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Background and Purpose

In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of 

the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has 

remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid compounds 

to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis 

with the help of endogenously produced cannabinoids and their receptors. After many anecdotal 

reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover 

that the GI tract accommodates and expresses all the components of the ECS. Cannabinoid 

receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI 

motility, secretion, and the maintenance of the epithelial barrier integrity. In addition, other 

receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), 

the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 

55 (GPR55), are important participants in the actions of cannabinoids in the gut and critically 

determine the course of bowel inflammation and colon cancer. The following review summarizes 

important and recent findings on the role of cannabinoid receptors and their ligands in the GI tract 

with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease and 

colon cancer.
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The endocannabinoid system in the GI tract

Cannabis has a long history as a traditional therapeutic agent for the treatment of abdominal 

pain and gut dysfunction. This beneficial effect is based on the fact that the gastrointestinal 

(GI) tract is endowed with cannabinoid (CB) receptors and their endogenous ligands. 

Together they make up the endocannabinoid system (ECS), a physiologic entity that controls 
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homeostasis in the gut. There is also a wide range of cannabinoid compounds of exogenous 

origin. Next to herbal cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC), 

cannabidiol, tetrahydrocannabivarin, cannabichromene, cannabigerol and others, there is a 

large array of synthetic cannabinoids. In general, cannabinoid compounds can be divided 

into five distinct classes, i.e. classical cannabinoids (e.g., Δ9-THC); non-classical 

cannabinoids (e.g., CP-55,940); indoles (e.g., WIN55,212), eicosanoids, and antagonist/

inverse agonists (e.g., rimonabant) (1). For a detailed description of the ECS in the gut, the 

reader is referred to more comprehensive reviews (2,3).

In short, the ECS consists of the CB receptors 1 and 2 (CB1, CB2), their endogenous ligands 

(“endocannabinoids”) as well as their degrading and synthesizing enzymes. CB1 receptors 

can be found throughout the GI tract. There, they are predominantly located in the enteric 

nervous system (ENS) (4) and the epithelial lining (5). Additionally, CB1 is found in 

extrinsic fibers of the ENS, plasma cells, and in smooth muscle cells of blood vessels within 

the colonic wall (6,7). Within the ENS, the CB1 receptor is expressed prejunctionally in 

cholinergic, but not nitrergic neurons, explaining why CB1 activation can depress excitatory 

transmitter release (8). CB2 receptors are mainly present in immunocytes, myenteric plexus 

neurons, and in epithelial cells during ulcerative colitis (7,9). In addition to CB receptors, the 

orphan G-protein coupled receptor 55 (GPR55) and the transient receptor potential cation 

channel subfamily V member 1 (TRPV1) are endocannabinoid-responsive receptors and 

may be responsible for non-CB1/CB2 receptor effects of cannabinoids in the GI tract and are 

therefore regarded as part of an expanded ECS (10,11). PPAR receptors, in particular 

PPARα and PPARγ, are also responsive to herbal, synthetic and endogenous cannabinoids 

and may mediate many of the analgesic and anti-inflammatory effects observed in 

cannabinoid treatment [rev. in (12)]. The abovementioned receptors are present in the GI 

tract, e. g. on nerve terminals of extrinsic primary afferents (TRPV1) (2), and the ENS and 

enterocytes (PPARα, GPR55) (2,13).

Endocannabinoids are short-lived bioactive lipids and produced “on demand”. Arachidonoyl 

ethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG) are among the best 

characterized endocannabinoids and are synthesized by N-acyl phosphatidylethanolamine 

phospholipase D (NAPE-PLD) and diacylglycerol lipases (DAGL), respectively. They are 

degraded by specific enzymes: anandamide primarily by fatty acid amide hydrolase (FAAH) 

and 2-AG by monoglyceride lipase (MGL; or monoacylglycerol lipase, MAGL) (rev. in (3)). 

In the GI tract, FAAH and MGL were shown to be expressed in epithelial cells, the ENS, 

and in immune cells during ulcerative colitis (6,7,14). Endocannabinoids may be also 

degraded by cyclooxygenase-2 (COX-2) and lipoxygenase to give rise to prostaglandin 

ethanolamides, glyceryl prostaglandins, hydroxyeicosatetraenoic acid and 

hydroperoxyeicosatetraenoic acid derivatives (15,16). In contrast to the degrading enzymes, 

the synthesizing enzyme of anandamide, NAPE-PLD, and of 2-AG, DAGL α and β, have 

been observed in epithelial, myenteric plexus and lamina propria cells, and also in the 

smooth muscle layer (7).

Acylethanolamides other than anandamide, like palmitoylethanolamide (PEA) and 

oleoylethanolamide (OEA), can be classified as endocannabinoid-like compounds. They do 

not directly activate CB receptors but they can activate GPR55 (predominantly PEA) and 
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GPR119 (only OEA) and are able to influence the signaling of anandamide via an entourage 

effect (17). PEA and OEA also activate PPARα and are present in high levels within the gut. 

Both of them are degraded by FAAH, however, PEA is preferentially degraded by another 

amidase, N-acylethanolamine-hydrolyzing acid amidase (NAAA), which is strongly 

expressed in immune cells and active particularly in the intestine, suggesting a potentially 

pathophysiological role in the GI tract (rev. in (17)). In summary, the GI tract is able to 

locally produce its own endocannabinoid ligands according to its physiological needs and 

may rapidly react to disturbances in the gut to maintain homeostasis.

Cannabinoids in GI motility and secretion

Cannabinoids affect gut motility mainly by activating CB1 receptors present on enteric 

neurons (18). Activation of CB1 receptors results in the inhibition of acetylcholine release 

which consequently causes a decrease of intestinal smooth muscle contractility and 

peristalsis (19). Early studies demonstrated that the plant-derived CB receptor agonist Δ9-

THC, the main component of Cannabis, decreases intestinal transit and inhibits electrically 

evoked contractions in guinea pig explants (20,21). Synthetic CB receptor agonists likewise 

reduce gastric emptying, upper GI transit, and colonic propulsion (reviewed in (2)). In 

contrast, rimonabant (SR141716), an inverse agonist of CB1 receptors, increased 

electrically-evoked contractions and peristalsis in isolated intestinal segments (22,23), as 

well as intestinal motility in vivo (24). Although CB2 receptors are expressed in the ENS, 

they are suggested to play a minor role in the regulation of gut motility under basal 

conditions but might become important under pathophysiological settings (9). Indeed, 

JWH-133, a CB2 receptor agonist, but not arachidonyl-2'-chloroethylamide (ACEA), a CB1 

receptor agonist, attenuated gut transit dose-dependently in the inflamed gut of rats, an effect 

that was prevented by a CB2 receptor antagonist (25). There is also increasing evidence that 

GPR55 is involved in the regulation of gut motility since its agonist O-1602 was able to slow 

down whole gut transit in mice (13). Both PEA and OEA inhibit intestinal transit in mice but 

the mode of action is unclear because neither CB receptors nor PPARα seem to be involved 

in that process (26,27); however, in a mouse model of postinflammatory IBS (mustard oil-

induced), inhibition of transit by PEA could be blocked with a CB1 receptor antagonist, but 

was not significantly modified with a PPARα antagonist (28).

Acute inhibition of endocannabinoid-synthesizing or - degrading enzymes also modulates 

intestinal motility. Thus, inhibition of DAGLα was able to normalize gut motility in a mouse 

model of genetically-induced constipation (29). Pharmacological inhibition of FAAH or 

MGL led to a decrease in gut motility through mechanisms that involved a rise in 

anandamide or 2-AG levels, respectively, and the activation of CB1 receptors (14,30,31). 

Interestingly, FAAH-deficient mice did not show alterations in basal gut motility; however, 

pharmacological inhibition or genetic deletion of FAAH normalized endotoxin-induced 

hypermotility (31). Taschler et al. demonstrated that MGL-deficient mice did not show 

alterations in basal gut motility but that they were insensitive to CB receptor agonist 

treatment due to desensitization of intestinal CB1 receptors (30).

It has to be noted that also the gut brain-axis may account for the regulation of gut motility 

by cannabinoids. For instance, intracerebroventricular injection of the CB receptor agonist 
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WIN55,212-2 attenuated whole gut transit in mice (32). Additional evidence that gut 

motility might be regulated by central CB receptors was provided by Vianna et al. who 

showed that deletion of CB1 receptors specifically in the vagal nerves of mice caused an 

increase in GI motility (33). Similar to rodents, CB1 receptors are functionally present in the 

human small and large intestines (34–36). Thus, WIN55,212-2 and ACEA inhibited 

electrically-evoked contractions in a healthy human colon and this effect was completely 

blocked by rimonabant (37). Also 2-AG and anandamide were shown to inhibit 

acetylcholine-induced contractions in explants of human colonic longitudinal and circular 

muscle, however, this effect could not be blocked with CB1 or CB2 antagonists (38). The 

authors suggested a non-cannabinoid or alternative cannabinoid pathway mediating this 

effect (38). It is possible that the non-CB effects by anandamide may have been brought 

about by GPR55 which causes relaxation in the murine colon (13).

There is evidence that cannabinoids play an important role in the regulation of gastric and 

intestinal secretion in rodents and humans. Studies revealed that cannabinoids reduce the 

production of gastric acid secretion by activating CB1 receptors (19). In mice, intestinal 

hypersecretion induced by cholera toxin was reduced by CB1 receptor activation (39). In 

another study, pharmacological inhibition or genetic deletion of FAAH provided beneficial 

effects against diclofenac-induced gastric irritation (40). In contrast, enhanced secretion was 

observed in humans treated with the CB1 antagonist rimonabant (41). In summary, a large 

body of evidence demonstrates that (endo-) cannabinoids affect physiologic functions of the 

gut, a property that could be therapeutically exploited. Activation of CB1 receptors by 

increased levels of endocannabinoids and, as a consequence, a slowed gut motility might 

have beneficial effects for patients with symptoms of hypermotility. On the other hand, 

inhibition of endocannabinoid synthesis or blockade of CB1 receptors might enhance gut 

motility in GI disorders associated with constipation. If central side effects of cannabinoids 

could be overcome, modulation of cannabinoid levels would certainly represent a valuable 

pharmacological approach for the treatment of GI disorders. Another possibility could be the 

use of non-psychotropic cannabinoids like cannabidiol, which has been described as a ligand 

of many receptors including GPR55, TRPV2, PPARγ and 5-HT1A but not of CB receptors 

(but might modulate their actions) (42). Cannabidiol has shown relaxant effects on croton 

oil- and sepsis-induced hypermotility in mice (43,44).

Cannabinoids in emesis and nausea

The dorsal vagal complex (DVC) in the brainstem is the site responsible for the vomiting 

reflex while the neural circuitry responsible for nausea is less known. CB receptors and 

particularly FAAH and MGL are present in the DVC and area postrema suggesting an 

important role of endocannabinoids in the control of emesis (45–47). Cannabis has been 

traditionally used as an antiemetic agent, and exogenous cannabinoids are presently 

prescribed for people with chemotherapy-induced nausea and vomiting (48). However, due 

to central side effects, cannabinoids are not used as first line drugs.

The endocannabinoids anandamide and 2-AG have been shown to reduce emesis in 

experimental models (46). Drugs that can raise endocannabinoid levels without causing the 

typical cannabinoid agonist-induced central side effects are therefore potential options to 
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treat emesis. The FAAH inhibitor URB597 reduced LiCl-induced emesis via CB1 and CB2 

receptors (46). Reduction of emesis by the MGL inhibitor JZL184 was shown to be sensitive 

to CB1 antagonism (49). Also cannabidiol showed anti-emetic and anti-nausea effects in 

animal models, the effects were brought about by indirect agonism of 5-HT1A 

somatodendritic autoreceptors in the dorsal raphe nucleus (50).

The role of endocannabinoids has been investigated more recently in detail in the 

conditioned gaping model in rats and results indicate that 2-AG and the visceral insular 

cortex (VIC) could play an important role in nausea (51). Exogenous 2-AG, but not 

exogenous anandamide, applied by bilateral intra VIC infusion, dose-dependently 

suppressed conditioned gaping (51). The effect could not be blocked with the CB1 

antagonist AM251, but instead with the COX inhibitor indomethacin (51). Interestingly, 

bilateral VIC infusion with the MGL inhibitor MJN110 also suppressed conditioned gaping 

but here, the effect could be blocked with AM251 (52).

Endocannabinoids have been clearly established as important messengers in the neuronal 

network that controls vomiting and nausea. Interference with endocannabinoid degradation 

may represent a valuable therapeutic approach not only against emesis but also against 

anticipatory nausea in chemotherapy patients.

Cannabinoids and functional bowel disorders

Irritable bowel syndrome (IBS) and functional dyspepsia are the most frequent functional 

bowel disorders encountered globally. The previous view that functional GI disorders lack 

histopathological and biochemical alterations has been challenged by studies demonstrating 

low grade inflammation, increased presence of immune and mast cell, changes in the 

epithelial barrier, and bacterial overgrowth in IBS patients. These alterations together with a 

derangement of the gut-brain axis may be involved in the development of visceral 

hyperalgesia and motility disturbances. The predominant presence of CB1 receptors along 

the gut-brain axis may allow cannabinoids to positively influence derangements along this 

axis (3,53). The role of the ECS in IBS has been already described in a previous review by 

Storr&Sharkey (53). Here, more recent results will be summarized and discussed.

IBS: visceral hypersensitivity and the ECS

Symptoms of IBS, such as abdominal pain, discomfort, and altered bowel habits, have been 

previously linked with visceral hypersensitivity and aberrant 5-hydroxytryptamine (5-HT) 

signaling (53). Feng et al. explored the link between 5-HT and the ECS and observed 

increased levels of 5-HT, but a decrease in anandamide, in the duodenal mucosa of patients 

with postinfectious IBS (PI-IBS) (54). Using a rat model, they showed that acute luminal 

administration of 5-HT into the duodenum induced anandamide release via vagal 5-HT3 

receptors, whereas chronic 5-HT treatment decreased anandamide levels via 5-HT3, 

indicating that 5-HT may be involved in the regulation of intestinal anandamide content. In 

addition, luminally-applied CB1 receptor agonists attenuated 5-HT-induced hyperalgesia 

(54). In IBS-D (diarrhea-predominant) patients, no changes in anandamide levels but a 

decrease in PEA was observed in comparison to healthy subjects. The decrease was 

associated with abdominal pain (55). The IBS-D patients also had an increase in 2-AG while 
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IBS-C patients had higher levels of OEA (55). It is interesting that levels of PEA were also 

found decreased in a mouse model of inflammation-induced hypermotility (croton oil-

induced) (56). The decrease was reduced by a non-psychoactive Cannabis extract, 

cannabichromene, in a CB receptor-independent manner (56). In contrast, in a mouse model 

of postinflammatory IBS (mustard oil-induced), PEA slowed gut transit, an effect that was 

dependent on CB1 receptors (28). By use of a trinitrobenzenesulfonic acid (TNBS)-induced 

model of visceral hypersensitivity, Iwata et al. showed that a CB2 receptor agonist was 

effective in improving pain thresholds in a dose-dependent manner without signs of central 

CB1 receptor activation (40,57). Considering these data it is possible that low levels of 

endocannabinoids in IBS patients may contribute to hyperalgesia and abdominal pain and 

cause perturbations in the bowel motility which could be improved by endo- or 

exocannabinoids via CB- and possibly non-CB receptor pathways. This leads to the idea that 

FAAH inhibitors could be valuable therapeutics against PI-IBS and possibly other forms of 

IBS. In accordance with this concept, several studies reported that pharmacological 

inhibition of FAAH and also MGL significantly reduced visceral nociception in rodent 

models of colorectal distension and acetic acid-induced abdominal stretching (40,58,59). In 

this context it is worth to mention the role of mast cells in IBS. Activated mast cells have 

been shown to correlate with abdominal pain in IBS (60). Since mast cells express CB 

receptors and are also targets of PEA (61), which is thought to modulate mast cells 

activation, endocannabinoids may regulate activity of mast cells and hence interfere with 

IBS symptoms like abdominal pain; however, this remains to be shown.

IBS: stress, pain and the ECS

Chronic stress can induce visceral hyperalgesia via the hypothalamic–pituitary–adrenal axis 

and probably adds to the pain that IBS patients perceive. Recent work in rat models has 

shown that chronic stress causes reciprocal changes in 2-AG and COX-2/FAAH levels in 

L6–S2, but not L4–L5 dorsal root ganglia (DRGs) (62). Moreover, CB1 receptors were 

downregulated while TRPV1 receptors were upregulated in L6–S2 but not in L4–L5 DRGs, 

indicating region-specific changes in primary sensory fibers innervating the distal colon 

(62). A report suggests that epigenetic regulation in the DRG neurons could be responsible 

for these changes: while chronic stress was associated with methylation in the promoter 

region of the Cnr1 gene (encodes the CB1 receptor), histone acetylation at the Trpv1 

promoter and expression of the TRPV1 receptor were increased (63). These findings point 

out that reciprocal changes in the endovanilloid and endocannabinoid system occur in 

visceral sensory fibers and that these changes could contribute to hyperalgesia and 

abdominal pain.

Stress and visceral pain may be also regulated by the ECS within the CNS. It is known that 

chronic stress reduces levels of anandamide (but increases 2-AG) in the brain and 

downregulates CB1 receptors, and that these changes may contribute to the stress response 

(64). In line with this, both the FAAH inhibitor PF 3845 and the dual FAAH/MAGL 

inhibitor JZL 195 were effective in inflammatory and mechanically evoked visceral pain 

models suggesting that an increase in endocannabinoid levels alleviates visceral pain (59). A 

more thorough description of this topic is given in (65).
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IBS: genetic variations and the ECS

Genetic variations of ECS components (CB receptors, synthesizing/degrading enzymes) may 

be associated with the pathogenesis of functional bowel disorders. Polymorphism in the 

FAAH gene (C385A) leads to a mutant FAAH enzyme and reduces breakdown of 

anandamide (66). A study in patients with constipation predominant (C-) IBS, D- and M- 

(mixed) IBS, with chronic abdominal pain and functional dyspepsia, showed a clear 

association of the non-wild type FAAH genotype with functional bowel disease phenotypes 

and with accelerated colonic transit in IBS-D patients (67). However, no statistically 

significant association between the FAAH genotype and sensation measurements was 

observed (67). A polymorphism in the CNR1 gene, rs806378, was found to be significantly 

associated with IBS symptom phenotype, colonic transit in IBS-D, and sensation rating of 

gas, but not with pain (68). In line with a possible role of CNR1 variants in the development 

of IBS symptoms, allele frequencies of AAT triplet repeats in CNR1 were observed to be 

associated with IBS in a study of a Korean population (69). Similar results, namely the 

detection of eight CNR1 alleles with AAT triplet repeats, were reported in a Chinese IBS 

cohort, whereas no association could be detected between C385A FAAH polymorphism and 

IBS pathogenesis (70). Interestingly, FAAH activity was recently determined in whole colon 

samples from patients who underwent colectomy for slow transit constipation (71).The 

results revealed a strong decrease in activity in these patients as compared to individuals free 

of transit dysfunction (71). The FAAH enzyme, therefore, seems to be a key molecule for 

the regulation of endocannabinoid levels and colon motility, but not for GI pain sensation.

Effect of CB receptor agonists in IBS patients

From animal studies it was rightfully concluded that cannabinoid agonists could improve 

visceral pain thresholds in humans. In a previous study performed in healthy volunteers to 

investigate the effect of dronabinol (Δ9-THC) on colonic motility and sensation, 7.5 mg 

dronabinol induced relaxation of colon motility and tone postprandially (72). The effect of 

dronabinol on visceral perception to rectal distension was then tested in IBS patients 

(positively diagnosed by Rome II criteria) and healthy subjects in a small trial, but no 

differences in sensory thresholds and discomfort were observed between the cohorts (73). A 

different study revealed inhibitory effects of dronabinol on fasting colonic motility and an 

increase in colonic compliance, particularly in patients with diarrhea predominant forms of 

IBS, but failed to demonstrate effects on sensation and tone (74). The report also suggested 

that FAAH and CNR1 variants could have had an impact on the effects of dronabinol (74). 

In a subsequent trial performed in IBS-D patients, no significant effect of dronabinol on 

colonic transit was observed; however, in a subset of patients with the CNR1 polymorphism 

rs806378, dronabinol moderately delayed colonic motility (75).

Thus, it seems that CB receptor activation in IBS has potential therapeutic value, but 

probably only in IBS-D patients with genetic variations of ECS components.

Functional dyspepsia

There is good indication that the ECS may be involved in functional dyspepsia. Tack et al. 

have previously shown that early satiety and symptoms of functional dyspepsia are caused 

by a disturbed gastric accommodation (76). In addition, hypersensitivity to gastric balloon 
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distension was observed to be present in a subset of patients with functional dyspepsia (77). 

A cross-over, randomized, controlled clinical trial in healthy individuals now demonstrated 

that CB1 receptor antagonist rimonabant was able to inhibit meal-induced gastric 

accommodation, but did not affect fasting gastric compliance or sensitivity to gastric balloon 

distension, indicating that gastric accommodation is controlled by endocannabinoids (78). 

However, it was not clear from the study whether the ECS controls accommodation via 

centrally-mediated pathways or via the ENS. A new study has recently addressed the 

question as to whether CB1 receptors in the brain are involved in functional dyspepsia and 

could demonstrate that increased availability to a CB1 receptor radioligand was 

predominantly found in brain regions involved in the regulation of visceral pain and satiety 

(79).These findings would argue for a role of central CB receptors in the regulation of 

gastric accommodation in humans. It is, therefore, possible that both, central and peripheral 

CB receptors are involved in the development of functional GI disorders, and that 

pharmacological manipulation of exclusively peripheral CB receptors may not provide full 

benefit for patients with these disorders.

Microbiota and the ECS

A change in the microbiotic population of the gut may alter the permeability and lead to 

metabolic endotoxemia and hence to metabolic disorders associated with obesity. 

Endocannabinoids are involved in the regulation of energy metabolism and food intake and 

communicate in this respect with the microorganisms of the gut (80). The epithelial lining 

expresses CB receptors and they are most likely involved in these mechanisms. 2-AG and 

PEA cause an increase in epithelial barrier function (“gate keeper”) while anandamide is 

thought to be a “gate opener” (81). Thus, the intestinal ECS may have an important role in 

the control of microbial products entering the bloodstream and in the development of 

metabolic diseases. A detailed review on this topic is given in (81).

Dysbiosis (alteration in the composition of gut microbiota) has been also suggested as one of 

the potential causes of IBS, especially in the case of PI-IBS (82). It is known that antibiotic 

therapy provides certain benefits for IBS patients (83), however, it is not quite clear how 

eradication of bacteria could contribute to symptom relief. In this context it is interesting 

that Lactobacillus acidophilus NCFM could induce CB2 receptor expression in the rodent 

gut mucosa (84). When applying NCFM in a model of chronic colonic hypersensitivity, it 

caused analgesia which was abrogated by i.p. blockade with AM630, suggesting that CB2 

receptors may provide a link between gut microbiota and visceral hypersensitivity (84). 

However, in a human trial, CB2 receptors were not found to be upregulated in colonic 

mucosal biopsies from persons that were given Lactobacillus acidophilus NCFM over a 

period of 21 days (85). On the other hand, treatment of mice with antibiotics reduced pain-

related responses to i.p. application of acetic acid or intracolonic capsaicin (86). The effect 

was accompanied by a small rise in CB2 receptor transcripts in colon tissue, as well as a 

decrease of CB1 and mu-opioid receptors. Additionally, total luminal bacterial counts 

correlated with CB receptor expression (86) suggesting a possible interaction between 

microbial products and CB receptors.
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Cannabinoids and intestinal inflammation

Chronic inflammatory conditions of the GI tract are known as inflammatory bowel disease 

(IBD) and occur in two major forms, ulcerative colitis (UC) and Crohn’s disease (CD). IBD 

is thought to originate from a complex interaction of the gut microbiota (or their products) 

with the epithelial barrier, based on the genetic background and the immune system of the 

host (87). To investigate the role of cannabinoids in IBD, mostly animal models that rely on 

chemically-induced mucosal inflammation have been used.

The endocannabinoid system as a therapeutic target in IBD

Evidence gathered from several studies in rodents points to a therapeutic relevance of the 

ECS in IBD. As reviewed by Izzo & Sharkey (2) and Alhouayek & Muccioli (88), 

endocannabinoid signaling is largely enhanced in the inflamed intestine. Expression of CB1 

(89) and CB2 receptors (90), and of anandamide (91) were increased, whereas FAAH levels 

were reduced in the initial phase of colitis (92). Pharmacological strategies to enhance 

endocannabinoid levels, either by inhibition of endocannabinoid degradation (92–94) or of 

the transport across the plasma membrane (91,92) ameliorated inflammation. In particular, 

inhibition of FAAH by PF-3845 (94) and FAAH/COX blockade by ARN2508 (95) 

dramatically reduced damage in experimental colitis models. In the latter study, raised levels 

of anandamide, PEA and OEA were measured that most likely contributed to the beneficial 

effect (95). A recent work by Alhouayek et al showed that inhibition of NAAA, which 

preferentially degrades PEA, caused significant improvement of experimental colitis 

suggesting that PEA is an important acylethanolamide in the regulation of intestinal 

inflammation (96). In accordance, oral administration of PEA (which is interestingly sold as 

an over-the-counter drug and advertised to mitigate symptoms of GI disorders) exerted anti-

inflammatory effects in the gut (97). Experiments on cultured human colonic biopsies 

derived from UC patients showed that PEA caused a decrease in expression and release of 

inflammatory mediators which was dependent on PPARα (98).

Activation of the CB1 (89) or CB2 receptor (90,99) with specific agonists also protected 

from colitis. Accordingly, genetic ablation or pharmacological antagonism of CB1 (89,100) 

or CB2 receptors (90,100) left mice more susceptible to intestinal inflammation. Moreover, 

treatment with Δ9-THC was reported to reduce colitis in rats (101). The limitations of using 

Cannabis for treatment of gut inflammation, however, are the psychoactive effects that arise 

from activation of CB1 receptors in the brain. Investigation of pharmacologically active 

cannabinoids with low or no affinity for CB1 receptors and of atypical cannabinoids would 

be therefore of high interest. Indeed, it has been shown that cannabidiol and cannabigerol, 

two non-psychotropic ingredients of Cannabis, have proven beneficial in various models of 

intestinal inflammation (101–105). Also, the atypical cannabinoid O-1602 was reported to 

reduce disease severity in a CB1-/ CB2 receptor-independent way by inhibiting neutrophil 

recruitment (106). Recently, GPR55, which is part of the “expanded” ECS, has been 

investigated in experimental colitis. A pro-inflammatory role of GPR55 could be established 

because genetic deletion of GPR55 and treatment with the GPR55 antagonists CID16020046 

or ML-191 alleviated intestinal inflammation (97,106,107). In this context, cannabidiol, 

which is known to act as a GPR55 antagonist (108), showed inhibition of GI inflammation 
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in an LPS-induced model by targeting enteric reactive gliosis (103). Interestingly, only parts 

of the beneficial effects of cannabidiol in this model were mediated by PPARγ (103) raising 

the possibility that GPR55 could have been involved in this effect. Cannabidiol may also 

exert a protective effect on the intestinal barrier. In a Caco-2 cell monolayer stimulated by 

EDTA, cannabidiol concentration-dependently caused rapid recovery of the barrier and this 

effect was inhibited by a CB1 antagonist (109). Since cannabidiol has no affinity to CB1 

receptors, the authors argued that cannabidiol could have antagonized CB1-mediated 

increases in permeability mediated by locally produced endocannabinoids (109). Activation 

of CB2 receptors also attenuated cytokine-evoked mucosal damage in human colonic 

explants (110).

Cannabis for the treatment of IBD?

Questionnaires among IBD patients revealed that Cannabis is commonly used as a self-

medication to relieve IBD-related symptoms like abdominal pain, diarrhea, and loss of 

appetite (111,112). A retrospective study reported significant improvements in 21 out of 30 

CD patients after Cannabis use (113). In a small prospective placebo-controlled study of CD 

patients, a beneficial clinical response was achieved in 10 out of 11 subjects in the treatment 

group (114). A more recent questionnaire confirmed that the use of Cannabis subjectively 

improved pain and other symptoms in IBD patients, but also pointed out that Cannabis use 

for more than six months was a strong predictor in CD patients for requiring surgery (115).

Despite these interesting findings, the exact mechanisms how the ECS operates in IBD have 

not yet been unraveled but evidence gathered so far points to an overall protective role (Fig. 

1). The up-regulation of ECS components possibly constitutes an attempt to restore 

homeostatic balance (3). Cannabinoids have been shown to influence the recruitment of 

immune cells to the site of intestinal inflammation (93,106,107) and to reduce the release of 

pro-inflammatory cytokines, i.e. TNF-α, IFN-γ, IL-1β and IL-6 (93,102,103,105). 

Activation of the CB1 receptor might also lead to enhanced wound closure during colitis (5). 

Of particular interest are recent findings that gut microorganisms may influence the 

expression of intestinal ECS components (81). 2-AG and PEA were mostly associated with 

beneficial effects on the gut-barrier function (81). The crosstalk between gut microbiota and 

the ECS is therefore worthy to be further examined in future studies.

Collectively, cannabinoids show great potential in the treatment of IBD and further research 

is warranted to gain a better insight into the mechanistic actions of (endo-) cannabinoids.

Cannabinoids and colon cancer

Differential expression of components of the ECS in colorectal cancer (CRC) was first 

reported by Ligresti et al. (116). In this study, anandamide and 2-AG contents were found to 

be higher (3-fold and 2-fold, respectively) in CRC lesions as compared to normal colonic 

mucosa and, interestingly, their levels were higher in adenomatous polyps than in 

carcinomas (116). Increased endocannabinoid synthesis in CRC was also reported in a more 

recent study (117). Here, anandamide, as well as its synthesizing enzyme NAPE-PLD, were 

up-regulated approximately 2-fold in cancer tissues. Intriguingly, mRNA expression and 

activity levels of FAAH were also increased. Most likely, as a consequence of increased 
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FAAH activity, elevated levels of arachidonic acid, the main product of anandamide and 2-

AG degradation, were also detected (117). In another study, the main degrading enzyme of 

2-AG, MGL, was also found increased in CRC specimens (118).

Examination of CB1 expression revealed a down-regulation of mRNA levels in 18 out of 19 

colon cancer samples as compared to adjacent non-neoplastic colon mucosa (119). The 

reason for this silencing was found to be DNA hypermethylation at CpG islands around the 

transcription start site of CNR1. In parallel to the epigenetic regulation, also protein levels of 

CB1 receptors were reduced in colon cancer specimens as shown by Western blotting (119). 

These findings were corroborated by Cianchi et al. who reported CB1 receptor expression to 

be higher in normal colonic epithelium than in colonic tumor tissue (120). However, a 

comprehensive study describing the correlation between CB1 receptor immunoreactivity and 

patient outcome conducted in 534 Korean patients found no differences in overall survival 

between patients with carcinomas of either high or low CB1 receptor immunoreactivity 

(121). Distant metastasis was found to be lower in patients with high CB1 receptor 

expression, but there were no differences in lymph node metastasis, tumor invasion, or 

tumor size. Surprisingly, in stage IV patients, high CB1 immunoreactivity even correlated 

with a poorer survival rate (121). Similar observations were made in a cohort of 487 

Swedish patients (122). There, high CB1 expression was reported to correlate with poorer 

disease-specific survival in stage II microsatellite stable CRC patients (122). Reduced 

overall survival has also been reported for patients who were either homo- or heterozygous 

for the 1359 G/A single nucleotide exchange in the CNR1 gene although it is not yet known 

how this polymorphism affects cannabinoid signaling (123). CB2 receptor mRNA 

expression was found in 28.6% of CRC samples and significantly correlated with lymph 

node involvement (124), however, no consistent data on protein expression were available. 

So far, the human studies indicate increased endocannabinoid activity in colon cancer while 

the role of CB receptors remains less clear.

Cannabinoids reduce carcinogenesis in animal models of colon cancer

In mice, colon cancer can be induced either chemically or, for instance, by germline 

mutation of the adenomatous polyposis coli (Apc) gene. ApcMin/+ mice spontaneously 

develop multiple polyps in the intestine. Additional knock out of Cnr1 or inhibition of the 

CB1 receptor with AM251 in these mice caused a strong increase in intestinal polyp burden, 

whereas activation of CB1 receptors with methanandamide significantly reduced the number 

of polyps (119). Genetic deletion of Cnr2 (the gene encoding CB2 receptor), had no effect 

on polyp growth in this model (119). Chemically, colon cancer develops after multiple 

intraperitoneal injections of the carcinogen azoxymethane (AOM). In this model, 

anandamide and 2-AG were found increased in the colon of AOM-treated mice (125). In 

addition, inhibition of FAAH with N-arachidonoyl-serotonin (AA-5-HT) reduced the 

development of precancerous lesions, and furthermore, the non-selective, synthetic CB1/CB2 

receptor agonist, HU210, was able to mimic this effect (125).

Antitumorigenic effects in the AOM model were also observed with non-psychotropic 

cannabinoids. For instance, cannabidiol was shown to reduce the formation of aberrant crypt 

foci (ACF), polyps, and tumors in the colon and the AOM-induced up-regulation of p-Akt 
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(126). It also counteracted caspase-3 inactivation. In colorectal carcinoma cell lines, it 

protected DNA from oxidative damage and it reduced cell proliferation in a CB1-, TRPV1- 

and PPARγ-antagonists sensitive manner (126). A “cannabidiol botanical drug substance” (a 

Cannabis sativa extract with high content of cannabidiol) had similar effects in the same 

model, reducing ACF, polyp and tumor formation via CB1 and CB2 receptor activation 

(127), whereas treatment with cannabigerol reduced the number of ACFs only (128). In yet 

another murine model, in which colitis-associated colon cancer was induced through the 

application of AOM and dextran sulfate sodium (DSS), the atypical cannabinoid O-1602 

showed antitumorigenic properties (129). The drug reduced the number and area of tumors 

by 30% and 50%, respectively. In addition, activation of the oncogenic transcription factor 

STAT3 was decreased while pro-apoptotic factors p53 and Bax were increased in O-1602 

treated mice (129). Perhaps surprisingly, one study showed that antagonism of CB1 receptors 

with rimonabant reduced the formation of ACFs with 4 or more crypts in mice with AOM-

induced colon cancer (130).

Potential applications of cannabinoids and related substances have also been studied in 

xenograft models. The semi-synthetic cannabinoid quinone HU-331 (131) and the 

hexahydrocannabinol analogue LYR-8 (132) reduced tumor growth of xenografts derived 

from HT-29 cells. Likewise, the CB2 receptor agonist CB13 inhibited the growth of DLD-1 

derived tumors (120). A “cannabidiol botanical drug substance” (127) and cannabigerol 

(128) decelerated or even halted the growth of HCT116 xenografts, respectively.

Anticarcinogenic mechanisms of cannabinoids: reduction of cancer cell proliferation and 
inhibition of angiogenesis and metastasis

Cannabinoids have been shown to exert anti-proliferative effects on colon cancer cells 

through apoptosis via activation of CB1/CB2 receptors, or through receptor-independent 

mechanisms (rev. in (133)). The molecular mechanisms underlying the induction of 

apoptosis upon CB1/CB2 receptor activation have been discussed in detail by Velasco et al. 

(134). Briefly, de novo synthesis of the pro-apoptotic sphingolipid ceramide (120), down-

regulation of the protein survivin (inhibitor of apoptosis) (119), inhibition of PI3K/Akt 

signaling (135,136), and induction of endoplasmic reticulum stress that leads to autophagy-

mediated cell death (136), have all been reported. Notably, cannabinoids with low or no 

affinity for CB receptors (like cannabidiol and O-1602) are also known to exert anti-

proliferative effects, although the underlying mechanisms have not yet been fully clarified 

(126,127,129). A cannabinoid-like compound LYR-8, for instance, was demonstrated to 

decrease angiogenesis in a xenograft model using chick chorioallantoic membranes (132). 

Concomitantly, the expression of factors that modulate the tumor microenvironment, like 

vascular endothelial growth factor, COX-2, and hypoxia-inducible factor 1α was reduced in 

this model (132). Inhibition of MGL, either pharmacologically or through silencing with 

siRNA, attenuated the invasion of colon cancer cells (118), suggesting a role of 

endocannabinoid degrading enzymes in CRC progression. Importantly, adhesion and 

migration of highly metastatic colon cancer cells was shown to be diminished after treatment 

with cannabidiol or a GPR55 inhibitor (108).
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In conclusion, data obtained so far point to a deregulation of the ECS in colon cancer that 

could be interpreted as an attempt to restore the original healthy state. Despite controversial 

data on the role of the ECS in human colon cancer, promising preclinical data on the 

reduction in tumor growth by typical and atypical cannabinoid compounds warrant further 

exploration on the cause of ECS deregulation in colon carcinogenesis. It should be of prime 

interest to investigate known and hitherto unknown components of the ECS to better 

understand the complexity of CB receptor signaling by endocannabinoids and the regulation 

of their synthesizing and degrading enzymes.

Concluding remarks

Cannabinoids have a long history of being used to treat diseases or to alleviate symptoms. In 

modern medicine, this is not fully translated, and cannabinoids or cannabinoid-derived drugs 

are rarely used mainly due to the lack of clinical trials supporting such use. Over the last 

decades, cannabinoid research was driven by basic scientists who characterized 

pharmacological actions of cannabinoids, who discovered the ECS with all its constituents, 

and who taught us how activation or blockade at different sites may be helpful for the 

treatment of GI diseases. The GI tract is one of the regions where cannabinoid signaling is 

involved in many physiological and pathophysiological regulatory mechanisms, this is now 

clearly understood. The last decade has added more translational studies, and we have 

learned where cannabinoids are involved in pathophysiological states and human disease and 

where and how cannabinoids alter physiological or pathophysiological conditions. Through 

a recent meta-analysis we are also better informed on side effects associated with 

cannabinoid treatment. The analysis revealed that there was an increased risk of short-term 

adverse events with cannabinoids, mostly dizziness, dry mouth, nausea, fatigue, somnolence, 

euphoria, drowsiness, but also cardiac (1.42; 0.58-3.48; odds ratio; 95% CI) and 

hepatobiliary (3.07; 0.12-76.29; odds ratio; 95% CI) disorders were among them (137). 

Nevertheless, the opportunities are multifold with targeting the numerous involved receptors 

with agonists and antagonists, and with targeting synthesizing and degrading mechanisms. 

To harvest the potential therapeutic effects is now challenging, but based on the broad 

cannabinoid platform built by basic researchers, clinical trials are urgently wanted. From a 

scientist’s perspective and all the caveats in mind, it seems to be a matter of time when 

cannabinoid compounds will be used in the treatment of GI disease
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ACEA arachidonyl-2'-chloroethylamide

ACF aberrant crypt foci

2-AG 2-arachidonoylglycerol
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AOM azoxymethane

AA-5-HAT N-arachidonoyl-serotonin

CB cannabinoid

CI confidence interval

CRC colorectal cancer

CD Crohn’s disease

COX-2 cyclooxygenase-2

DAGL diacylglycerol lipase

DRG dorsal root ganglion

DVC dosal vagal complex

ECS endocannabinoid system

ENS enteric nervous system

FAAH fatty acid amide hydrolase

GI gastrointestinal

GPR55 G-protein coupled receptor 55

GPR119 G-protein coupled receptor 119

5-HT 5-hydroxytryptamine

IBD inflammatory bowel disease

IBS irritable bowel syndrome

MGL monoglyceride lipase

NAPE-PLD N-acyl phosphatidylethanolamine phospholipase D

NAAA N-acylethanolamine-hydrolyzing acid amidase

OEA oleoylethanolamide

PEA palmitoylethanolamide

PPARα peroxisome proliferator-activated receptor alpha

PPARγ peroxisome proliferator-activated receptor gamma

Δ9-THC Δ9-tetrahydrocannabinol

TNBS trinitrobenzenesulfonic acid

TRPV1 transient receptor potential cation channel subfamily V member 1
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UC ulcerative colitis

VIC visceral insular cortex.
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Key points

• The endocannabinoid system (ECS) represents an important 

homeostatic entity of the gut that consists of cannabinoid receptors, 

their endogenous ligands (the “endocannabinoids”), and their 

synthesizing/degrading enzymes.

• A large number of studies have confirmed that the ECS is crucially 

involved in the control of motility, secretion and mucosal integrity of 

the gut and may even determine the course of intestinal inflammation 

and cancer. The ECS provides many drug targets for human 

gastrointestinal disorders, such as irritable bowel syndrome, 

inflammatory bowel disease and colon cancer.

• Conduction of clinical trials and translation into clinical application of 

cannabinoids are important future goals in this field.
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Fig. 1. 
Expression of receptors and synthesizing/degrading enzymes of the endocannabinoid system 

(ECS) in the normal and acutely inflamed human gastrointestinal (GI) tract. Data were taken 

from Wright et al. (5) and Marquéz et al. (7). CB1, CB2, cannabinoid receptors 1 and 2; 

FAAH, fatty acid amide hydrolase; MGL, monoacylglycerol lipase; NAPE-PLD, N-acyl 

phosphatidylethanolamine phospholipase D; DAGL, diacylglycerol lipase.
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Fig. 2. 
(Endo-) cannabinoids exert various anti-tumorigenic effects in colon cancer. For a more 

detailed description of molecular mechanisms in which cannabinoids and endocannabinoids 

could play a role, the reader is referred to Velasco et al. (134).
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