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Abstract

Principal component regression, a multivariate calibration technique, is an invaluable tool for the 

analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This 

method utilizes training sets to separate cyclic voltammograms into contributions from multiple 

electroactive species. The introduction of chronically implanted microelectrodes permits 

longitudinal measurements at the same electrode and brain location over multiple recordings. The 

reliability of these measurements depends on a consistent calibration methodology. One published 

approach has been the use of training sets built with data from separate electrodes and animals to 

evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted 

rewards have been used to generate calibration data. This study addresses these approaches using 

voltammetric data from three different experiments in freely moving rats obtained with acutely 

implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of 

principal component regression that result in significant underestimates of concentrations and 

improper statistical model validation that, in turn, can lead to inaccurate data interpretation. 

Therefore, the calibration methodology for chronically implanted microelectrodes needs to be 

revisited and improved before measurements can be considered reliable.
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In vivo measurement techniques such as microdialysis and electrochemical methods have 

enhanced understanding of the roles of neurotransmitters during behavior.1 One 

electrochemical technique, fast-scan cyclic voltammetry (FSCV), is particularly useful to 

detect subsecond dopamine release in behaving animals. The cyclic voltammograms (CVs) 

provided by this technique give chemically specific information for identification of 

contributing species. Most FSCV applications have utilized acutely implanted carbon-fiber 

microelectrodes, but chronically implanted electrodes have also been used.2 Chronically 

implanted electrodes are advantageous because they allow longitudinal recordings at the 

same location in the brain.

Calibration is a major concern with all in vivo techniques. Originally, the peak oxidation 

current in CVs for dopamine was scaled to concentration with a calibration factor obtained 

in vitro. However, this technique fails when multiple species overlap, as when pH and 

dopamine changes occur simultaneously,3–6 and are inappropriate for long-term dopamine 

measurements, such as slow basal level increases in response to cocaine7,8 and other 

prolonged responses9,10 where current contributions from interferences are more likely to 

play a role. Comparison of CVs with templates for dopamine, utilizing the correlation 

coefficient to confirm identity, has also been used.2,11 More recently, principal component 

analysis in tandem with inverse least-squares regression (PCA-ILS)12,13 has been introduced 

for resolving and quantifying overlapping compounds in FSCV data.7,14,15 PCA-ILS models 

use training sets containing CVs from multiple electroactive analytes for calibration.13 As a 

multivariate analysis technique, PCA-ILS uses the entire CV for concentration prediction. 

When used with acutely implanted electrodes, training sets can be constructed at the same 

brain location where behaviorally evoked chemical measurements were made using 

electrical stimulation to evoke defined chemical changes. Detailed description of the use of 

PCA-ILS with FSCV can be found elsewhere.7,12–17

Chronically implanted microelectrodes2 pose unique calibration problems. Longitudinal 

experiments need to demonstrate both electrode stability and reliable concentration 

calibration over successive recording sessions. The short durations of acute implantation 

studies minimize the neuroimmunological response and adhesion of biomolecules to the 

electrode, thus making postexperiment calibration factors obtained in vitro relevant to in 

vivo data.18 However, this may not be true for the extensive implantation times used in 

chronic recordings. The temporal distortion seen with chronically implanted 

microelectrodes2 suggests tissue encapsulation and/or biofouling, each of which represents a 

much different environment from those seen in post vivo calibration. Recent measurements 

with chronically implanted electrodes have found peak dopamine concentrations of 5 nM or 
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less,10 which represents an order-of-magnitude deviation from dopamine concentrations 

measured with acutely implanted microelectrodes during natural reward.4,5 The 

chemoanalytical power of FSCV to determine concentrations is important because the 

affinity of receptors varies significantly between subtype, as highlighted for dopamine.19 

Thus, these differences are concerning and may reflect problems with current calibration 

methodology for these sensors.

Because stimulating electrodes are rarely implanted with chronically implanted 

microelectrodes, robust dopamine and pH training sets are rarely obtained in the same 

location as behavioral measurements. To circumvent this problem, one approach has utilized 

unexpected sucrose delivery, a procedure that evokes dopamine transients,6 for within-

subject analyte verification.20,21 Another calibration attempt has been the use of a “standard 

training set” built from electrically stimulated dopamine transients in separate 

subjects.8–10,22–30 Here, we compare these techniques at acutely implanted electrodes to 

previously established protocols for PCA-ILS using data from behaving animals. The results 

reveal that large concentration errors are introduced with these approaches to PCA-ILS. 

Furthermore, the standard training set approach nullifies the use of residual analysis for 

model validation.

EXPERIMENTAL SECTION

Animals

Male Sprague–Dawley rats (250–400 g) from Charles River (Wilmington, MA, USA, n = 6) 

and Harlan Sprague–Dawley (Indianapolis, IN, USA, n = 19) were housed individually on a 

12/12 h light/dark cycle. Rats were given access to water ad libitum. For behavioral 

paradigms utilizing sucrose rewards, animals were food-restricted as described previously.31 

Animal procedures were approved by the UNC-Chapel Hill Institutional Animal Care and 

Use Committee (IACUC).

Surgery

Rats were prepared for voltammetry experiments with acute electrodes. Following 

anesthesia, a guide cannula was implanted above the region for voltammetric measurements 

(above the nucleus accumbens (NAc) core for multiple schedule reinforcement and 

Pavlovian conditioning, above the NAc shell for intracranial self-stimulation (ICSS)). A 

bipolar stimulating electrode was implanted into the substantia nigra/ventral tegmental area 

(SN/VTA). A Ag/AgCl reference electrode was implanted in the contralateral hemisphere 

during surgery, except in ICSS animals where it was implanted on the day of experiments 

through a guide cannula.

Behavior

The behavioral training used in this work is described in more detail in the SI Materials and 

Methods and was adapted from prior publications. Training for multiple schedule 

reinforcement31 or Pavlovian conditioning32 were as described previously. During ICSS 

animals were allowed to press continuously for electrical stimulations to the SN/VTA area.33
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FSCV

FSCV recordings were made after recovery from the implantation surgery and employed 

acutely implanted carbon-fiber electrodes. The voltammetry waveform was a triangular 

wave (−0.4 and 1.3 V vs Ag/AgCl) at 400 V/s with an application frequency of 10 Hz. 

Measurements were recorded with HDCV using interface cards (National Instruments, 

Austin, TX).34 In all animals, electrical stimulation was applied postexperiment to evoke 

dopamine and pH changes to form training sets as described previously.16 Unless stated 

otherwise, training sets were built at the same electrode and recording location as the 

experimental data using previously published software.34 Important terms for PCA-ILS are 

described in the Supporting Information. Further aspects of data analysis are described in the 

SI Materials and Methods.

Statistical Analysis

All statistical analyses were made in GraphPad Prism (GraphPad Software Incorporated, La 

Jolla, CA) and LabView (National Instruments, Austin, TX) with an α-value of 0.05.

RESULTS AND DISCUSSION

FSCV Measurements during Behavior Consist of Multiple Physiologically Relevant 
Components

FSCV data recorded in vivo contains contributions from numerous substances. Signals in 

dopamine rich regions often include pH changes that occur not only during electrical 

stimulation of dopaminergic pathways35 but also during unconditioned4,7,36 and Pavlovian36 

behaviors. We illustrate these changes here with CVs obtained during a behavioral task for 

which we previously showed evoked fluctuations in dopamine.31 Rats were initially trained 

to press a lever for sucrose reward; each press resulted in one pellet (FR1) delivered into a 

nearby food receptacle. Rats were then trained to press a spatially separate lever (FR1) for 

intravenous infusions of cocaine. On test day, FSCV recordings were made during a multiple 

schedule, wherein rats responded for one reinforcer (FR1; sucrose, 15 min; or cocaine, 2 h), 

followed by a 20 s timeout period (no lever extended, dark chamber), and finally extension 

of the other reinforcer-paired lever. Reinforcer order was varied across animals.

Color plots of voltammetric data reveal qualitative aspects of the resulting chemical changes. 

Dopamine increases following lever presses (peak, 0.6 V) and is accompanied by a basic pH 

shift (peak, 0.2 V)37 (Figure 1a). These signals were resolved by PCA-ILS using a training 

set obtained at the same location via electrical stimulation of the SN/VTA. The average time 

course and amplitude of pH changes to sucrose and cocaine were found to be significantly 

different (Figure 1b), and both time courses differed from those seen with dopamine.31 The 

onset of pH changes preceded lever responding for cocaine but not for sucrose. Cocaine-

reinforced pH responses were larger than sucrose-reinforced responses, regardless of 

reinforcer order (two-way mixed design ANOVA [sucrose vs cocaine, within subjects 

factors; reinforcer order, between subject factor]; F1,6 = 22.12, p < 0.005) (Figure 1c). This 

example critically illustrates the necessity for multivariate analysis when monitoring with 

FSCV, as each analyte carries distinct information.
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Training Sets from Natural Rewards

In experiments where it is inconvenient to implant stimulating electrodes, naturally 

occurring transients, such as those evoked with unexpected sucrose delivery,6 have been 

used for analyte verification. An example is shown in Figure 2a, where cue-, sucrose-, and 

electrically evoked dopamine CVs collected at the same electrode and recording location 

maintain a high correlation (0.91 < r2 < 0.99). However, this procedure provides only 

qualitative information. Instead, the naturally evoked transients could be used to build a 

PCA-ILS model that permits multivariate concentration prediction. To evaluate this 

approach, data was collected in four subjects that performed a behavioral discrimination task 

described previously.32 The signals here were dopamine transients in response to cues. Two 

training sets were built in each subject at the same electrode: one using transients evoked 

from sucrose delivery and the other from electrically evoked transients (Table S-1). The food 

pellets tended to give a narrower range of amplitudes than the electrical stimulations (Figure 

2b). For each animal, the dopamine concentrations obtained with the training set employing 

electrical stimulation in the same animal were first determined. Next, the dopamine 

concentrations computed with the sucrose-evoked training set were determined, and the 

percent difference to the values obtained with electrically evoked training sets was found 

(Figure 2c). Generally, the dopamine concentrations predicted by sucrose-evoked training 

sets were considerably lower despite using the same electrode and sensitivity factor (ratio 

paired t test, p < 0.0001). The large majority of transients (96.1%) were underestimated with 

few overestimations (2.3%).

These differences are likely due to the narrow range of concentrations obtained with the 

sucrose-evoked transients compared to those obtained with electrical stimulations. 

Postexperiment transients evoked with unexpected sucrose delivery can fail to span the 

concentration range of transients seen during behavior, which has been stated previously to 

be an important facet of training set construction.14 Moreover, it is more difficult to separate 

sucrose-evoked dopamine transients from other chemical events, such as overlapping pH and 

ionic fluctuations, than it is for time-locked electrical stimulations, resulting in the use of 

impure training set standards for model construction. With a narrow calibration range, 

impure standards will have an undue influence on the extrapolation of the calibration curve 

to higher concentrations.

PCA-ILS and Training Sets from Different Electrodes

An alternate approach has been the use of training sets built with electrodes from other 

experiments to predict concentrations. To further investigate this approach, we used data 

from rats executing ICSS.33 The data sets from each of the five animals were designated by 

the letters A–E. Animals pressed a lever repetitively for approximately 2 min, and each lever 

press evoked electrical stimulation of the SN/VTA. Voltammetric responses were measured 

in the NAc with acutely implanted carbon-fiber microelectrodes. A representative color plot 

(Figure 3) indicates both dopamine and pH changes, observed in all animals. Interestingly, 

the individual voltammogram shown (top left) was highly correlated with an isolated, 

electrically evoked dopamine CV (r2 = 0.851) despite clearly containing pH contributions, 

illustrating that the template approach2,11 is insufficient for species resolution.
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Training sets for dopamine and pH changes were constructed from data obtained during 

experimenter-delivered electrical stimulation in each animal. Five CVs were used for each 

analyte. The K-matrices from these data (Figure 4a–b) serve as graphical representations of 

the general shape of the CVs for each particular analyte. The overall shapes of dopamine and 

pH K-matrices were similar across subjects, as evidenced by high correlation coefficients 

between K-matrices (Pearson's r, 0.953 < r < 0.992 for dopamine, 0.950< r < 0.985 for pH).

First, we calculated the concentrations of dopamine transients ([DA]max) during ICSS for 

each animal using the training set obtained within-subject. Next, we evaluated dopamine 

concentrations using training sets obtained with different microelectrodes and subjects, and 

these concentration predictions were compared to those predicted by the within-subject 

training set (Figure 4c). Significant differences were found (repeated measures one-way 

ANOVA with Dunnet's multiple comparisons (Table S-2)). Application of training sets from 

other animals tended to underestimate [DA]max (78.4% peaks), though overestimations also 

occurred (20.3%). Percent deviations widely varied over a physiological range of transients 

(~50–300 nM), with deviations approaching 50% for some transients.

Inspection of the CVs comprising the training sets reveals the origin of these errors (Table 

1). Despite the high correlation between K-matrices, differences in peak locations, peak 

separations, and ratios of peak currents exist between training sets at separate electrodes. 

Because PCA-ILS utilizes the entire CV for concentration prediction, variation in these key 

CV characteristics between electrodes causes PCA-ILS models using different training sets 

to predict different responses when applied to the same data set. Because training sets 

generated from recordings with the same electrode and recording session contain features 

similar to experimental CVs, they provide the best estimate of actual analyte responses. 

Thus, the variability in Figure 4c reveals the failure of calibration with alternate (between-

subject) training sets that will ultimately lead to erroneous data interpretation.

Residual Analysis

While the preceding results show that the use of inappropriate training sets leads to 

significant errors in concentration prediction, an even larger problem is that model validation 

is precluded. For training sets established within the same animal and same electrode, we 

have used residual analysis for validation,14,15 in which a residual is calculated from the 

voltammetric currents unaccounted for by the training sets. If the squared sum of residual 

current at each applied potential for a particular CV (Qt) exceeds a training set-specific 

threshold value (Qα), then, according to Jackson,38 a source of variance not accounted for in 

the PCA-ILS model is significantly contributing to the signal, indicating the model is invalid 

to analyze the data.

As an example, the ten-second trace in Figure 3 was analyzed with both the training set built 

in the same subject (E), the appropriate training set, as well as a training set built from data 

obtained in another animal (C). Training set C yielded a relatively small (~17%) error in 

concentration prediction (compared to E) due to a notably high signal-to-noise ratio (S/N) of 

this data trace. The Qt values obtained with the appropriate training set (E) did not exceed its 

Qα, indicating a valid analysis (Figure 5a). In contrast, Qt values for training set C 

frequently exceeded its Qα value (Figure 5b), indicating that large parts of this analysis are 
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invalid. Color plots of the residuals allow these unassigned currents to be evaluated as a 

function of potential. The invalid analysis (training set C, Figure 5b) reveals considerable 

unassigned current near the peak locations for dopamine and pH, features not present for the 

valid training set E (Figure 5a).

The number of residual threshold crosses at [DA]max varied between applied training sets for 

each data set (Table 2). Data sets with low noise result in few to no residual crosses across 

training sets (ex. data set A). However, alternative training sets can produce more residual 

threshold crosses than analysis with within-subject training sets, rejecting experimental data 

that would be retained using proper PCA-ILS protocol (ex. data set C, E). Conversely, 

alternative training sets can result in fewer residual crosses than the within-subject training 

set, as is the case with training sets with larger Qα (ex. training set E). This leads to the 

retention of questionable data that should have been discarded. The inappropriate inclusion 

of false data or exclusion of accurate data illustrates the failure of model validation when 

using generalized training sets.

Standard Training Sets Constructed from Multiple Electrodes

Recently, some have adopted a PCA-ILS approach that analyzes data using a “standard 

training set” built from CVs collected in multiple subjects.8–10,22–29 Ideally, the generality 

of this training set would allow it to be more applicable across data sets than alternate 

training sets built from single electrodes.

To evaluate this approach, composite training sets containing 10 CVs were made using one 

dopamine and one pH CV selected at random from each training set (A–E) shown above. 

Due to the large number of possible training sets (510), the number of training sets 

constructed was limited to 10,000, and the resulting K-matrices for each training set were 

averaged. While the average K-matrices for DA and pH exhibit standard shapes for these 

analytes, variability was seen between training sets, particularly between pH K-matrices 

(Figure 6a). Furthermore, a wide range of Qα values is seen between composite training sets 

(Figure 7a), indicating an inconsistent treatment of noise.

If this variability reflects bias based on the random selection of CV standards, increasing the 

number of standards could provide more consistent K-matrices. However, increasing the 

number of CV standards selected from each training set resulted in K-matrices that no 

longer resemble the represented analytes (Figure 6b–d). This reduced ability of PCA-ILS to 

reliably identify dopamine and pH stems from the increased rank of these training sets 

(Figure 7b). PCA-ILS calculates a number of principal components (PCs) equal to the 

number of standards in the training set. These PCs are separated into PCs that describe 

significant sources of variance (primary PCs) and those that do not (secondary PCs). Rank, 

the number of retained primary PCs, is an important parameter in PCA-ILS that we 

determine using Malinowski's F-test.16 With this approach, each individual training set (A–

E) had two primary PCs, reflecting features for both dopamine and pH changes. However, in 

composite training sets built from multiple electrodes, standard CVs have a wider range of 

key characteristics (Table 1) and different sources of deterministic current. This requires 

more primary PCs (i.e., higher rank) to describe the sources of variance. As a result, the 

signal for the analytes is spread among several PCs, leading to K-matrices without clear 
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depictions of each analyte. In this case, the calibration model will overfit the data, causing a 

diminished tolerance for uncaptured variance and a reduction in the Qα values. (Figure 7a). 

These problems are common to PCA-ILS and are well characterized in the literature.12

In principle, one could restrain the number of primary PCs to two, reflecting only variance 

within dopamine and pH signals. This leads to much cleaner K-matrices for dopamine and 

pH for all training set sizes (Figure 8). However, because Qα values are largely determined 

by information in secondary PCs,14,15 the forced removal of PCs that Malinowski's F-test 

would retain results in very large Qα values (Figure 7c), precluding model validation.

CONCLUSIONS

When used correctly, PCA-ILS is a powerful tool to unravel overlapping signals, particularly 

for CVs in awake, behaving animals. As shown here and elsewhere, pH changes serve as an 

intriguing indirect marker for local activity4,36 in various behavioral paradigms, carrying its 

own unique signal. However, despite its advantages, PCA-ILS can only provide meaningful 

results with training sets obtained by appropriate protocols. Calibration sets need to span the 

concentration range that occurs during behavior.

Furthermore, they should be generated using the same equipment used to collect the 

experimental data. Indeed, the transfer of multivariate calibration models between 

instrumentation is a well-documented problem in the literature.39 The generalized training 

sets do not provide a suitable PCA-ILS model for two major reasons. First, their application 

leads to significant underestimations of concentrations, effectively diminishing the signal-to-

noise ratio, masking small, yet biologically relevant signals. Second, generalized training 

sets violate the theory behind residual analysis, which is important for model validation.

For FSCV, these problems arise from differences in CVs between electrodes, which can arise 

from multiple sources. Reference electrodes have been known to drift during chronic 

implantation,7,40 leading to voltage offsets in the CVs. Voltage distortion may be particularly 

problematic when using chronically implanted microelectrodes, because impedance changes 

following implantation41 could cause CVs to vary across recording sessions. Nonetheless, 

the use of acutely implanted working and reference electrodes in this study did not prevent 

differences between electrodes. This reflects a fundamental limitation in comparing CVs 

across different carbon-fiber microelectrodes: carbon surfaces are complex and 

heterogeneous,37 leading to differences in electron-transfer and adsorption kinetics. 

Particularly, the pH signal was shown to vary widely across electrodes in this study, a 

perhaps unsurprising finding due to the strong dependence of the pH response on the surface 

state of the electrode.37 Thus, building separate training sets for each carbon-fiber electrode 

becomes essential to convert experimental data into meaningful chemical information. The 

unpredictable deviations in dopamine concentrations across training sets (Figure 4c) make it 

unlikely that a standard training set could be constructed that would be consistent to all 

experiments. Indeed, PCA-ILS has been used to demonstrate systematic differences between 

instruments, rather than reconcile data between them.42 Furthermore, a principal advantage 

of PCA-ILS is its ability to separate sources of variance into distinct contributions from 

signal and noise.14,15 This advantage is violated 2-fold with generalized training sets, as 
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standards from different electrodes will not reflect noise in the experimental data set and will 

introduce unrepresentative noise.

A principal advantage of using chronically implanted microelectrodes is to monitor changes 

in dopamine over time at the same electrode and recording site. For such trends across 

recording sessions to be considered reliable, it must be established that concentration 

calibration methods can act consistently across recording days. In light of the variability in 

training sets from different electrodes, improved calibration methodology for these sensors 

is crucial. Otherwise, improper PCA-ILS protocols could mask true longitudinal trends in 

dopamine release. Thus, as the original developers of PCA stated,12,43 the PCA-ILS model 

must be generated under the same experimental conditions as the data to be analyzed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
pH changes depend on reinforcer identity and order. a) Example of dopamine and basic pH 

shifts for one animal during performance of the sucrose/cocaine multiple schedule. A three-

dimensional color plot is obtained by plotting time as the abscissa, the applied potential as 

the ordinate, and the current in false color. Insets: cyclic voltammograms (CVs) immediately 

surrounding lever press reflect dopamine (black dotted line), while CVs averaged at 7 s 

following lever press indicate basic shifts in pH (blue dotted line). Background subtraction 

at white dotted line. b) (Top) Changes in pH in the NAc core during sucrose and cocaine 

self-administration. pH is averaged into 500 ms bins (mean ± sem) and aligned to lever press 

(dotted line, time 0 s) for cocaine (gray) and sucrose (black). Open bar indicates bins 

significantly higher than baseline for cocaine (Newman-Keuls post hoc test, *p < 0.05). 

(Bottom) Comparison of peak pH within a 1 s window surrounding lever press (left, green 

column, p < 0.005) and 9–10 s later right, blue column, p < 0.5) for sucrose (black) versus 

cocaine (gray), p < 0.005. c) Comparison of peak pH within a 1 s window surrounding lever 

press for sucrose and cocaine when self-administered first (white bars) versus second (gray 

bars) in the multiple schedule, p < 0.005.
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Figure 2. 
Training set construction with naturally evoked transients. a) Dopamine CVs evoked by 

cues, electrical stimulation, and unexpected sucrose delivery share high correlation. b) 

Dopamine transients evoked by unexpected delivery of sucrose pellets (left) post-experiment 

have a relatively small (maximum ~150 nM) and narrow (~60–70 nM) range. Varying 

stimulation parameters (right) enables generation of dopamine transients over a wide range. 

Scale bars: 100 nM [DA]. c) Peak dopamine concentration values obtained using training 

sets built with only naturally occurring transients post-experiment compared to values 

obtained with training sets built with electrical stimulation in the same subject. Sucrose-

constructed training sets consistently predicted lower dopamine concentrations than 

electrical stimulation training sets.
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Figure 3. 
Use of principal component analysis to predict analyte concentrations. The white dotted line 

represents the cyclic voltammogram used for digital background subtraction. Each black 

triangle indicates a lever press-induced electrical stimulation, resulting in dopamine release. 

The inset cyclic voltammogram (top left) was collected at the blue dotted line. Principal 

component analysis allows separation of the total current into contributions from dopamine 

and pH, with any remaining current contained in a residual voltammogram (bottom right). 

Using this method, concentration versus time traces are acquired for both analytes (top right, 

DA and middle right, pH). Scale bars: 250 nM [DA], 0.025 pH.
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Figure 4. 
Training sets built in different subjects predict different dopamine transient concentrations. 

a) Dopamine K-matrices for five different training sets (A–E). Each K-matrix is normalized 

to the external calibration factor (10 nA/μM) measured at the peak anodic potential (Ep,a). 

Differences are seen in the ratio of peak currents, peak location, and separation between the 

anodic and cathodic peaks. b) pH K-matrices from training sets A–E. Each K-matrix is 

normalized to the external calibration factor (−40 nA/pH unit) at EQ,H. c) Dopamine 

transients seen during ICSS were first analyzed with the training set built in the same subject 

as the unknown data set. These transients were subsequently analyzed with training sets built 

in other subjects, and these values were compared to the original predicted concentration.
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Figure 5. 
Residual analysis with different training sets. a) The residual trace and color plot from a 

training set built in the same subject (E). The residual trace remains below the residual 

threshold (dotted line, Qα = 858.8). The residual plot contains a small amout of unaccounted 

current at potentials where dopamine and pH contribute. b) The residual trace and color plot 

from a training set built in a different animal (C) applied to these data. The residual trace 

rises throughout the trace and crosses the residual threshold (Qα = 312.0). The residual color 

plot reveals large sources of discarded current near potentials for dopamine and pH.
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Figure 6. 
K-Matrices from composite training sets built with standards collected at different carbon-

fiber microelectrodes. a) Composite training sets containing 10 CVs were made using one 

dopamine and one pH CV selected at random from each training set (A–E). b) As in a) but 

made with 20 CVs using two dopamine and two pH CVs selected randomly from each 

training set. c) As in a) but made with 30 CVs using three dopamine and three pH CVs 

randomly selected from each training set. d) As in a) but made with 40 CVs using four 

dopamine and four pH CVs randomly selected from each training set. Average (solid line) 

and 95% confidence limits (dotted line) for both DA and pH K-matrices (n = 10,000) are 

shown for each training set size.
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Figure 7. 
Parameters of interest for composite generalized training sets. a) As the rank increases, the 

Qα value decreases (684.1 ± 513.5, 303.6 ± 106.2, 170.1 ± 101.0, and 13.5 ± 32.3 nA2 for 

one through four CVs/analyte from each training set, respectively.) b) As the number of 

CVs/analyte incorporated from electrode is increased, the rank (or number of primary 

components) increases (2.7 ± 0.7, 5.0 ± 0.7, 7.8 ± 1.3, and 33.5 ± 10.2 for one through four 

CVs/analyte, respectively.) c) If the number of principal components retained is restricted to 

two, the Qα values increase dramatically as more CVs/analyte from each electrode (i.e., 

larger number of total standards) are used (1366.6 ± 563.8, 3065.5 ± 732.0, 4798.8 ± 750.0, 

6535.1 ± 634.3 for one through four CVs/analyte respectively). Numbers are expressed as 

mean ± standard deviation (n = 10,000 for each training set size).
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Figure 8. 
K-Matrices for composite training sets constrained to two principal components. Composite 

training sets containing one (a), two (b), three (c), and four (d) cyclic voltammogram 

standards per analyte (dopamine and pH) from each individual training set (A–E) were 

constructed. Instead of determining the rank of each training set with Malinowski's F-test, 

the number of principal components for each composite training set was constrained to two. 

The average (solid line) and 95% confidence limits (dotted line) for both DA and pH K-

matrices (N = 10,000) are displayed for each training set size. The shape of the average K-

matrices for dopamine and pH were independent of training set size (Pearson's correlation, 

0.999 ≤ r ≤ 1.000 for DA, 0.999 ≤ r ≤ 1.000 for pH).
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Table 2

Number of Transients for Which Qt (at [DA]max) Exceeded the Qα Threshold during Various Training Set 

Misapplications
a

data set

A (n = 52) B (n = 64) C (n = 22) D (n = 65) E (n = 60)

training set A (Qα = 217.6) 0 18 17 10 53

training set B (Qα = 389.1) 0 7 14 8 43

training set C (Qα = 279.9) 0 18 5 0 10

training set D (Qα = 584.7) 0 4 0 0 1

training set E (Qα = 906.6) 0 3 10 0 0

a
Analysis with the appropriate training set is highlighted in bold, with the number of residual crosses shown for alternate training sets shown for 

each data set. n = the number of electrically evoked transients in each data set.
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