured in the third trimester were 

significantly higher than those measured in the first and second trimesters for creatinine 

adjusted 9-FLU and 4-PHE, while they were significantly higher than those measured only 

in the first trimester for creatinine adjusted 1-PHE, 2-PHE and 1-PYR. The creatinine 

adjusted metabolite concentrations were not significantly affected by age, highest level of 

education and SES except for creatinine adjusted 1-PYR which was significantly affected by 

age. The concentrations were also not affected by the frequency of or time spent cooking, 

and this factor was not included in the final statistical models.

The average levels of PM2.5, CO and NO2 at the various locations where they were 

measured during the first trimester are presented in Table 4. Weak positive correlation 

(Spearman correlation coefficient, ρ<0.4; p<0.05) was observed between all first trimester 

creatinine adjusted OH-PAHs and indoor (kitchen and living room), and personal 48-h TWA 

PM2.5. Most of the first trimester creatinine adjusted OH-PAHs were not significantly 

correlated with outdoor PM2.5 (Table 5). There was also moderate correlation (ρ>0.4 

but<0.6; p<0.05) between some of the metabolites in the first trimester and personal 

exposure to CO as indicated by peak exposure to CO. Non-significant correlation was 

observed between the metabolites and indoor, outdoor and personal exposure to NO2. 

Creatinine adjusted OH-PAHs, were highly correlated with each other during each trimester 

(ρ was mostly>0.7; p<0.05). The results for the first trimester are presented in Table 6.

4. Discussion

Biomass smoke contains many hazardous pollutants including PAHs which are produced as 

a result of incomplete combustion. Despite the high prevalence of indoor/residential 

combustion of biomass for cooking and heating in developing countries where inefficient 

stoves are often used, there is limited information about exposure to PAHs in these 

conditions. A few studies have characterized the risk of exposure to PAHs due to residential 
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combustion of different biomass fuels by measuring PAH levels at breathing zone height in 

cooking environments (Bhargava et al., 2004; Hamada et al., 1991; Oanh and Dungs, 1999; 

Pandit et al., 2001) and under experimental conditions (Oanh et al., 2002) and report that 

various PAHs are elevated during the combustion of wood, kerosene, cow dung and coal 

briquette. Results of biomarker studies have shown that people exposed to smoke from 

biomass combustion have elevated levels of hydroxy-substituted PAHs in urine (Cavanagh et 

al., 2007; Kato et al., 2004; Li et al., 2011; Riojas-Rodriguez et al., 2011; Viau et al., 2000), 

and receive a significant PAH exposure from biomass smoke (Li et al., 2011; Riojas-

Rodriguez et al., 2011). Reductions in urinary two- to four-ring OH-PAHs after the 

installation of improved woodstoves ranged from 19% to 52% in women participating in 

woodstove intervention programs in the Santiago de Chuco Province in Peru (Li et al., 

2011), and from 20% to 42% in women participating in a similar program in the state of 

Michoacan in Mexico (Riojas-Rodriguez et al., 2011). In this study, we investigated 

exposure to PAHs among pregnant women who use uniquely one or combinations of fuel 

types for cooking and heating.

The higher levels of creatinine adjusted OH-PAHs of women in this study compared to those 

measured among pregnant women in the US population (Fig. 1) indicate higher levels of 

exposure to PAHs in their environment. Geometric mean creatinine adjusted OH-PAHs for 

all pregnant women in this study was at least 1.3 times higher than those measured in 

pregnant women extracted from the Centers for Disease Prevention and Control’s (CDC) 3rd 

National Health and Nutrition Examination Survey (NHANES) report (NCEH) database, 

and was up to 8 times higher in the case of 1-PYR. The concentration of 1-PYR (800 ng/g 

creatinine; CLs: 474, 1351) in women that reported cooking exclusively with wood alone in 

the study was 12 times higher than for pregnant women in the NHANES database. Although 

indoor exposure to emissions from combustion of biomass fuel may explain some of the 

differences compared to concentrations measured in the US population, it is not certain that 

it is the only contributory factor. Women who used gas alone still had substantially (~5 

times; 324 ng/g creatinine; CLs: 218, 482) higher levels compared to the pregnant women in 

the NHANES study. Other factors such as diet could be important (Falco et al., 2003; 

Scherer et al., 2000). Pregnant women in this study had higher levels of creatinine adjusted 

OH-PAHs compared to levels observed in charcoal workers in Brazil (Kato et al., 2004), but 

are comparable to those observed in non-smoking women in a city in the industrial Ruhr 

Valley in Germany (Gündel et al., 1996). Concentration of creatinine adjusted 1-PYR was 

higher in female cooks who worked in a mill in China and cooked with wood, coal briquette 

or LPG (~2 times higher) (Chen et al., 2007), and in a rural Burundi population exposed to 

indoor biomass smoke mainly from the combustion of wood (~3.5 times higher) (Viau et al., 

2000) compared to the pregnant women in this study. Concentrations of creatinine adjusted 

two- to four ring OH-PAHs (same as measured in this study) were also higher in women 

participating in woodstove intervention programs in the Santiago de Chuco Province in 

Peru: approximately 1.5 to 5 times higher before, and 1.1 to 3.5 times higher after the 

installation of improved woodstoves (Li et al., 2011). Concentrations were higher by similar 

magnitudes in women participating in a woodstove intervention program in Mexico (Riojas-

Rodriguez et al., 2011).
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Creatinine adjusted OH-PAHs were correlated with 48-h TWA indoor and personal exposure 

to PM2.5 measured in the kitchen and the living room, but not ambient air levels measured at 

Trujillo city hall and airport. Some of the metabolites in the first trimester also were 

moderately correlated with peak personal exposure to CO. These significant correlations 

indicate that exposure to PAHs were associated with indoor sources. Contrary to 

expectation, there was no association between concentrations of OH-PAHs and the 

frequency of or time spent cooking. Such associations may have been dampened by other 

factors including the amount of time spent indoors, individual behaviors during cooking, and 

the quality of ventilation in the homes. There was also no association between the PAH 

metabolites and qualitative second hand smoke (SHS) exposure. Only 11% of the 

participants reported that a smoker lived in their homes, however, only two subjects reported 

that the smoker smoked one or more cigarettes per day. Hence, it is assumed that the 

magnitude of SHS exposure is low in our cohort.

The results show that women who used wood or kerosene alone have higher exposure to 

PAHs. The creatinine adjusted OH-PAHs in their urine were higher than those measured in 

women who used gas, coal briquette or a combination of fuels. However, there was no 

difference in metabolite concentrations between women who used wood and those that used 

kerosene. Other factors such as cooking methods, ventilation and the nature of the food 

being cooked could affect the amount of PAHs released during cooking (Chen et al., 2007; 

See et al., 2006; Zhu and Wang, 2003), and these may also partly account for why 

differences were not observed among women who used gas, coal briquette, or a combination 

of fuels.

Significant increases in the concentrations of urinary and creatinine adjusted 9-FLU, 1-PYR 

and the OH-PHEs except 3-PHE were observed from the first trimester to the third trimester. 

Third trimester concentrations for all five metabolites were significantly higher than those 

measured in the first trimester. It is unlikely that weather is responsible for this observation. 

Recruitment for the study and the collection of first trimester urine samples were done 

during the winter season in Trujillo, Peru when biomass combustion is used for heating and 

ventilation is reduced to maximize heat retention. The observed increase may reflect less 

mobility and/or suggest pregnant women spending more time indoors at later stage of 

pregnancy, and/or possibly a change in cooking habits which may enhance PAH emission 

and exposure. It is however difficult to explain this trend or determine if it is truly 

representative of actual exposure across pregnancy stages as only one single urine sample 

per subject was collected per trimester, and no air monitoring took place during the second 

or third trimesters.

The lack of fuel type/trimester interaction suggests a uniform increase in exposure during 

pregnancy across the fuel types. The increase in the metabolite concentrations during 

gestation may reflect an increase in exposure to PAHs, and may be important because of 

evidences that pre-natal exposure to PAH could influence birth outcomes and childhood 

mental development (Choi et al., 2008; Laupeze et al., 2002; Mishra et al., 2004). However, 

a study based on the collection of urine samples throughout the gestation period, and using a 

more effective method such as specific gravity adjustment for adjusting for urine dilution, is 

the only way to verify whether the observed increase represents actual changes in exposure 

Adetona et al. Page 9

Environ Int. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across pregnancy stages. Creatinine adjustment may be inadequate as creatinine excretion is 

known to increase by 30% during the course of pregnancy (Adibi et al., 2008; Williams, 

2005), and could have introduced some errors into the results, especially with regards to the 

changes of creatinine adjusted concentrations of OH-PAHs across the pregnancy trimesters. 

We also observed a non-significant increase of about 15% from the first to the second 

trimester which stabilized in the third trimester in our study subjects. However, creatinine 

adjustment would only have biased the results away from the increase of creatinine adjusted 

OH-PAHs across the trimesters. Expectedly, increases of wet weight OH-PAH 

concentrations (not adjusted for creatinine) across the trimesters were more pronounced than 

those observed for the creatinine adjusted concentrations. The interaction term between fuel 

type and pregnancy trimester was not significant for any of the OH-PAHs indicating 

consistently higher levels across trimesters of hydroxyl substituted phenanthrene and pyrene, 

2-FLU and 3-FLU in women cooking with wood compared with those cooking with gas, 

coal briquette or a combination of fuels.

Other limitations of the study included the small number of subjects per fuel type 

investigated that were further decreased by subjects who did not complete the 3rd trimester 

urine collection (n=20). This may have reduced the ability to detect differences between fuel 

types and across trimester for some of the metabolites, and also the ability to determine the 

interaction between these two factors. Only one spot urine sample per trimester per subject 

was used to estimate OH-PAH concentrations in this study. Therefore, exposure 

misclassification could have occurred due to the relatively high intra-individual variability 

(time-to-time within-person variation) that is associated with creatinine adjusted OH-PAHs 

concentrations in urine, which could be due to exposures to different sources of PAHs (Li et 

al., 2010). Although possible confounding factors such as cooking methods and the nature of 

the food being cooked were not taken into consideration, the sample was culturally 

homogenous. Difference in socioeconomic status was small and was adjusted for in the 

statistical models. Indoor and outdoor air and personal exposure monitoring and collection 

of questionnaire data were only done once during the first trimester when there was adequate 

number of researchers in the field. No measurement of ambient and/or personal PAH 

exposure was done in this study, and comparisons could only be made with related 

environmental markers but not the pollutants which are direct precursors of OH-PAHs. 

Measurement of ambient and personal PAH exposure in future studies would improve the 

characterization of the major sources contributing to PAH exposure in pregnant women.

5. Conclusion

In conclusion, women in this study had elevated levels of creatinine adjusted OH-PAHs in 

their urine compared to pregnant women in the 3rd National Health and Nutrition 

Examination Survey in the United States. We found that concentrations of creatinine 

adjusted OH-PAH levels measured in pregnant women in Peru were significantly affected by 

the type of fuel they used for cooking. Women who cooked exclusively with wood seemed 

to have higher exposures to PAHs, as they also had higher concentrations of creatinine 

adjusted OH-PAHs compared with women who cooked with gas, coal briquette or a 

combination of fuels. Creatinine adjusted 9-FLU, 1-, 2-, and 4-PHE, and 1-PYR increased 

significantly from the first to the third trimester. While a real change across trimester in 
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exposure to polycyclic aromatic hydrocarbon may be important for the developing fetus, and 

reflect changes in the behavior and cooking habits of the mother during pregnancy, results in 

this study could have been affected by changes in creatinine excretion that normally occur 

during pregnancy.
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Fig. 1. 
Comparison of geometric mean creatinine adjusted OH-PAHs in pregnant women in Trujillo 

Peru with pregnant women in the 3rd United States National Health and Nutrition 

Examination Survey (NHANES) Report.
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Table 1

Number and percentage of subjects stratified by demographic sub-categories. The average age was 26±6 years 

(range: 14–46).

Demographic N (%)

Highest education obtained

 Primary 16 (20)

 Secondary 46 (58)

 Superior 17 (22)

Fuel type used for cooking

 Gas 27 (34.1)

 Wood 12 (15.2)

 Kerosene 4 (5.1)

 Coal briquette 11 (13.9)

 Combo with gas 19 (24.0)

 Combo without gas 4 (5.1)

 Electric 1 (1.3)

 Unknown 1 (1.3)

Socioeconomic status

 Poor 50 (63)

 Middle 27 (34)

 Affluent 2 (3)

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 16

Ta
b

le
 2

G
eo

m
et

ri
c 

m
ea

n 
cr

ea
tin

in
e 

ad
ju

st
ed

 h
yd

ro
xy

l-
PA

H
 c

on
ce

nt
ra

tio
ns

 (
ng

/g
 c

re
at

in
in

e)
 b

y 
fu

el
 ty

pe
 a

dj
us

te
d 

fo
r 

ag
e 

of
 th

e 
su

bj
ec

t, 
hi

gh
es

t g
ra

de
 o

f 

ed
uc

at
io

n,
 S

E
S 

an
d 

th
e 

di
st

ri
ct

 w
he

re
 th

e 
su

bj
ec

t l
iv

ed
 a

nd
 tr

im
es

te
r.

F
ue

l
1-

N
A

P
2-

N
A

P
a

2-
F

L
U

b
3-

F
L

U
b

9-
F

L
U

c
1-

P
H

E
b

2-
P

H
E

b
3-

P
H

E
d

4-
P

H
E

b
1-

P
Y

R
e

W
oo

d
88

41
80

68
91

9
22

8
18

97
12

36
46

6
42

6
23

9
80

0

U
C

L
1

17
59

4
14

08
4

14
27

38
1

30
08

18
42

73
1

65
6

39
2

13
51

L
C

L
2

44
43

46
22

59
2

13
6

11
96

82
9

29
6

27
6

14
6

47
4

K
er

os
en

e
73

89
75

76
10

56
18

4
28

74
15

82
57

5
42

8
29

6
62

6

U
C

L
18

53
5

15
79

9
18

82
36

4
52

88
26

69
10

41
75

4
56

8
12

49

L
C

L
29

46
36

33
59

3
93

15
62

93
8

31
8

24
2

15
4

31
3

Fu
el

 c
om

bi
na

tio
n 

w
ith

 g
as

62
75

55
12

54
2

13
7

13
55

73
7

29
0

26
0

13
1

47
6

U
C

L
11

70
1

92
17

81
6

22
1

20
70

10
68

44
0

38
8

20
5

76
6

L
C

L
33

66
32

96
36

1
85

88
7

50
9

19
1

17
4

83
29

5

Fu
el

 C
om

bi
na

tio
n 

w
ith

ou
t g

as
24

41
37

78
44

6
75

11
42

59
9

25
6

17
6

10
9

28
2

U
C

L
67

39
84

96
84

3
15

8
22

37
10

66
49

3
32

9
22

3
60

5

L
C

L
88

4
16

80
23

6
35

58
3

33
6

13
3

94
53

13
1

G
as

48
64

33
07

40
7

10
1

97
3

53
7

23
4

18
9

11
1

32
4

U
C

L
82

12
50

52
57

0
14

9
13

83
72

8
33

0
26

2
16

1
48

2

L
C

L
28

81
21

65
29

1
68

68
4

39
7

16
6

13
6

76
21

8

C
oa

l b
ri

qu
et

te
44

12
37

85
53

2
11

9
13

73
77

7
28

2
23

6
14

2
47

7

U
C

L
90

03
67

50
84

0
20

3
22

16
11

76
45

1
37

0
23

7
81

9

L
C

L
21

62
21

22
33

7
70

85
0

51
3

17
6

15
0

85
27

8

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 d
if

fe
re

nc
es

 a
t p

=
0.

05
 a

re
 le

tte
re

d.

1 L
C

L
: l

ow
er

 c
on

fi
de

nc
e 

lim
it.

2 U
C

L
 —

 u
pp

er
 c

on
fi

de
nc

e 
lim

it.

a co
nc

en
tr

at
io

ns
 in

 w
oo

d 
si

gn
if

ic
an

tly
 h

ig
he

r 
th

an
 o

nl
y 

ga
s,

 c
oa

l b
ri

qu
et

te
 a

nd
 c

om
bo

 w
ith

ou
t g

as
; a

nd
 k

er
os

en
e 

gr
ou

p 
si

gn
if

ic
an

tly
 h

ig
he

r 
th

an
 o

nl
y 

ga
s.

b co
nc

en
tr

at
io

ns
 in

 k
er

os
en

e 
an

d 
w

oo
d 

gr
ou

ps
 s

ig
ni

fi
ca

nt
ly

 h
ig

he
r 

th
an

 a
ll 

ot
he

r 
gr

ou
ps

.

c co
nc

en
tr

at
io

n 
in

 w
oo

d 
gr

ou
p 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 o
nl

y 
ga

s 
gr

ou
p;

 a
nd

 k
er

os
en

e 
gr

ou
p 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 a
ll 

ot
he

r 
gr

ou
ps

 e
xc

ep
t w

oo
d 

gr
ou

p.

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 17
d co

nc
en

tr
at

io
ns

 in
 w

oo
d 

gr
ou

p 
si

gn
if

ic
an

tly
 h

ig
he

r 
th

an
 a

ll 
ot

he
r 

gr
ou

ps
 b

ut
 n

ot
 d

if
fe

re
nt

 f
ro

m
 k

er
os

en
e 

gr
ou

p;
 b

ut
 k

er
os

en
e 

gr
ou

p 
si

gn
if

ic
an

tly
 h

ig
he

r 
th

an
 o

nl
y 

ga
s,

 c
oa

l b
ri

qu
et

te
 a

nd
 c

om
bo

 w
ith

ou
t g

as
 

an
d 

no
t c

om
bo

 w
ith

 g
as

.

e co
nc

en
tr

at
io

ns
 in

 w
oo

d 
gr

ou
p 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 a
ll 

ot
he

r 
gr

ou
ps

 e
xc

ep
t k

er
os

en
e 

gr
ou

p;
 b

ut
 k

er
os

en
e 

no
t s

ig
ni

fi
ca

nt
ly

 h
ig

he
r 

th
an

 a
ny

 o
th

er
 g

ro
up

.

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 18

Ta
b

le
 3

G
eo

m
et

ri
c 

m
ea

n 
cr

ea
tin

in
e 

ad
ju

st
ed

 h
yd

ro
xy

l-
PA

H
 c

on
ce

nt
ra

tio
ns

 (
ng

/g
 c

re
at

in
in

e)
 b

y 
tr

im
es

te
r 

ad
ju

st
ed

 f
or

 a
ge

 o
f 

th
e 

su
bj

ec
t, 

hi
gh

es
t g

ra
de

 o
f 

ed
uc

at
io

n,
 S

E
S 

an
d 

th
e 

di
st

ri
ct

 w
he

re
 th

e 
su

bj
ec

t l
iv

ed
 a

nd
 f

ue
l t

yp
e.

T
ri

m
es

te
r

1-
N

A
P

2-
N

A
P

2-
F

L
U

3-
F

L
U

9-
F

L
U

a,
c

1-
P

H
E

a
2-

P
H

E
a

3-
P

H
E

4-
P

H
E

a,
c

1-
P

Y
R

a,
b

Fi
rs

t
55

56
49

61
64

3
14

6
13

38
73

0
28

4
27

1
13

3
38

1

U
C

L
1

98
83

80
27

94
3

22
8

19
84

10
38

42
0

39
6

20
3

59
3

L
C

L
2

31
24

30
66

43
8

94
90

2
51

4
19

2
18

6
87

24
5

Se
co

nd
48

45
49

12
58

9
13

5
13

87
82

4
31

6
25

6
15

3
46

9

U
C

L
85

26
77

83
84

5
20

6
20

31
11

40
45

9
36

6
22

9
71

8

L
C

L
27

53
31

00
41

0
88

94
7

59
5

21
8

18
0

10
2

30
6

T
hi

rd
54

44
51

80
59

6
11

5
18

09
99

8
40

3
27

6
19

6
57

0

U
C

L
97

03
83

78
88

1
18

0
26

88
14

17
59

7
40

4
30

0
89

0

L
C

L
30

54
32

02
40

4
73

12
18

70
3

27
3

18
9

12
8

36
5

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 d
if

fe
re

nc
es

 a
t p

=
0.

05
 a

re
 le

tte
re

d.

a th
ir

d 
tr

im
es

te
r 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 f
ir

st
 tr

im
es

te
r.

b se
co

nd
 tr

im
es

te
r 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 f
ir

st
 tr

im
es

te
r.

c th
ir

d 
tr

im
es

te
r 

si
gn

if
ic

an
tly

 h
ig

he
r 

th
an

 s
ec

on
d 

tr
im

es
te

r.

1 L
C

L
: l

ow
er

 c
on

fi
de

nc
e 

lim
it.

2 U
C

L
 —

 u
pp

er
 c

on
fi

de
nc

e 
lim

it.

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 19

Ta
b

le
 4

K
itc

he
n 

an
d 

liv
in

g 
ro

om
 c

on
ce

nt
ra

tio
ns

 a
nd

 p
er

so
na

l e
xp

os
ur

es
 to

 C
O

, N
O

2 
an

d 
PM

2.
5.

P
ol

lu
ta

nt
Sa

m
pl

in
g

N
A

ve
ra

ge
St

an
da

rd
 d

ev
ia

ti
on

M
in

M
ax

C
O

 (
48

 h
) 

(p
pm

)
K

itc
he

n
95

3.
4

6.
7

0.
0

46
.9

Pe
rs

on
al

98
1.

1
1.

7
0.

0
8.

0

L
iv

in
g 

R
oo

m
90

0.
6

1.
3

0.
0

6.
5

N
O

2 
(4

8 
h)

 (
pp

b)
K

itc
he

n
93

18
.4

17
.5

0.
0

91
.3

Pe
rs

on
al

92
10

.4
8.

8
0.

0
48

.1

L
iv

in
g 

R
oo

m
88

9.
4

8.
6

0.
0

45
.7

C
ity

 H
al

l
52

.7
.9

5.
1

1.
7

21
.0

A
ir

po
rt

52
2.

8
2.

4
0.

5
8.

2

PM
2.

5 
(4

8 
h)

 (
μg

/m
3 )

K
itc

he
n

97
92

.1
11

8.
8

1.
4

66
5.

2

Pe
rs

on
al

93
12

2.
8

13
5.

2
6.

3
11

01
.5

L
iv

in
g 

R
oo

m
88

48
.2

44
.6

1.
0

41
4.

8

C
ity

 H
al

l
52

29
.3

9.
1

15
.5

50
.2

A
ir

po
rt

49
27

.0
12

.0
5.

5
64

.9

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 20

Ta
b

le
 5

Sp
ea

rm
an

 c
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 b
et

w
ee

n 
fi

rs
t t

ri
m

es
te

r 
cr

ea
tin

in
e 

ad
ju

st
ed

 h
yd

ro
xy

-P
A

H
 c

on
ce

nt
ra

tio
n 

an
d 

PM
2.

5 
48

 h
 ti

m
e 

w
ei

gh
ed

 a
ve

ra
ge

 (
μg

/m
3 )

 

an
d 

ca
rb

on
 m

on
ox

id
e 

48
 h

 ti
m

e 
w

ei
gh

ed
 a

ve
ra

ge
 a

nd
 m

ax
im

um
 c

on
ce

nt
ra

tio
n 

(p
pm

).

C
om

po
un

d
1-

N
A

P
2-

N
A

P
2-

F
L

U
3-

F
L

U
9-

F
L

U
1-

P
H

E
2-

P
H

E
3-

P
H

E
4-

P
H

E
1-

P
Y

R

Pa
rt

ic
ul

at
e 

m
at

te
r <

2.
5 

μ 
(P

M
2.

5)
 (μ

g/
m

3 )

K
itc

he
n1

0.
11

0.
22

0.
32

0.
29

0.
32

0.
28

0.
39

0.
31

0.
32

0.
30

L
iv

in
g 

ro
om

1
0.

17
0.

30
0.

35
0.

30
0.

40
0.

31
0.

46
0.

36
0.

40
0.

36

Pe
rs

on
al

1
0.

27
0.

28
0.

31
0.

34
0.

35
0.

27
0.

34
0.

33
0.

31
0.

40

C
ity

 H
al

l1
0.

11
0.

17
0.

15
0.

14
0.

23
0.

08
0.

15
0.

14
0.

12
0.

14

T
ru

jil
lo

 A
ir

po
rt

1
0.

03
0.

26
0.

16
0.

08
0.

19
0.

06
0.

21
0.

18
0.

15
0.

16

C
ar

bo
n 

m
on

ox
id

e 
(C

O
) (

pp
m

)

K
itc

he
n1

0.
14

0.
04

0.
21

0.
21

0.
16

0.
26

0.
26

0.
19

0.
25

0.
21

K
itc

he
n2

0.
11

0.
06

0.
29

0.
31

0.
16

0.
30

0.
31

0.
30

0.
30

0.
31

L
iv

in
g 

ro
om

1
0.

01
0.

03
0.

11
0.

07
0.

22
0.

17
0.

18
0.

16
0.

17
0.

16

L
iv

in
g 

ro
om

2
−

0.
00

0.
01

0.
05

0.
01

0.
17

0.
12

0.
13

0.
10

0.
13

0.
14

Pe
rs

on
al

1
−

0.
04

0.
05

0.
31

0.
20

0.
30

0.
21

0.
26

0.
21

0.
25

0.
15

Pe
rs

on
al

2
0.

25
0.

32
0.

51
0.

50
0.

48
0.

46
0.

48
0.

46
0.

46
0.

36

C
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 th
at

 a
re

 s
ig

ni
fi

ca
nt

 a
t p

=
0.

05
 a

nd
 a

re
 in

 b
ol

d 
fo

nt
s 

an
d 

th
os

e 
si

gn
if

ic
an

t a
t p

=
0.

1 
(p

>
0.

05
 a

nd
 <

0.
1)

 a
re

 in
 b

ol
d 

ita
lic

iz
ed

 f
on

ts
.

1 48
 h

 ti
m

e 
w

ei
gh

te
d 

av
er

ag
e 

co
nc

en
tr

at
io

n 
of

 P
M

2.
5 

or
 C

O
 in

 k
itc

he
n,

 li
vi

ng
 r

oo
m

, a
t c

ity
 h

al
l, 

T
ru

jil
lo

 A
ir

po
rt

, a
nd

 4
8 

h 
tim

e 
w

ei
gh

te
d 

av
er

ag
e 

pe
rs

on
al

 e
xp

os
ur

e 
to

 p
ol

lu
ta

nt
.

2 M
ax

im
um

 r
ea

l t
im

e 
C

O
 c

on
ce

nt
ra

tio
ns

 in
 th

e 
ki

tc
he

n,
 li

vi
ng

 r
oo

m
, a

nd
 m

ax
im

um
 r

ea
l t

im
e 

pe
rs

on
al

 e
xp

os
ur

e 
to

 C
O

.

Environ Int. Author manuscript; available in PMC 2016 November 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adetona et al. Page 21

Ta
b

le
 6

C
or

re
la

tio
n 

be
tw

ee
n 

cr
ea

tin
in

e 
ad

ju
st

ed
 h

yd
ro

xy
-P

A
H

s 
du

ri
ng

 th
e 

fi
rs

t t
ri

m
es

te
r.

1-
N

A
P

2-
N

A
P

2-
F

L
U

3-
F

L
U

9-
F

L
U

1-
P

H
E

2-
P

H
E

3-
P

H
E

4-
P

H
E

1-
P

Y
R

1-
N

A
P

1.
00

0.
68

0.
70

0.
67

0.
62

0.
60

0.
58

0.
61

0.
61

0.
55

2-
N

A
P

1.
00

0.
69

0.
64

0.
64

0.
66

0.
65

0.
64

0.
65

0.
55

2-
FL

U
1.

00
0.

90
0.

84
0.

88
0.

90
0.

92
0.

87
0.

80

3-
FL

U
1.

00
0.

70
0.

82
0.

81
0.

90
0.

79
0.

83

9-
FL

U
1.

00
0.

82
0.

90
0.

84
0.

90
0.

76

1-
PH

E
1.

00
0.

89
0.

89
0.

86
0.

82

2-
PH

E
1.

00
0.

94
0.

94
0.

85

3-
PH

E
1.

00
0.

90
0.

89

4-
PH

E
1.

00
0.

81

1-
PY

R
1.

00

A
ll 

co
rr

el
at

io
n 

co
ef

fi
ci

en
ts

 a
re

 s
ig

ni
fi

ca
nt

 a
t p

=
0.

05
 a

nd
 a

re
 in

 b
ol

d 
fo

nt
s.

Environ Int. Author manuscript; available in PMC 2016 November 30.


	Abstract
	1. Introduction
	2. Material and methods
	2.1. Study location and subject recruitment
	2.2. Questionnaire
	2.3. Urine sample collection
	2.4. Air pollution exposure monitoring
	2.4.1. Personal exposure monitoring
	2.4.2. Indoor and ambient air monitoring

	2.5. Hydroxy-PAH analyses
	2.6. Statistical analyses

	3. Results
	4. Discussion
	5. Conclusion
	References
	Fig. 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

