Skip to main content
. 2016 Nov 30;12(11):e1005017. doi: 10.1371/journal.pcbi.1005017

Table 1. Comparison of proposed approach with EMU approach on benchmark datasets.

The parantheses values correspond to (true positives, false positives) for precision and (true positive, false negatives) for recall.

Corpus EMU: Without sequence filter Our baseline approach: Co-occurrence only Our approach: Without sequence filter EMU: With sequence filter Our full approach: With sequence filter
PCA Precision 0.39 (151, 237) 0.37 (154, 263) 0.75 (132, 42) 0.59 (127, 89) 0.82 (144, 32)
Recall 0.80 (151, 37) 0.82 (154, 34) 0.70 (132, 56) 0.66 (127, 61) 0.77 (144, 44)
F-measure 0.52 0.51 0.724 0.62 0.794
BCA Precision 0.34 (242, 470) 0.33 (252, 504) 0.738 (206, 73) 0.61 (193, 121) 0.742 (207, 72)
Recall 0.85 (242, 42) 0.89 (252, 32) 0.725 (206, 78) 0.68 (193, 91) 0.73 (207, 77)
F-measure 0.49 0.49 0.73 0.64 0.74