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Abstract

Purpose of Review—A vaccine that elicits antibody responses that can neutralize the diversity 

of HIV clades has not yet been achieved, and is a major focus of HIV vaccine research. Here we 

provide an update on the barriers to eliciting such antibodies, and how advances in immunogen 

design may circumvent these roadblocks, focusing on data published in the last year.

Recent findings—Studies of how broadly neutralizing antibodies (bNAbs) develop in HIV-

infected donors continue to produce key insights, suggesting that for some viral targets there are 

common pathways to developing breadth. Germline-targeting strategies, that aim to recruit rare 

precursors of bNAbs, have shown promise in immunogenicity studies, and structural biology has 

led to advances in immunogen design. Mapping of strain-specific Tier-2 vaccine responses has 

highlighted the challenges that remain in driving antibodies towards breadth.

Summary—Elucidation of the HIV envelope structure, together with an understanding of how 

bNAbs emerge in vivo has guided the design of new immunogens and vaccine strategies that show 

promise for eliciting protective antibodies.
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INTRODUCTION

HIV-1 is one of the most variable and glycosylated viruses known, making it an especially 

challenging target for neutralizing antibodies. While almost all infected people develop 
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antibodies to the HIV envelope which have some cross-neutralizing activity (1), only about 

20-30% of people develop responses that are considered truly broadly neutralizing (2-5). 

Furthermore, it generally takes years of infection for these broadly neutralizing antibodies 

(bNAbs) to evolve, and they often have unusual features not favored by the immune system, 

including extensive somatic hypermutation (SHM), very long or short CDRs, and 

autoreactivity (6). This suggests difficult pathways to developing bNAbs naturally, even in 

the context of ongoing viral replication, and poses challenges to their elicitation by 

vaccination.

Despite this, there is strong rationale for pursuing bNAbs to prevent HIV infection. Passive 

immunization of bNAbs has long been known to protect non-human primates from infection 

(reviewed in (6)). Indeed, a recent study shows that a single injection of bNAbs protects 

against repeated exposure for up to 23 weeks (7). Furthermore, much of the accessible part 

of the HIV trimer is now known to be vulnerable to bNAbs (8). These conserved epitopes 

include the V2 site, the N332 glycan supersite, the membrane proximal external region 

(MPER), the CD4 binding site (CD4bs), and the gp120-gp41 interface, most recently shown 

to include the fusion peptide (9). Elucidation of the native envelope trimer structure (10-16), 

and of how bNAbs emerge in vivo, has informed the design of new immunogens and vaccine 

strategies. Some of these immunogens have been tested in non-human primates with 

promising results, however none have yet broken the barrier to achieving neutralization 

breadth. This review will cover recent studies that have provided insights into how to 

overcome these viral and host barriers, and the latest thinking in immunogen design.

VIRUS-ANTIBODY CO-EVOLUTIONARY STUDIES PROVIDE A MODEL FOR 

BREADTH

The high levels of SHM of many HIV bNAbs suggest a long co-evolutionary trajectory, 

requiring variation in both the virus and the antibody. Indeed, two recent studies showed that 

bNAb lineages evolve at least as fast as HIV, particularly at the early stages of their 

development, though these rates later decline (17, 18). Though selection and mutability 

account for some of this decrease (18), the role of viral escape in limiting antibody 

maturation remains understudied. Nonetheless, this incredibly rapid host evolution provides 

a mechanism for the extraordinary diversity achieved within long-lived bNAb lineages (17).

A key event in the development of breadth is the viral diversification that precedes bNAb 

emergence (19-21). A detailed study of the V2-targeting CAP256-VRC26 lineage provided 

a mechanism for how this diversification contributed to breadth, showing that as the 

antibody lineage matured, some members learned to tolerate diversity that had been created 

by viral mutations at key sites in the epitope (22). In contrast, “dead-end” antibodies that 

were unable to tolerate diversity failed to mature, while other “off-track” antibodies matured, 

though not towards breadth (22). In that study, virus mutations occurred through escape from 

earlier members of the same lineage, but another explanation for increased viral diversity has 

come from studies of “co-operating antibody lineages” within single individuals (23, 24). 

This was first shown in donor CH505, where the CH235 CD4bs lineage drove escape 

mutations that enhanced neutralization by a second CD4bs lineage, CH103, resulting in 
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breadth. A fascinating follow-up study showed that ultimately the CH235 lineage acquired 

even greater breadth, highlighting the role of two distinct antibody lineages in curtailing the 

ability of the virus to completely escape either, and providing continued stimulation of both 

bNAbs. Intriguingly, a recent observation of enhanced breadth following passive 

administration of another CD4bs bNAb, 3BNC117 might suggest a passively administered 

antibody serving the same role as a co-operating lineage (25), though this needs further 

study.

These studies of infection provide mechanistic insights into how breadth develops and are 

the basis of sequential, B-cell lineage based, immunization strategies that have gained wide 

support (reviewed in (26)). This approach seeks to mimic aspects of the viral evolutionary 

processes using immunogens that gradually incorporate mutations to drive antibody 

tolerance of diversity and promote increased breadth. This is supported by modeling (27) 

and by recent data showing maturation towards breadth in knock-in mice expressing 

germline reverted N332-dependent PGT121 antibodies (Escolano et al, Keystone, 2016). 

This important proof-of-concept study suggests that if the right antibody precursor is 

activated, breadth can be nurtured.

PREDICTABLE PATHWAYS OF BNAB DEVELOPMENT

Studies of bNAb evolution suggest that there are similar B cell ontogenies and antibody 

structures between donors, which is encouraging for vaccine design. This is particularly true 

of CD4bs antibodies, and includes both CDR H3-restricted and VH-gene restricted 

(commonly referred to as VRC01-like) CD4bs antibodies (24, 28-30). A study of 14 donors 

showed that the 2 classes of antibodies had distinct ontogenies, but both could neutralize 

highly effectively (with using one of two optimal angles of approach) despite recognizing 

very different paratopes. For both types of CD4bs bNAbs, the precision of the angle of 

approach correlated with breadth. However, a longitudinal study of the CH235 CD4bs VH-

restricted lineage found that although early antibodies had a nearly perfect angle of 

approach, significant affinity maturation was required for breadth. Structural studies of 

VRC01-like antibodies showed that affinity maturation correlated with increased flexibility 

in an induced-fit mechanism of binding (31), perhaps to accommodate variable HIV epitopes 

and glycans. Studies of the antibody genes during maturation showed that for VH-restricted 

bNAbs, common mutations were acquired during the course of SHM, suggesting a shared 

evolutionary pathway (24). The observation that these mutations were also seen in HIV-

uninfected individuals suggests that the SHM required for breadth is largely a consequence 

of “intrinsic mutability” at specific sites within the VH1-2 and VH1-46 genes commonly 

used by CD4bs antibodies. Similar observations from influenza studies may suggest that this 

is a broad contributor to affinity maturation (32).

V2-targeting bNAbs also share structural and developmental commonalities. These 

antibodies are characterized by a long CDRH3 that is highly anionic and tyrosine sulphated 

(20). Comparison of the atomic level interactions of antibodies from 4 donors showed 

similarities in strand-strand protein recognition and quaternary interactions with glycans 

suggesting a common mode of interaction, though subtle differences in precise targeting 

were noted. An important D-gene encoded YYD motif in the long CDRH3 that characterizes 
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this class of bNAb has a variable role in V2 binding (33, 34), which may suggest that the 

conservation of this motif can be attributed more to the preferred anionic nature of the 

paratope, and the enrichment of this motif among germline genes with long CDRH3s (33). 

Comparison of the ontogenies of V2 antibodies also suggests some common features, with 

the long CDRH3 of such antibodies established at the recombination stage, and showing 

partial glycan recognition early in the developmental pathway (33). Intriguingly, V2 

antibodies PG9 and CAP256-VRC26 from unrelated donors were derived from similar 

germline genes (99% identity) (34). Furthermore, as with the CD4bs antibodies certain 

mutations were shared between lineages, suggesting common pathways of maturation. 

Along with the association of longer CDRH3s with certain germlines (35), this suggests that 

some antibody genes may be more amenable to development of V2 specificities than others. 

Overall, in both CD4bs and V2 bNAbs, common developmental pathways may provide 

roadmaps for vaccination, discussed below.

ENGAGING GERMLINES - HOW TO KICK START BNABS THROUGH 

VACCINATION

A major barrier for vaccine design is the fact that the many germline-reverted bNAbs fail to 

bind recombinant envelope (29, 36-40). These findings, along with the rare nature of the B 

cells that need to be targeted (35, 41), and the ontogenic similarities described above, have 

led to the design of immunogens specifically engineered to stimulate precursors by 

vaccination. This is most advanced for CD4bs antibodies, described below. However, for V2 

bNAbs, potential “bNAb-initiating envelopes” have recently been identified through 

longitudinal studies of infected subjects (22), or by large scale screening of germline-

reverted bNAbs against diverse viruses (33, 34). Viral strains with enhanced reactivity for 

V2-bNAb precursors have been incorporated into novel immunogens (33), and provide an 

opportunity to extend germline-targeting to V2 antibodies.

Antigens designed to bind to the germline precursors of VRC01 class antibodies have 

recently been tested in knock-in mouse models, providing convincing data in support of this 

concept. Immunization of mice expressing germline reverted VRC01 or 3BNC60 heavy 

chains with germline-targeting immunogens (called eOD8-GT8) selected for B cells with 5 

amino acid long CDRL3s characteristic of VRC01 class antibodies (42, 43). In contrast 

native Env failed to activate these naïve B cells, even in this model where precursors are 

highly enriched, supporting the germline-targeting model (42). Furthermore, direct probing 

of the human immune repertoire for eOD8-GT8 reactive B cells confirmed that despite their 

generally rare nature, in the context of >1011 B cells per person, such VRC01-class 

precursors are likely to be present at sufficient frequency to be reliably elicited in most 

people (41).

Recruitment of these rare B cells, while alleviating a key roadblock, is however not 

sufficient if they do not acquire enough productive mutations to become reactive to 

immunogens that better represent circulating viruses (Figure 1). Fortunately, although these 

vaccine elicited germline-derived antibodies did not neutralize HIV-1 (42, 43), some 

acquired mutations shared with the mature VRC01, enabling them to bind a second more 
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native-like boosting immunogen (43). However, this boosting immunogen, like eOD-GT8, 

lacked the N276 glycan, conserved in ~95% of viruses. Inclusion of this glycan in the 

following boosting immunogens will be crucial for neutralization (see below). Indeed, in 

knock-in mice expressing the mature 3BNC60 heavy chains, immunization with eOD-GT8 

and BG505-SOSIP both elicited antigen specific B cells but only the trimer elicited 

neutralizing antibodies (42). These elegant studies have therefore provided the first stage in 

an immunization strategy, but clearly highlight the need for boosting with more native-like 

immunogens.

ENGINEERING AND TESTING NEXT-GENERATION TRIMERIC ENV 

IMMUNOGENS

The structural characterization of the envelope trimer (10, 11), and the development of 

native-like trimer immunogens has been a major step forward. The best described structure 

is the BG505 SOSIP.664 Env which is stabilized using disulphide bonds (SOS) to link 

gp120 and gp41 (which is truncated at position 664 to delete the transmembrane domain), 

and a I558P mutation that stabilizes the gp41 ectodomain. This protein is a good 

representation of the envelope trimer, displaying bNAb epitopes (except the deleted MPER 

region), while largely shielding the normally occluded epitopes recognized by non-

neutralizing antibodies. Structural studies have also defined the glycan shield in the trimeric 

context, providing our first insights into glycan conservation, processing and the glycan-

glycan interactions that shield the Env from many antibodies (44-46). Notably, uncleaved 

and monomeric gp120 contains more complex glycans than trimer, perhaps a consequence 

of reduced steric constraints on glycan processing enzymes, further highlighting the 

importance of trimeric immunogens (45-47).

The immunogenicity of these stabilized trimers has been assessed in rabbits, and elicited 

antibodies able to neutralize the autologous Tier-2 (neutralization resistant) virus, though 

strong V3 responses able to neutralize Tier-1 viruses (i.e. viruses with unusual neutralization 

sensitivity, due to a more open conformation) were also elicited (48). Similar, though 

weaker, responses were observed in macaques. As the elicitation of non-neutralizing 

responses may decoy the immune response away from the bNAb epitopes, a further 

stabilized trimer (SOSIP.v4 trimer) was engineered to skew the intrinsic “breathing” of the 

Env towards a more closed conformation, as in Tier-2 viruses. This next generation trimer 

had reduced exposure and therefore immunogenicity of the V3 and CD4i epitopes (49). 

These stabilized trimers are being extended to include additional envelopes from multiple 

subtypes, purification approaches and platforms such as liposomal vehicles to block the 

unglycosylated underside of the trimer that is only exposed, and immunogenic in soluble 

trimers (49-54). The consistent, albeit low neutralizing responses elicited by these trimers is 

a step forward as inducing Tier-2 responses by vaccination is rare, and while this is not a 

“home run”, it forms a base from which to build vaccine strategies that elicit bNAbs.

Promising alternative approaches to the design of stabilized Env trimers include cleavage 

independent native flexibly linked (NFL) or single-chain (SC) trimers (containing flexible 

glycine-serine linkers that replace the furin-dependent cleavage site) (55, 56) and the use of 
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trimer-enriched virus-like particles (which have the advantage of presenting trimers within a 

native-like lipid membrane) (57). Indeed the latter approach has shown potential in small 

animal immunogenicity experiments, also eliciting Tier-2 neutralizing responses.

ELICITING TIER-2 NEUTRALIZATION IS LIKELY NECESSARY BUT NOT 

SUFFICIENT FOR BNAB INDUCTION

Most immunogens elicit antibodies able to neutralize Tier-1 viruses, but these do not 

correlate with more relevant Tier-2 responses (48), and the targets are generally different. It 

is thus unlikely that a Tier-1 response can be matured to a Tier-2 response, and indeed the 

vaccine field is re-evaluating the utility of measuring Tier-1 responses. Strain-specific Tier-2 

neutralizing responses, which develop in all infected people, may have greater potential to 

be driven towards breadth, but in the context of infection only a minority do so (58). Pushing 

strain-specific Tier-2 responses towards breadth is the next challenge in the vaccine field, 

and requires understanding the targets of these responses compared to bNAbs, and 

incorporating diversity into immunogens, to shape maturation of breadth.

Mapping the targets of vaccine-elicited Tier-2 antibodies is providing useful insights. In a 

study using a cocktail of gp140 trimers from donor CAP206, a subject with anti-MPER 

bNAbs, Tier-2 antibodies were elicited in some macaques (though not to the MPER) and 

interestingly overlapped with the Tier-2 neutralizing responses seen in the human donor 

(suggesting common viral determinants of these specificities). However these bound an 

unusual “glycan hole” in V5 and loop E, and structural analyses suggested they were 

unlikely to mature towards breadth (59). Targeting of these “glycan holes” (regions of the 

underlying Env protein exposed through deletion of normally conserved glycans) occurs 

often in infection (58, 60, 61), and is an emerging theme in vaccination. Trimer-enriched 

virus-like particles also elicited Tier-2 neutralizing antibodies that targeted a hole in the 

“glycan fence” that normally surrounds the CD4bs, through a deleted N197 glycan (57). 

Similarly, rabbits immunized with the BG505 SOSIP, which lacks the glycan at position 

N241 targeted this glycan hole (Burton et al, Keystone, 2016). This has been interpreted as 

meaning that immunogen design might benefit from glycan deletion to expose underlying 

vulnerabilities (57, 62), in the same way that the CD4bs germline-targeting immunogens 

lack the conserved N267 glycan. However as these missing glycans are often present on 

circulating viruses, its not clear how (or whether) these Tier-2 neutralizing antibodies can be 

“educated” into neutralizing viruses that do contain these normally conserved glycans, 

perhaps by sequential addition of more native “elements” into boosting immunogens. This is 

likely to be a major focus in the near future.

CONCLUSION

We now have a roadmap defining the steps needed to recruit rare bNAb precursors, and 

achieve neutralization breadth using immunogens that can drive antibody tolerance of 

diversity and of glycans (Table 1). However, the long-lived evolution seen in naturally 

occurring bNAb lineages (17, 20, 24) suggests that retention of mutating B cells within 

germinal centers might need equally long-lived antigenic stimulation, perhaps in the form of 

replicating vectors. In addition, supporting a permissive environment for long-term bNAb 
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development in germinal centers will be crucial, as it is during infection (3, 63-65). The 

frequent deletion of autoreactive bNAb precursors (recapitulated experimentally in knock–in 

mice (66)) may suggest an unprecedented need to transiently lower immune tolerance 

controls during vaccination (26). Human immunogenicity studies using immunogens 

described above are likely to start in the next year, and will provide key data for the field. 

Overall, the major advances made over the last year have taken the HIV vaccine field closer 

than ever before to an HIV vaccine able to elicit broadly neutralizing antibodies.
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KEY POINTS

• Studies of antibody virus co-evolution continue to provide important 

insights into how neutralization breadth develops

• Common developmental pathways exist for some classes of broadly 

neutralizing antibodies

• Proof-of-concept studies provide strong support for germline-targeting 

immunogens having the potential to activate rare precursors of broadly 

neutralizing antibodies

• Advances in our understanding of the HIV envelope structure continue 

to improve trimeric immunogen design

• Elicitation of Tier-2 neutralizing antibodies is likely necessary but not 

sufficient for breadth, with mapping studies highlighting challenges in 

eliciting breadth
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Figure 1. Maturation of breadth requires selection of rare B cell precursors, and their retention 
and maturation towards breadth
Germline-targeting approaches enable selection and activation of rare B cells, but if these do 

not acquire mutations that enable them to bind to more native-like boosting immunogens, 

they will not be boosted. Acquisition of sufficient productive mutations to enable binding to 

boosting antigens will be required for maturation of Tier-2 strain-specific neutralizing 

antibodies.
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