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Abstract : Membrane type 1-matrix metalloproteinase (MT1-MMP) functions as a signaling mole-
cules in addition to a transmembrane metalloprotease, which degrades interstitial collagens and ex-
tracellular matrix components.  This review focuses on the multifunctional roles of MT1-MMP as a 
signaling molecule in vascular responses to pro-atherosclerotic stimuli in the pathogenesis of cardio-
vascular diseases.  First, the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)-MT1-

MMP signaling axis contributes to endothelial dysfunction, which is mediated via small GTP-binding 
protein RhoA and Rac1 activation.  Second, MT1-MMP plays a crucial role in reactive oxygen spe-
cies (ROS) generation through the activation of receptor for advanced glycation end products (AGEs) 
in smooth muscle cells, indicating that MT1-MMP may be a therapeutic target for diabetic vascular 
complications.  Third, MT1-MMP is involved in RhoA/Rac1 activation and Ca2+ signaling in the 
mechanism of thrombin-stimulated endothelial dysfunction and oxidant stress.  Fourth, the inhibi-
tion of the MT1-MMP/Akt signaling pathway may be an attractive strategy for treating endothelial 
disordered hemostasis in the development of vascular diseases linked to TNF-α-induced inflamma-
tion.  Fifth, MT1-MMP through RAGE induced RhoA/Rac1 activation and tissue factor protein up-
regulation through NF-κB phosphorylation in endothelial cells stimulated by high-mobility group 
box-1, which plays a key role in the systemic inflammation.  These findings suggest that the MT1-

MMP-mediated signaling axis may be a promising target for treating atherosclerosis and subsequent 
cardiovascular diseases.
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Introduction

Matrix metalloproteinase (MMP) and mem-
brane-type MMPs (MT-MMPs), a large family of 
zinc-dependent endopeptidases, are the fibrinolysins 
responsible for degrading a variety of extracellular 
matrix (ECM) components1,2).  MT-MMPs were 
identified as multifunctional enzymes for modulating 
the bioactivity of transmembrane receptors, which 
was anchored to the cell membrane instead of being 
soluble1-3).  MT-MMPs have been well known to 

serve as important enzymes engaged by tumor cells 
in the mechanisms of metastasis4).  All MT-MMPs 
act at the cell surface, and membrane type 1-MMP 
(MT1-MMP), an activator of pro-MMP-2, was local-
ized predominantly in human invasive breast carci-
nomas and spontaneously metastasizing melanoma 
cell lines, indicating that MT1-MMP may play a key 
role in the promotion of tumor cell invasion, metas-
tasis, and angiogenesis5,6).  Degradation of the vas-
cular ECM by MT-MMPs is critical for smooth mus-
cle cell (SMC) migration, plaque instability, and 
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consequent hypercoagulability in the pathogenesis 
of atherosclerosis and aortic aneurysms7,8).  Recent 
studies of bone marrow transplantation in MT1-

MMP2/2 mice have demonstrated that macrophage-

derived MT1-MMP plays a role in the pathogenesis 
of plaque stability9,10).  MT1-MMP may be a key 
MMP responsible for effecting postinfarction cardiac 
ECM remodeling and cardiac dysfunction11).  MT-

MMPs also play important roles for remodeling 
ECM during vascular injury, cell recruitment to the 
vessel wall, endothelial cell growth, and angiogene-
sis12,13).  Proinflammatory molecules including tu-
mor necrosis factor (TNF)-α and oxidized, low-den-
sity lipoprotein (ox-LDL) upregulate MT1-MMP 
expression in vascular SMCs and macrophages in 
human atherosclerotic plaques, and MT1-MMP acti-
vated by proinflammatory molecules affects ECM 
remodeling in the pathology of atherosclerosis14,15).  
MT1-MMP regulates MMP-2 expression and angio-
genesis-related functions in human umbilical vein 
endothelial cells16).  Rajavashisth et al.  also re-
ported that activation of endothelial cells by inflam-
matory cytokines and/or ox-LDL increases MT1-

MMP expression17).  Schneider et al.  reported 
that MT1-MMP deficiency in bone marrow-derived 
cells promotes collagen accumulation in mouse ath-
erosclerotic plaques18).  To our knowledge, MT1-

MMP affects various cellular functions not only as a 
pericellular protease but also as a signaling molecule 
in both physiological and pathological settings19-21).

Here, we focus our investigations on multifunc-
tional roles of MT1-MMP as a signaling molecule in 
vascular responses to atherosclerotic stimuli and 
suggest that MT1-MMP-mediated signaling path-
ways investigated may be a therapeutic target for 
cardiovascular disease.

Interactive impact of MT1-MMP and LOX-1 

Lectin-like ox-LDL receptor-1 (LOX-1) with a 
type II membrane protein structure has been identi-
fied as a major endothelial receptor for ox-LDL in 
endothelial cells (ECs)22).  Atherosclerotic stimuli 
including ox-LDL induce the downregulation of en-
dothelial nitric oxide synthase (eNOS) mediated via 
LOX-1, which is associated with the activation of 
small GTP-binding protein RhoA23), and subsequent 
ox-LDL-reduced nitric oxide (NO) production con-
tributes to impaired endothelial function24,25).  MT1-

MMP has been shown to be a key effector molecule 
during NO-induced endothelial migration and tube 
formation, indicating that MT1-MMP is a potential 
therapeutic target for NO-associated vascular disor-

ders26).  Small GTP-binding protein Rac1, a compo-
nent of nicotinamide adenine dinucleotide phos-
phate-oxidase (NADPH oxidase) is activated by ox-

LDL, and Rac1 activation subsequently increases 
reactive oxygen species (ROS) generation, which is 
implicated in the initiation and progression of ath-
erosclerosis27-29).  Molecular links between MT1-

MMP and small GTPases—in particular Rho and 
Rac—have been explored in cell migration as well as 
molecular synthesis30,31).  The formation of a com-
plex of LOX-1 with MT1-MMP was detected by flu-
orescent immunostaining and immunoprecipitation, 
and molecular interaction between MT1-MMP and 
LOX-1 contributes to the RhoA-dependent eNOS 
protein synthesis and EC invasion, and Rac1-medi-
ated NADPH oxidase activity and ROS generation32) 
(Fig. 1).  The tissue inhibitor of metalloproteinas-
es-2 (TIMP-2) inhibits MT-MMPs, which is an 
MMP-2 activator, and TIMP-2 binds to the catalytic 
domain of the cell surface receptor, MT1-MMP in 
the dimer, and to the hemopexin-like domain of 
proMMP-233-37).  Our findings showed that selec-
tive siRNA-mediated suppression of MT1-MMP and 
TIMP-2 markedly attenuated rapid RhoA and Rac1 
activation caused by ox-LDL mediated via LOX-1, 

Fig. 1.  LOX-1-MT1-MMP axis plays a crucial role in 
RhoA and Rac1 activation signaling pathways in 
ox-LDL stimulation.  In cultured human aortic 
ECs, surface expression of MT1-MMP is an es-
sential mediator of rapid RhoA and Rac1 activation 
through the activation of LOX-1 by ox-LDL.  The 
formation of a complex of LOX-1 with MT1-MMP 
contributed to RhoA-dependent endothelial NO 
synthase, Rac1-mediated NADPH oxidase activity, 
and subsequent ROS generation.  The LOX-1-

MT1-MMP signaling axis plays an important role 
in ox-LDL-mediated signaling pathways in ECs32).
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which forms a complex with MT1-MMP, confirming 
that a complex formed with MT1-MMP and LOX-1 
plays an integral role in ox-LDL-mediated signaling 
pathways in ECs32).

Involvement of MT1-MMP in RAGE  
activation signaling pathways

An advanced glycation end products (AGEs)/re-
ceptor for AGE (RAGE) signaling pathways involved 
in the pathogenesis of microvascular and macrovas-
cular diabetic complications38-40).  Ligands which 
bind to RAGE were accumulated and increased 
RAGE expression enhanced in accelerated diabetic 
atherosclerotic lesions41,42).  RAGE expression is 
increased in non-diabetic subjects with premature 
coronary artery disease43).  AGEs induce C-reac-
tive protein expression in hepatoma cells by sup-
pressing Rac1 activation44).  AGEs induced Rac1 
and p47 (phox), NADPH oxidase activation, resulting 
in subsequent increased ROS generation and NF-κB 
phosphorylation-related, redox-sensitive molecular 
expression in SMCs47) (Fig. 2).  Geranylgeranyl 
transferase I (GGTase I) through the small GTPases 
RhoA and Rac1 activation is involved in vascular in-
jury with endothelial dysfunction, which contributes 
to ROS generation and vascular NO production45,46).  
AGEs induced GGTase I activity, Rac1-p47(phox) 
activation, NADPH oxidase activity, ROS generation, 
and molecular expression in SMCs (Fig. 2), and 
RAGE was found to form a complex with MT1-

MMP in both cultured SMCs and the aortae of dia-
betic rats47).  Our findings show the role of MT1-

MMP in the AGE/RAGE-triggered signaling 
pathways and the molecular interaction between 
RAGE and MT1-MMP in SMCs, suggesting that 
MT1-MMP may be a novel therapeutic target for di-
abetic vascular complications47).

Roles of MT1-MMP in RhoA/Rac1-dependent 
signaling pathways  

in thrombin stimulation

Thrombin regulates the cascade of Rac1/
NADPH oxidase-dependent ROS generation, which 
modulates NO synthesis including eNOS protein ex-
pression48,49).  Thrombin exerts vascular responses 
mediated via a family of G protein-coupled recep-
tors, protease-activated receptors (PARs) as well as 
the process of hemostasis including coagulation, 
platelet aggregation, and thrombus formation50).  
Thrombin signaling is mediated by a family of G pro-
tein-coupled PARs, and the prototype for this family, 

PAR1, is activated when thrombin cleaves its N-ter-
minal exodomain at a specific site51).  PAR1 is the 
primary receptor that mediates active responses in 
atherosclerosis52).  Red wine polyphenolic com-
pounds strongly inhibit thrombin-induced matrix in-
vasion of SMCs, and this effect is associated with a 
direct inhibition of MT1-MMP53).  Thrombin upreg-
ulates MT1-MMP expression via PI3K and Rac1 ac-
tivation in cord blood hematopoietic stem/progenitor 
cells (CB HSPC), and, subsequently, MT1-MMP 
contributes to the priming of the homing-related re-
sponses of CB HSPC54).  The interaction between 
MT1-MMP and PAR1 in the membrane of ECs con-
tributes to the suppression of thrombin-induced en-
dothelial dysfunction via Rac1-dependent NADPH 
activation including ROS generation and the expres-
sion of both TF and the plasminogen activator inhibi-
tor type-1 (PAI-1)60) (Fig. 3A).  Silencing of MT1-

MMP suppresses sphingosine-1-phosphate-triggered 
Ca2+ mobilization in glioblastoma cells55).  It is 
known that expression of TF expression is regulated 
in part by NF-κB phosphorylation56).  We previous-
ly reported that RhoA-dependent NF-κB phosphor-
ylation and RhoA-related Ca2+ signaling mediate TF 

Fig. 2.  Therapeutic targeting RAGE/MT1-MMP/
Rac1 axis in redox-sensitive signaling pathway in 
diabetic vascular complications.  The schematic 
diagram shows that MT1-MMP is involved in 
AGEs/RAGE-dependent, redox-sensitive signal-
ing pathways in cultured SMCs.  The MT1-

MMP/RAGE complex modifies this pathway and 
the blockade of RAGE/MT1-MMP axis are candi-
dates for therapeutic strategy.  These findings 
identify the attractive therapeutic targeting for 
RAGE/MT1-MMP/Rac1 in diabetic vascular com-
plications47).
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and PAI-1 expression in monocyte adhesion to ECs 
and that there is a cross-talk between Ca2+ signaling 
and Rac1-dependent ROS generation57,58).  Ca2+ in-
flux via transient receptor potential canonical (TRPC) 
channels induces NF-κB phosphorylation in ECs59).  
Our study revealed that molecular interaction be-
tween MT1-MMP and PAR1 regulated thrombin-

triggered TF and PAI-1 overexpression through 
RhoA-associated Ca2+ signaling and NF-κB phos-
phorylation in ECs60) (Fig. 3B).  Our findings sug-
gest that MT1-MMP mediates thrombin-triggered 
RhoA and Rac1 activation and Ca2+ signaling in ECs, 
suggesting that thrombin-triggered MT1-MMP-re-
lated signaling may be a target for endothelial dys-
function and oxidant stress in the pathogenesis of 
cardiovascular diseases60).

Impact of MT1-MMP on Akt  
phosphorylation in TNF-α stimulation

Phosphorylation of protein kinase B (Akt) at 
two key sites, the activation loop and the hydropho-
bic motif, activates the kinase and promotes endo-
thelial proliferative dysfunction, leading to apoptosis 
of ECs, and regulates the balance between cell sur-
vival61,62).  The Akt signaling pathway is also associ-
ated with various cellular processes including coagu-

lation and inflammation63).  Activation of phospho‑ 
inositide 3-kinase (PI3K) and its downstream target 
Akt is essential for TNF-α-induced NF-κB activa-
tion as well as decreased TNF-α-induced adhesion 
molecule expression and monocyte adhesion, which 
are linked to the development of vascular diseases 
and induce inflammatory responses in ECs64).  
Granulocyte colony-stimulating factor increased 
MT1-MMP protein and activity in human hemato-
poietic cells in a PI3K/Akt-dependent manner, indi-
cating the molecular interaction between MT1-

MMP and Akt65).  Inflammatory cytokines such as 
TNF-α are master regulators of vascular proathero-
genic changes, the action of which has been linked 
to endothelial dysfunction in many pathophysiologi-
cal conditions29,66).  TNF-α-induced inflammatory 
responses and procoagulant activity have been im-
plicated in the pathogenesis of vascular diseases67,68).  
TNF-α induced the increased levels of TF antigen 
and activity and reduced the antigen levels of throm-
bomodulin (TM), which directly blocks the interac-
tion between thrombin and the procoagulant protein 
substrates in the pathogenesis of vascular disease69,70).  
MT1-MMP possesses transmembrane and cytoplas-
mic domains in addition to extracellular domains, 
and the cytoplasmic domain of MT1-MMP has an 
important role in cell invasion and proliferation, indi-

Fig. 3.  Schema of MT1-MMP involvement in thrombin-triggered signaling pathways in ECs.  A.  RhoA activation 
involved in thrombin-triggered [Ca2+]

i
 increase and TF and PAI-1 expression in ECs, whereas Rac1 activation in-

duced thrombin-triggered ROS generation and TF and PAI-1 expression60).  B.  MT1-MMP mediates thrombin-

triggered RhoA and Rac1 activation, resulting in the downstream events including Ca2+ signaling, NADPH oxi-
dase activity, ROS generation, and TF and PAI-1 expression.  MT1-MMP contributes to the RhoA/Ca2+ and 
Rac1/NADPH oxidase-dependent signaling pathways in thrombin-induced vascular responses in ECs60).
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cating that MT1-MMP functions as a signaling mol-
ecule71,72).  TIMP-2 and MT1-MMP siRNA en-
hanced the increased levels of TF antigen and 
activity, and further reduced the decreased levels of 
TM antigen in TNF-α-stimulated ECs, indicating 
that MT1-MMP may be critical for the modulation 
of procoagulant states in TNF-α stimulation.  Addi-
tionally, TIMP-2 and MT1-MMP siRNA inhibited 
the decrease in Akt phosphorylation in TNF-α-

stimulated ECs73).  A specific pharmacological in-
hibitor of Akt and Akt siRNA enhanced the TNF-α-
induced changes of TF antigen and activity as well 
as TM antigen in ECs, indicating that MT1-MMP 
modulates Akt signaling pathways in TNF-α-

stimulated ECs73).   MT1-MMP siRNA also inhibit-
ed TNF-α-induced NF-κB phosphorylation.  MT1-

MMP binds to Akt within the cytoplasm of TNF-α-
treated ECs.  These findings suggest that molecular 
interaction between MT1-MMP and Akt contributes 
to changes in TNF-α-induced TF and TM expres-
sion changes in ECs73) (Fig. 4A).  Forkhead box 
protein O1 (FoxO1) is a transcription factor that con-
tributes to physiological processes including Akt-
dependent cell proliferation, apoptosis, and insulin 
signaling74).  TNF-α induced FoxO1 activation via 
Akt phosphorylation, which acts as a master switch 

to control cell cycle arrest and apoptosis75,76).  More
over, MT1-MMP regulates EC apoptosis through 
Akt-mediated phosphorylation of a forehead tran-
scription factor, FoxO1, as well as the activation of 
caspase-3 in TNF-α stimulation, indicating that the 
MT1-MMP/Akt signaling axis plays a critical role in 
the mechanism(s) of endothelial apoptosis73) 
(Fig. 4B).  The MT1-MMP/Akt signaling axis mod-
ulates TNF-α-stimulated procoagulant activity and 
endothelial apoptosis in ECs, suggesting that MT1-

MMP is a potential signaling molecule for treating 
endothelial disordered hemostasis in the develop-
ment of vascular diseases linked to TNF-α-induced 
inflammation73).

Interaction of MT1-MMP and RAGE  
in HMGB-1 stimulation

A proinflammatory cytokine, high-mobility box 
group 1 (HMGB-1), which is derived from both in-
jured endothelium and activated macrophages/mono-
cytes, contributes to the progression of atheroscle-
rosis and other cardiovascular diseases77).  RAGE is 
a multiligand receptor, which binds to AGEs as well 
as other high-affinity ligands such as HMGB-178).  
Statin suppresses vascular inflammation and athero-

Fig. 4.  Schematic diagram describing the mechanisms of MT1-MMP/Akt signaling axis in TNF-α-dependent proco-
agulant activity and apoptosis of ECs.  A.  MT1-MMP in the cytoplasm of ECs forms a complex with Akt in the 
intracellular signaling pathways in TNF-α-stimulated ECs.  The interaction between MT1-MMP and Akt regu-
lates TNF-α-induced changes in TF and TM expression in ECs73).  B.  The interaction between MT1-MMP and 
Akt contributes to endothelial apoptosis through FoxO1 phosphorylation as well as caspase-3 activation.  MT1-

MMP plays a crucial role of MT1-MMP in Akt-dependent signaling pathways in TNF-α stimulation73).
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sclerosis in ApoE−/− mice by downregulation of the 
HMGB-1-RAGE axis in atherosclerotic plaques79).  
Our previous report has demonstrated that the in-
teraction between MT1-MMP and RAGE induced 
NADPH oxidase-dependent ROS generation and 
NF-κB phosphorylation in SMCs47).  The binding of 
MT1-MMP to RAGE also occurred in human ECs80).  
MMPs are inflammatory mediators linking inflam-
mation with angiogenesis and vascular remodeling81).  
The addition of HMGB-1 to ECs activated the rapid 
activation of MT1-MMP80).  TIMP-2 and MT1-

MMP siRNA prevented the GTP/GDP exchange of 
small GTP protein RhoA in ox-LDL-stimulated 
ECs37).  The RhoA/Rho kinase pathway was up-
stream of the NF-κB-dependent pathway, which is 
required for TF upregulation57,82).  Our results clari-
fied that MT1-MMP suppressed HMGB-1-induced 
TF upregulation via RAGE, RhoA, and NF-κB sig-
naling in ECs80) (Fig. 5).  NADPH oxidase in AGE/
RAGE-mediated generation of ROS enhanced the 
expression levels of TF upon stimulation with 
AGE83).  Rac1 activation-dependent ROS produc-
tion induced thrombin-induced upregulation of TF, 
which is one of the redox-sensitive, signaling-de-

pendent molecules60).  Our findings suggest that 
HMGB-1-stimulated Rac1 activation induces NADPH 
oxidase-mediated ROS generation and TF upregula-
tion80) (Fig. 5).  Toll-like receptor (TLR)-2 and 
TLR-4 are expressed in vascular ECs and function 
as the receptors for HMGB-184).  Further studies 
are needed to examine the role of TLRs in HMGB-

1-dependent TF synthesis.  Our findings suggest 
that HMGB-1 activates MT1-MMP through RAGE, 
leading to RhoA/Rac1 activation and NF-κB phos-
phorylation, resulting in TF antigen upregulation 
and eNOS antigen downregulation in the pathogene-
sis of the progression of endothelial dysfunction-de-
pendent atherosclerosis80).

Concluding remarks

In this review, we summarized several features 
of MT1-MMP as regulators of vascular signaling, 
which contribute to initiation and progression of ath-
erosclerosis.  MT1-MMP is a signaling molecule of 
vascular proatherogenic changes induced by several 
proinflammatory and proatherogenic stimuli, which 
linked to impaired vascular cell function in the pa-
thology of atherosclerosis and subsequent cardiovas-
cular disease32,47,60,73,80).
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