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SUMMARY

The relationship between the brain and the environment is flexible, forming the foundation for our 

ability to learn. Here we review the current state of our understanding of the modifications in the 

sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical 

levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 

3) motor skill learning. Perceptual learning optimizes the representations of important sensory 

stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-

based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may 

primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. 

With these changes under distinct constraints and mechanisms, sensorimotor learning establishes 

dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.

Many of our behaviors are modified through sensorimotor learning. Here we broadly define 

sensorimotor learning as an improvement in one’s ability to interact with the environment by 

interpreting the sensory world and responding to it with the motor system. Let’s take an 

example of braking the car while driving in traffic. To perfect this task, one needs to learn 

the skill to accurately estimate the flow of traffic (perceptual learning; novices tend to focus 

on the car in front of them, while experts can selectively use a more diverse set of cues). 

When one identifies the slowing of the traffic, the visual information initiates a motor 

program to brake the car (associative learning). They also improve the skill of manipulating 

the brake smoothly (motor skill learning; try braking with your left foot in an empty parking 

lot—you’ll be surprised.). As illustrated by this example, even a relatively simple behavior 

involves a multi-level learning process. Accordingly, this review discusses neural changes 

during sensorimotor learning in these three hierarchical levels. We note, however, that these 

levels are closely intertwined with each other and often occur simultaneously. Therefore 

some mechanisms are likely shared across these levels. An unfortunate consequence of the 

broad scope of this review is that many studies or even systems that deserve attention had to 

be excluded. Despite this compromise, we hope that the broad scope helps us to underscore 
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the distinct requirements of each step, which provide distinct constraints on the underlying 

neural mechanisms (Figure 1).

1. Sensory Perceptual Learning

Learning of sensorimotor behavior involves selective extraction and efficient processing of 

sensory information to generate an appropriate action. At the sensory processing stage, rich 

and multiplex information in the environment is transmitted to the sensory organs where 

attributes of sensory stimuli are transduced to electrical signals, such as action potentials. As 

the transduced signal reaches the central nervous system, cognitive factors actively 

determine what is sampled and what is ignored in the environment. In this vein, the 

perceptual stage of sensorimotor learning is a process of establishing optimal representations 

of external stimuli that are deemed to be meaningful, a process known as perceptual 

learning. This process involves changes in response properties of individual and populations 

of neurons. In this section, we review recent attempts to understand dynamic changes in 

sensory representations during perceptual learning, and discuss how these changes are 

implemented through alterations in operation modes of the underlying circuit.

Nature of physiological changes during perceptual learning

Despite decades of research, there is still a controversy as to where in the brain neurons 

change their response properties with perceptual enhancement during sensorimotor learning 

and whether and how such changes are causally linked to behavioral improvement. 

Experiments in visual psychophysics demonstrated that the improved perceptual ability is 

restricted to the trained stimulus feature (e.g. orientation) as well as the location in visual 

space. These results are often interpreted as evidence for the involvement of early stages of 

cortical visual processing, where neurons are highly selective to physical attributes of visual 

stimuli, have relatively small receptive fields, and the retinotopic organization is preserved. 

However, recent experiments using a newly developed double-training paradigm challenged 

this notion by demonstrating that the feature discrimination (e.g. contrast) ability can be 

transferred to a new retinal location if subjects were primed at the second location with a 

task-irrelevant feature (e.g. orientation) (Xiao et al., 2008). This observation indicates that 

perceptual learning may also involve changes in non-retinotopic higher brain areas.

Neurophysiological mechanisms underlying these observations in psychophysics have been 

under intense scrutiny. Theoretical studies have proposed that changes in the tuning curve of 

individual neurons, such as sharpening, gain modulations, or shift in the peak in early stages 

of sensory processing could increase the neuron’s ability to discriminate similar stimuli 

(Teich and Qian, 2003) (Figure 2A). These theories are supported by several experimental 

studies, where neurons in V1 and V4 increase their selectivity to task-relevant stimuli (Poort 

et al., 2015; Schoups et al., 2001; Yan et al., 2014; Yang and Maunsell, 2004). Similar 

effects, such as increase in the tuning sharpness or expansion in the cortical area of 

representation, were also observed in primary sensory areas during frequency discrimination 

learning involving somatosensation or audition in owl monkeys (Recanzone et al., 1992; 

Recanzone et al., 1993). Other theories, however, have postulated that the enhanced 

behavioral performance is due to improved perceptual judgment in later stages of sensory 
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processing. These theories propose that perceptual learning involves appropriate routing and 

weighting of the most informative inputs from the sensory processing stage to the decision 

stage, while neural properties in early sensory areas are unaltered (Law and Gold, 2009; 

Petrov et al., 2005). Consistently, during motion discrimination training in monkeys, little 

change was observed in motion-evoked responses in the middle temporal area, a motion-

sensitive sensory area, but responses to task-specific motion stimuli emerged and gradually 

increased in the lateral intraparietal area, a region known to be involved in decision-making 

(Law and Gold, 2008). Furthermore, a more recent experiment showed minimal changes in 

stimulus discriminability of neural ensembles in mouse vibrissal primary somatosensory 

(vS1) during learning of a whisker-mediated object-localization task, also supporting such 

late-stage models (Peron et al., 2015).

Single neuron responses must be considered in the context of the underlying population 

activity structures. Recent simulation suggested that, at least within certain constraints, 

sharpening or amplification in the tuning of single neurons at early stages of sensory 

processing is neither necessary nor sufficient to improve population codes. For instance, 

sharpening of the tuning curve can be mediated by changes in intracortical connectivity, 

which can alter correlation statistics and lead to a large loss of information (Bejjanki et al., 

2011; Series et al., 2004). To reconcile these issues, theoretical studies have proposed how 

different correlation structures could affect sensory coding. Enhanced discriminability 

during perceptual learning may, for example, depend on the relationship between two forms 

of correlation structures in the ensemble activity: similarity in tuning properties between a 

pair of neurons, known as signal correlation, and trial-by-trial response fluctuations to 

identical stimuli, known as noise correlation (Averbeck et al., 2006; Oram et al., 1998; 

Zohary et al., 1994). For similarly tuned neurons (i.e. positive signal correlation), reduction 

in noise correlations would increase the information about stimulus identity since the degree 

of overlap in firing rate distributions between two neurons decreases. Likewise, an increase 

in noise correlations in neurons with dissimilar tuning (i.e. negative signal correlation) 

would improve coding accuracy since common noise can be subtracted (Figure 2A) (Romo 

et al., 2003). Indeed, a recent study in songbirds found that, after auditory discrimination 

learning, larger signal correlations in cortical neurons coincided with smaller noise 

correlations for task-relevant auditory stimuli but not for task-irrelevant or novel stimuli 

(Jeanne et al., 2013). In contrast, two monkey studies demonstrated a reduction in noise 

correlations in neurons in the medial superior temporal area or V1 during perceptual 

learning (Gu et al., 2011; Yan et al., 2014). The reduction, however, was observed across a 

range of signal correlations and did not seem to be related to the improvement in coding 

fidelity. These discrepancies clearly point out that a unified account of the correlational 

nature of population-level changes underlying perceptual learning is yet to be achieved. 

Importantly, discrimination learning does not always improve the discriminability by neural 

ensembles. By monitoring odor representations by mitral cells in the mouse olfactory bulb, it 

was found that mitral cells became better at discriminating the odorants when mice were 

trained to discriminate between very similar odorants. However, when mice discriminated 

between very dissimilar odorants, counterintuitively, the representations of the two odorants 

gradually became more similar. This bidirectional effect was interpreted such that learning 
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achieves an optimal separation of representations of familiar stimuli, balancing the 

robustness of discrimination and capacity of coding (Chu et al., 2016).

Metabolic efficiency might be another major design principle that sensory systems aim to 

achieve during sensorimotor learning. Sparse coding, where information is represented by a 

relatively small number of spikes and/or neurons, is observed in different sensory modalities 

across a wide range of species (Brecht and Sakmann, 2002; DeWeese et al., 2003; O’Connor 

et al., 2010; Olshausen and Field, 2004; Perez-Orive et al., 2002). The reduction in 

population responses may be a common feature of learning-driven changes in population 

coding (see also the motor skill learning section below), which could reduce overlaps 

between representations in space and time and facilitate decoding by downstream areas 

(Laurent, 2002). Indeed, chronic tracking of the same neural population over sensorimotor 

learning demonstrated a decrease in the number of responsive neurons and/or magnitudes of 

responses to the same sensory stimuli (Chu et al., 2016; Gdalyahu et al., 2012; Makino and 

Komiyama, 2015).

Generation of neural assemblies dedicated to learned behavior

Representations of behaviorally-relevant sensory stimuli are gradually stabilized through 

learning. Recent advances in two-photon calcium imaging permit long-term monitoring of 

the same neural population, providing insights into how sensory representations evolve over 

time. For instance, responses of neurons in the mouse V1 become more reliable and 

selective over the course of visual discrimination training (Poort et al., 2015). Similarly, 

representations of mouse vS1 neurons become more stabilized following a whisker-mediated 

object-localization task (Peron et al., 2015). Such a learning-dependent stabilization of 

activity patterns is one of the emergent properties observed in many brain areas, including 

motor cortex (Huber et al., 2012; Peters et al., 2014). These processes are likely facilitated 

by synaptic plasticity whereby interconnected subnetworks are formed to generate learned 

activity patterns. For instance, neurons sharing similar receptive field properties are more 

likely to be connected (Cossell et al., 2015; Ko et al., 2011; Lee et al., 2016; Wertz et al., 

2015) and these features emerge upon eye opening (Ko et al., 2013). Sensory experience 

further refines the circuit by pruning connections between visually non-responsive neurons 

(Ko et al., 2014), suggesting that repeated exposure to natural statistical features, together 

with intrinsic spontaneous activity, establishes a dedicated neural circuit for sensory 

processing. Stable representations with low trial-to-trial variability might help fine 

discrimination through a more robust readout of task-relevant information by downstream 

neurons. For instance, perceptual grouping of different mixture ratios of tones or odors may 

be achieved via attractor-like, discrete representations of neural assemblies. In this scheme, 

representations within the same category share similar and highly reproducible neural 

trajectories in a high dimensional state space while representations across categories diverge 

their response dynamics (Bathellier et al., 2012; Niessing and Friedrich, 2010). Importantly, 

these distinct categorical representations can predict the performance of perceptual grouping 

(Bathellier et al., 2012).
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Inhibitory circuits in perceptual learning

The changes in sensory representations during perceptual learning likely involve a variety of 

mechanisms, among which inhibitory circuits have garnered considerable attention in recent 

years. This was partially due to the development of genetic tools to identify and manipulate 

specific subtypes of inhibitory neurons. Inhibition is mediated by the neurotransmitter 

GABA, which shapes the activity of principal glutamatergic neurons in space and time. 

Inhibition contributes to gain modulations by altering the slope of the input-output function. 

It can also sharpen tuning curves of principal neurons by suppressing responses to non-

preferred stimuli through an increase in spike threshold (‘iceberg effect’). These two 

parameters, changes in gain and sharpening of the tuning curve, are two of the 

aforementioned potential mechanisms to increase the individual neuron’s ability to 

discriminate similar stimuli (Figure 2A). Consistent with these notions, activation of 

parvalbumin (PV)-expressing inhibitory neurons in the mouse visual cortex sharpens 

orientation tuning and improves behavioral discrimination of similarly oriented visual 

stimuli (Lee et al., 2012). Furthermore, in the mouse olfactory bulb, local GABAergic 

neurons contribute to pattern separation of similar odors in mitral/tufted cells and enhance 

discrimination performance of the animal (Gschwend et al., 2015). Together with the 

theoretical support, it is possible that these inhibitory neurons play an active role in 

enhancing the principal neurons’ discriminability of stimuli during perceptual learning. 

Longitudinal recording from genetically defined inhibitory neural populations over learning 

will be a useful approach to test this idea.

GABAergic inhibitory neurons are highly heterogeneous in morphology, physiological 

properties and gene expression. By regulating distinct subcellular compartments of principal 

neurons, different subtypes of inhibitory interneurons may function to regulate the flow of 

information (Chen et al., 2013; Kepecs and Fishell, 2014; Lovett-Barron et al., 2014). For 

example, PV-expressing Basket cells or Chandelier cells modulate gain through its inhibitory 

action on perisomatic regions or axon initial segments (Atallah et al., 2012; Wilson et al., 

2012). Somatostatin (SOM or SST)-expressing Martinotti cells inhibit distal dendrites of 

principal neurons and may regulate inputs carried by long-range projections (Gentet et al., 

2012). It is likely that different types of learning involve distinct changes in inhibitory 

network activity and computations in order to gate or route various incoming signals. For 

instance, auditory associative fear learning in mice was associated with cholinergic 

activation of layer 1 inhibitory interneurons, which then suppress layer 2/3 PV inhibitory 

neurons. The resulting disinhibition of the feedforward drive could enhance cortical 

representations of sensory information by increasing the gain of principal neurons (Figure 

2B) (Letzkus et al., 2011). In contrast, the increased influence of non-sensory information in 

mouse V1, likely carried by long-range feedback inputs, coincided with the reduced activity 

of SOM interneurons (Figure 2B). Artificial reactivation of SOM interneurons partially 

reversed the learning-related change in principal neuron activity (Makino and Komiyama, 

2015). These results are consistent with the notion that SOM inhibitory interneurons act as a 

gate for long-range inputs and that this gate can be flexibly adjusted by learning. Unraveling 

how distinct types of inhibitory neurons interact with each other to modulate the firing 

pattern of individual principal neurons and their population correlation structures during 

learning is an important future direction.
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Bottom-up and top-down processing during perceptual learning

So far, we have discussed changes in sensory representations during perceptual learning 

within a local circuit. However, neurons receive convergent inputs from other brain areas and 

inter-areal interactions likely play important roles for perceptual learning. For instance, it is 

now evident that sensory processing involves intricate interactions of concurrent streams of 

information flow, one from the environment in a bottom-up manner and the other from 

higher-order brain areas in a top-down manner (Figure 2B). Even neurons in early stages of 

sensory processing may therefore be subject to influences of contexts and cognitive factors, 

which could profoundly modify their receptive field properties.

Traditionally, it has been considered that perceptual learning is mainly driven by bottom-up 

processes. For example, psychologists showed that passive tactile stimulation of human 

fingers improved two-point discrimination (Godde et al., 2000). Likewise, mere exposure to 

task-irrelevant stimuli that are below subject’s detection threshold (i.e. without their 

awareness) improved task performance when subjects were tested subsequently (Watanabe 

et al., 2001). These studies have often been used as evidence that bottom-up information 

processing is sufficient to induce sustainable changes in the brain to improve behavioral 

performance, under the assumption that top-down processing is disengaged during passive 

or subthreshold experience. Recent studies, however, provide an alternate view advocating 

that top-down processing, such as attention, expectation and motor commands, is an 

essential component of perceptual learning. In this view, it is argued that perceptual learning 

could dynamically switch the operation modes of downstream circuits according to ongoing 

behavioral requirements (Gilbert and Li, 2013). For instance, neurons in monkey V1 exhibit 

stronger top-down mediated contextual modulations after training with a three-line bisection 

task, where the subjects were asked to report which of the two reference lines was closer to 

the central line (Crist et al., 2001). In mouse V1, enhanced orientation discriminability by 

neural populations was diminished when mice were disengaged from the task, further 

supporting the importance of top-down control in learning (Poort et al., 2015). In addition, 

attention can rapidly control gain of single neurons (Reynolds et al., 2000) or change 

interneuronal correlations (Cohen and Maunsell, 2009) on a moment-by-moment basis. For 

example, it was recently shown that attention can increase or decrease noise correlations in 

monkey V4 depending on whether neurons provide evidence for the same or opposite 

stimulus choices in a contrast discrimination task (Ruff and Cohen, 2014), in a manner 

similar to how learning alters the relationship between signal and noise correlations (Jeanne 

et al., 2013). These acute top-down modulations are somewhat distinct from the traditional 

notion of perceptual learning, but they can underlie the improved perceptual discriminability 

during learning. Furthermore, in the primate, neurons in V1 produce sparse responses when 

images spanning non-classical receptive fields are included (Vinje and Gallant, 2000). This 

well-known phenomenon of surround suppression may be explained by the predictive 

coding scheme, whose goal is to reduce redundancy by removing predictive components of 

the input by top-down modulation. In this scenario, higher brain areas with larger receptive 

fields can predict stimulus attributes on smaller receptive fields in lower brain areas because 

of statistical regularities in space inherent in natural scenes (Rao and Ballard, 1999). 

Learning of such regularities in the sensory environment may “explain away” bottom-up 

sensory representations by suppressing the activity in lower brain areas with the inhibitory 
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machinery, which could lead to sparse coding and enhance metabolic efficiency. 

Understanding the circuit mechanisms by which top-down control selectively modifies 

single neuron properties or population structures during perceptual learning is an area of 

active investigation.

Recent efforts to directly visualize and manipulate top-down processing provided 

compelling evidence that adaptive sensory representations require top-down processing. By 

expressing GCaMP in mouse vibrissal motor cortex and imaging the activity of their axons 

in vS1, feedback projections were shown to be functionally heterogeneous, including 

responses to touch or whisker movement (Petreanu et al., 2012). With similar approaches, 

responses of top-down inputs from mouse piriform cortex to olfactory bulb were shown to 

have various tuning properties, and these inputs contributed to decorrelation of mitral cell 

responses to odors (Boyd et al., 2015; Otazu et al., 2015). Chronic monitoring of top-down 

inputs during associative learning in mice showed enhancement of top-down influences from 

retrosplenial cortex to V1, possibly carrying information about the timing of the associated 

event (Figure 2B) (Makino and Komiyama, 2015). Interestingly, such signal may also be 

dependent on the cholinergic input (Chubykin et al., 2013), implying an additional 

mechanism involving changes in neuromodulation. In line with these studies, learning of an 

object localization task in mice led to initial enhancement in dendritic spine growth in the 

barrel cortex at layer 1, where top-down inputs make synaptic connections (Kuhlman et al., 

2014). The causal link of top-down processing for perceptual tasks has also been 

demonstrated by microstimulation or pharmacological inactivation of top-down sources 

(Moore and Armstrong, 2003; Xu et al., 2012) or optogenetic manipulations of top-down 

axons (Manita et al., 2015; Zhang et al., 2014). These results confirm the importance of top-

down processing in sensorimotor learning.

Remaining questions in perceptual learning

It is important to synthesize these diverse physiological phenomena into a coherent 

conceptual framework. Receptive field properties of individual neurons are tightly related to 

the activity of other circuit components. For example, a better understanding of the roles of 

different subtypes of inhibitory neurons in learning-dependent changes would clarify how 

information is differentially routed through learning (Figure 2B). In addition, roles of inter-

areal interactions involving bottom-up and top-down processing, including neuromodulatory 

systems, in regulating learning-related changes in inhibitory network activity or local 

correlation structures (Chen et al., 2015a; Fu et al., 2014; Nelson and Mooney, 2016; Zhang 

et al., 2014) need further investigation. Moreover, how the layered structure of the cortex 

integrates and segregates incoming information during learning is an important issue. Such 

an approach to reverse engineer the brain circuit underlying learning requires identification 

and perturbation of the activity of individual circuit elements dedicated to the task. It is also 

important to note that the changes in sensory representations during sensorimotor learning, 

including correlations of neural activity, should be ultimately discussed in light of the 

downstream readout mechanisms that are often unknown. Finally, although microcircuit 

dynamics during learning have been extensively studied in the recent years, it is equally 

important to understand how the meso- and macro-scopic dynamics influence sensory 

representations during sensorimotor learning (Wekselblatt et al., 2016).
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2. Sensorimotor Associative Learning

In addition to the enhanced stimulus detection and discrimination discussed in the previous 

section, sensorimotor learning requires linking particular aspects of environmental stimuli 

with specific actions. This section discusses neural mechanisms related to the associative 

component of learning by focusing on cases in which conspicuously distinct stimuli are 

paired with motor responses that the subjects already know how to perform proficiently. 

Although conditioned reflexes such as fear conditioning belong to such a category, we will 

discuss mostly associative learning producing non-reflexive movements, as neural circuitry 

and mechanisms underlying conditioned reflexes are extensively dealt with in other recent 

reviews (Gründemann and Lüthi, 2015; Herry and Johansen, 2014; Mahan and Ressler, 

2012; Maren et al., 2013). We first review neural circuits and activity changes involved in 

sensorimotor associative learning, and then neural mechanisms underlying those changes.

Neural representation changes during sensorimotor associative learning: formation of 
dedicated pathways between sensory input and motor output

The locus of arbitrary associative learning in mammalian nervous systems has been first 

inferred from human patients with brain lesions. For instance, damage to the human lateral 

frontal cortex resulted in a severe impairment in learning arbitrary sensorimotor associations 

without deficits in sensory discrimination or movements (Milner, 1982). To more precisely 

delineate the neural circuits involved in associative learning, subsequent studies employed 

controlled lesions in specific brain areas and/or axon bundles of non-human primates and 

measured the effect on learning arbitrary sensorimotor association. In a typical experiment, a 

set of sensory stimuli (e.g., different shapes of visual stimuli, different colors, etc.) was 

paired arbitrarily with a set of motor responses (e.g., gripping a stick versus touching a 

button, saccade to the left versus right). Learning such stimulus-response relationships by 

trial and error was impaired by lesions in diverse areas, including the dorsal premotor cortex 

(PMd), prefrontal cortex (PFC), connections between inferior temporal cortex and PFC, 

connections from the basal ganglia to the frontal cortex via thalamus, hippocampal 

formation, and fornix (Canavan et al., 1989; Gaffan and Harrison, 1988, 1989; Murray and 

Wise, 1996; Petrides, 1982; Rupniak and Gaffan, 1987). In contrast, lesion in the posterior 

parietal cortex, a region that has been widely implicated in perceptual decision-making 

process, did not compromise arbitrary associative learning, but instead impaired spatial 

control of movements, consistent with more recent acute perturbation results (Hwang et al., 

2012; Rushworth et al., 1997).

These findings motivated studies to examine neural activity changes in those identified brain 

areas during associative learning using the kind of tasks described above. The commonly 

observed learning-related change across areas including PMd, dorsolateral PFC, 

orbitofrontal cortex (OFC), amygdala, and the striatum is that neurons become active 

selectively for a particular stimulus, response, or response outcome over the course of 

learning (Asaad et al., 1998; Mitz et al., 1991; Pasupathy and Miller, 2005; Schoenbaum et 

al., 1998). Notably, in dorsolateral PFC, many neurons become active only for a particular 

sensory and motor combination (Asaad et al., 1998). For example, when monkeys had 

already associated a stimulus and leftward saccades, and then learned to associate a new 
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stimulus with the same leftward saccades, some neurons became active in trials in which 

leftward saccades were made in response to the new stimulus, but not in response to the first 

stimulus. Such neurons recruited for a specific stimulus-response combination seem to be 

involved in creating a dedicated pathway between the newly paired sensory input and motor 

output. In contrast, neurons in OFC and amygdala appear to encode the valence of the 

stimulus irrespective of the nature of the stimulus-motor response combinations, as neurons 

in these regions show the same activity for different stimuli or for different responses as long 

as the stimuli predict the same outcome (e.g., reward) (Schoenbaum et al., 1998; Wallis and 

Miller, 2003). Therefore, OFC and amygdala might contribute to associative learning by 

providing predicted outcome information for the computation of reward prediction error 

(i.e., discrepancy between the actual and predicted reward), while PFC might actually build 

an express pathway between the learned sensory input and motor output (Schoenbaum et al., 

2009; Wallis and Miller, 2003).

Although neural changes related to associative sensorimotor learning might be similar across 

different brain areas (e.g., the emergence of selective activity for a specific stimulus-

response combination, or selective activity for the predicted outcome), the temporal 

dynamics of neural changes could differ, hinting at a hierarchical order in learning-related 

changes, transfer of information between areas, and potentially different roles of those areas. 

For instance, in both dorsolateral PFC and striatum, as the animal’s association performance 

improved, neurons became more active for a specific stimulus-response pair between 

stimulus onset and response onset. Intriguingly, this association-selective activity developed 

earlier in the striatum than the dorsolateral PFC during the training, suggesting that rewarded 

associations are first identified by the basal ganglia, and the basal ganglia output may train 

slower learning mechanisms in PFC (Pasupathy and Miller, 2005). Different temporal 

dynamics were also found in the responses related to predicted outcomes in OFC and 

amygdala (Morrison et al., 2011). Neurons that predict aversive outcomes evolved during 

learning earlier in amygdala than OFC, whereas neurons that predict reward appeared earlier 

in OFC, suggesting complex inter-areal interactions underlying associative behaviors. In line 

with this view, lesions in one area reduced the expected outcome coding in the other 

(Rudebeck et al., 2013; Saddoris et al., 2005).

While the studies mentioned above focus primarily on brain areas outside the primary 

sensory and motor areas, activity changes related to sensorimotor associative learning have 

also been reported in the primary regions. Some of neural changes in the primary areas may 

be attributable to concurrent perceptual enhancement or motor skill learning discussed in the 

other sections, but other changes seem to be related to the associative component of 

learning. As mentioned above, visual cortical neurons become more sensitive to top-down 

signal, anticipating the arrival of the associated event during associative learning (Makino 

and Komiyama, 2015). Additionally, in the primary motor cortex of macaques, neurons 

became sensitive to the visual features of stimulus such as colors after learning to associate 

different colors with different reaching movements (Zach et al., 2008).
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Neural mechanisms underlying associative learning

The previous section examined neural changes related to associative learning across various 

areas mostly in primate brains, after their involvement was inferred from gross lesion 

studies. This section reviews more recent discoveries revealing neural mechanisms leading 

to such neural changes by breaking down the learning process into three conceptual 

elements, i.e., exploration, reinforcement, and path optimization. Many of these new studies 

were conducted in non-primate animals in which advanced molecular tools for dissecting 

neural circuits such as optogenetics and cell-type specific labelling are available. 

Nonetheless, the majority of brain areas in discussion share functional homology between 

species, and our hope is that the principles we describe are general across species.

Exploration—When first facing a new sensorimotor task, we do not necessarily know the 

defined set of action goals relevant to the task, but instead discover them by exploring our 

motor/action repertoire. During this behavioral exploration, not only different action goals 

are tested, but also various motor patterns to achieve the same goals are probed. In this 

section, we focus on the exploration of action goals. Explorations of motor patterns will be 

further discussed in the motor skill learning section.

A number of brain areas appear to be involved in controlling exploration during 

sensorimotor association tasks. In macaques, neurons in the globus pallidus internus, the 

output structure of the basal ganglia, showed lower pre-movement activity during 

exploratory behavior, and higher activity during an exploitive phase of associative learning 

(Sheth et al., 2011). The supplementary eye field has also been implicated in promoting 

animals to explore alternative responses (Donahue et al., 2013). Enhanced exploration was 

accompanied by axonal bouton loss in mouse OFC neurons that project to the dorsomedial 

PFC, raising the possibility that the interconnectivity between the two areas might adjust the 

extent of exploration (Johnson et al., 2016). In humans, blood oxygen level dependent 

(BOLD) signals in the rostral PFC and the intraparietal sulcus increase in explorative trials 

during reinforcement learning (Daw et al., 2006).

Neuromodulators also seem to play a role in controlling exploration. Activating locus 

coeruleus noradrenergic input to anterior cingulate cortex (ACC), likely suppressing ACC 

activity, enhanced explorative behaviors of rats (Tervo et al., 2014). The increased BOLD 

signal in the rostral PFC during exploration might be controlled, in part, by dopamine, as 

individuals with a gene allele that inefficiently breaks down dopamine in PFC tend to 

explore more than those with different alleles during learning (Frank et al., 2009). Further 

supporting the role of dopamine for exploration, blocking dopamine receptors in the 

macaque PFC reduced the monkey’s tendency to switch motor responses during associative 

learning (Puig and Miller, 2012, 2015). This dopamine-dependent exploration might be 

related to dopamine-dependent synaptic plasticity in PFC (Seamans and Yang, 2004). More 

specifically, in mouse PFC slices, LTP is absent in layer 5 pyramidal neurons due to 

GABAergic inhibition, but dopamine enables LTP by acting on D2 receptors on inhibitory 

interneurons and reducing GABAergic transmission to pyramidal neurons (Xu and Yao, 

2010). Also, dopamine extends the temporal window of coincidence detection for LTP 

between pre and postsynaptic activation by acting on D1 receptors on pyramidal neurons 
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(Xu and Yao, 2010). Thus, one possibility is that dopamine opens the window of plasticity in 

PFC, during which behavioral exploration is permitted.

Reinforcement—During exploration, the brain must fortify or weaken certain pathways to 

ultimately exploit the most effective pathway to achieve the desirable behaviors. A widely-

hypothesized neural mechanism underlying this process is synaptic weight update in 

association areas based on reward prediction error (Pessiglione et al., 2006; Sutton and 

Barto, 1998). This learning mechanism has gained popularity since the finding that the 

activity of dopamine neurons closely reflects reward prediction error as it is enhanced by 

unexpected reward or any indicator of potential reward (such as conditioned stimuli) and 

suppressed when an expected reward is not present (Eshel et al., 2015; Schultz et al., 1993; 

Waelti et al., 2001). In this hypothesis, the brain continuously computes the discrepancy 

between the expected reward and the actual outcome following each executed behavior, and 

reinforces the weights of active synapses after positive prediction error, while weakening 

them after negative error (Pessiglione et al., 2006; Sutton and Barto, 1998). The modified 

synaptic weights reflect the newly evaluated likelihood that the behavior will generate 

beneficial outcomes, allowing the brain to adaptively route sensory information and elicit 

optimal motor actions.

The most plausible locus of such plasticity is the striatum in the basal ganglia which is 

heavily innervated by dopaminergic neurons, receives convergent sensory information 

through cortico-striatal projections, and sends its output to influence cortical and subcortical 

motor control regions. Supporting the associative role of the striatum, after rats learned to 

associate two different types of auditory stimuli with two different actions, optogenetic 

stimulation of the cortico-striatal projection neurons that represent one type of stimuli 

caused the rats to more frequently generate the action paired with that stimulus type 

(Znamenskiy and Zador, 2013). Importantly, this associative learning was accompanied by a 

selective potentiation of cortico-striatal synapses in a manner that conforms to the 

specifically learned associative rules, demonstrating that cortico-striatal synapses are indeed 

a site of plasticity during associative learning (Xiong et al., 2015). The synaptic reshaping in 

the striatum is likely guided by dopaminergic neurons encoding reward prediction error, as 

indicated by multiple lines of evidence. First, long-term potentiation (LTP) and long-term 

depression (LTD) of cortico-striatal synapses depend on the phasic burst of dopamine (Shen 

et al., 2008; Yagishita et al., 2014). Second, perturbing the balance of dopamine or dopamine 

receptors impairs associative learning, probably due to aberrant plasticity (Bach et al., 2008; 

Eyny and Horvitz, 2003; Smith-Roe and Kelley, 2000). Furthermore, delivering 

microstimulation in the striatum or optogenetically activating dopamine neurons during the 

reinforcement period of correct trials, supposedly mimicking positive prediction error, 

significantly increased the rate of associative learning or prevented blocking/extinction of 

association (Steinberg et al., 2013; Williams and Eskandar, 2006).

As examined so far, there is compelling evidence that dopamine-dependent plasticity in 

cortico-striatal synapses plays a critical role in sensorimotor associative learning. However, 

relatively little is known about how this plasticity in the inputs to the basal ganglia relates to 

the selection and execution of particular motor programs (Hélie et al., 2015; Hikosaka et al., 

2006). One possibility is that the basal ganglia output through the thalamus generates 
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appropriate motor actions by activating specific PFC neurons, which would then activate 

specific motor cortical circuits. Subsequently, the coincident activity between inputs from 

the basal ganglia and from sensory areas may strengthen the specific synapses onto PFC 

neurons from sensory areas via Hebbian plasticity (Hélie et al., 2015). Such plasticity could 

generate a shortcut pathway from sensory to prefrontal to motor cortices, bypassing the 

basal ganglia circuit (Figure 3A). Thus, well-practiced associations may be driven more 

efficiently through this shortcut pathway at later learning stages. However, this simple model 

has several unresolved issues. First, this model assumes that the striatum contains neural 

activity patterns that can specifically drive a variety of precise motor patterns, a notion that 

has yet to be demonstrated. Second, as reviewed above, striatal neurons start discriminating 

different stimuli earlier than PFC neurons during associative learning, and that the time 

course of behavioral improvement matches that of PFC neural changes (Pasupathy and 

Miller, 2005). The different time courses between PFC and the striatum are difficult to 

explain with the model in which the basal ganglia drive motor responses through PFC. An 

alternative hypothesis is that dopamine-dependent plasticity would render striatal neurons 

receiving input from both sensory and motor areas to become selectively active for specific 

stimulus-response pairs (Figure 3B). Such associative striatal activity, while it may not drive 

motor patterns, can serve as a teaching signal to strengthen the specific sensory input 

synapses to PFC neurons driving that specific motor pattern (Figure 3B). Two important, 

unproven assumptions for this model are 1) individual striatal neurons receive convergent 

inputs of specific sensory and motor information, and 2) the striatal neurons that receive 

projections from a specific motor circuit returns its output preferentially to PFC neurons 

driving that specific motor circuit. We also note that, given the highly divergent projections 

of basal ganglia outputs to many cortical and subcortical regions, these models are almost 

certainly oversimplified. Dissecting the projection circuit from the basal ganglia to 

downstream areas using optogenetic tools could be an important step towards a better 

understanding of the output function of the basal ganglia.

Path optimization—One effect of associative learning is the decreased reaction time of 

the associated motor response, indicating an increased efficiency in information processing. 

The increased efficiency might be achieved by shortening signal transduction pathways 

between sensory and motor ends. The shortcut circuit that bypasses basal ganglia discussed 

above would serve this purpose (Figure 3A). Furthermore, strengthening direct synaptic 

connections between the sensory and motor cortices would further expedite signal 

transduction (Figure 3A). As reinforcement learning progresses, coincidental activations of 

sensory and motor neural populations, each representing the learned stimulus and response 

respectively, occurs more frequently. Such coincidental activation would permit Hebbian 

plasticity at the cortico-cortical synapses that correspond to the associations. A potential 

cellular basis for such plasticity has been studied in the barrel cortex, where coincidental 

arrivals of long-range input from the motor cortex in the apical dendritic tuft and the 

ascending sensory input onto layer 5 pyramidal neurons evoked long-lasting plateau 

potentials in the tuft (Xu et al., 2012). Such plateau potentials have been shown to induce 

LTP in the apical tuft in hippocampal slices (Takahashi and Magee, 2009). Thus, in the 

barrel cortex, coincidental arrivals of motor and sensory signals might drive LTP in the 

apical dendritic synapses via plateau potentials, strengthening the direct connection between 
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the two regions. Likewise, in the motor cortex where the apical tuft receives long-range 

input from the sensory cortex, coincidental sensory and motor signals may drive LTP in the 

apical dendrites, strengthening the connectivity between task relevant sensory and motor 

signals during associative learning. Supporting this idea, a loss of NMDA receptor function 

that impaired primary motor cortex LTP slowed down associative learning in mice (Hasan et 

al., 2013). Therefore, this non-linear cellular mechanism of integrating concurrent sensory 

and motor inputs (i.e., the formation of plateau potentials) could generate direct, fast signal 

transduction pathways between repeatedly associated stimuli and motor responses.

Overtraining can further increase efficiency, producing reflexive, habitual responses that are 

insensitive to action outcome contingency (Smith and Graybiel, 2013). As behavior shifts 

from goal-directed action to habit, dominant control over behaviors also move from 

dorsomedial (DMS) to dorsolateral striatum (DLS) (Yin and Knowlton, 2006). Recent 

experiments suggest that the shift from DMS to DLS requires activity attenuation of cortico-

striatal neurons in OFC and post-synaptic depression in D2 neurons in DLS (Gremel et al., 

2016; Shan et al., 2015). Transition from DMS to DLS over time is also observed during 

motor skill learning, suggesting that DLS ultimately permits automatic, stereotypical 

behaviors.

3. Motor Skill Learning

Even after attaining the perceptual improvement and flexible stimulus-response associations 

described in the previous sections, successful sensorimotor learning still ultimately depends 

on the generation of a skilled motor behavior that consistently yields favorable outcomes. 

This process is known as motor skill learning, and is canonically defined as the repetition-

mediated increase in the speed and accuracy of a newly acquired motor behavior 

(Diedrichsen and Kornysheva, 2015; Shmuelof and Krakauer, 2014). Such learning follows a 

well characterized temporal pattern, beginning with a rapid initial improvement (a “fast 

learning” phase), followed by more moderate refinements over a longer time course (a “slow 

learning” phase) (Karni et al., 1998). The early stages involve exploration of a range of 

behaviors and concomitant outcome-based selection, whereafter repetition-based 

refinements of the task dominate, driving the formation of a highly stereotyped movement 

with little trial-to-trial variability. The task of the motor-associated brain regions, therefore, 

is to create a dedicated pathway for the effortless and stereotyped execution of a learned skill 

by first exploring possible distributions of behaviors that yield positive outcomes, then 

defining and refining a final distribution.

The goal of the following section is to highlight the current understanding of the governing 

set of principles that likely guide learning-mediated changes in the brain during the 

acquisition of a motor skill. Specifically, we propose that the combination of behavioral 

exploration, outcome-mediated feedback, and Hebbian mechanisms of plasticity are 

sufficient to generate a stable circuit that can accurately and reliably produce a novel motor 

behavior.
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Exploration of neural representations

During the initial stage of behavioral exploration, the brain must likewise sample a variety of 

circuits that could potentially elicit effective movements. As such, the early stages of motor 

learning should be characterized by a large number of movement-related circuits, which can 

then be refined as the motor behavior is honed. Consistent with this idea, a large body of 

literature suggests that the neural representations of a newly acquired motor skill can expand 

during the initial phase of learning.

Expansion of motor representations in the cortex—The motor cortex contains a 

‘somatotopic map’, inasmuch as stimulation of different cortical areas evokes movements of 

different body parts. Far from being a static representation of motor primitives, the 

somatotopic map of the motor cortex is a highly plastic feature. A dramatic example of this 

comes from peripheral nerve lesions in rats, which shrink the cortical areas corresponding to 

injured inputs, allowing uninjured regions to encroach onto this newly available cortical 

territory (Donoghue and Sanes, 1987). Similarly, studies in a host of model organisms 

ranging from rodents to humans have repeatedly shown that motor learning causes an 

expansion of the somatotopic motor map for the associated muscle groups, suggesting that 

these muscles now have an elaborated representation in the cortex (Karni et al., 1995; Kleim 

et al., 1998a; Kleim et al., 2004; Nudo et al., 1996; Pearce et al., 1999). In one example, 

training squirrel monkeys in an object-retrieval task – which required fine coordination of 

the involved digits – caused an expansion of the cortical region over which micro-

stimulation could induce movements in those same digits (Nudo et al., 1996). Similarly, in 

humans, repetition of fine finger movements caused an expansion of the cortical region over 

which transcranial magnetic stimulation could induce finger movements (Pascual-Leone et 

al., 1994; Pascual-Leone et al., 1995). Critically, this process seems to be unique to the early 

stages of learning (Classen et al., 1998; Pascual-Leone et al., 1994), when the animal was in 

a largely exploratory phase of learning, and only just started to show signs of producing 

more stereotyped behavior.

The expansion of the cortical map itself is difficult to interpret in terms of the underlying 

neural representations, as cortical microcircuits consist of individual neurons that are highly 

heterogeneous. Therefore it is noteworthy that the map expansion has been observed to 

occur in concert with – and is perhaps explained by – an increase in the size of neural 

ensembles associated with the learned skill (Costa et al., 2004; Peters et al., 2014). As an 

example, the population of cells in layer 2/3 of the motor cortex of mice whose firing 

correlated with a particular motor task was shown to expand as the animals repeatedly 

performed a lever-press task (Peters et al., 2014). The total number of active cells for each 

movement bout, however, remained constant, meaning that the activated population of cells 

was more variable from movement to movement during this phase. The initial expansion of 

the ensemble size, therefore, provides a larger pool from which to make a selection, 

increasing the likelihood that a circuit would select a global vs. a local maximum of 

optimality.

Potential mechanisms of population expansion—The changes in brain ensemble 

activity are likely subserved by changes at the synaptic level. In support of this notion, the 
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learning of forelimb reaching tasks in rats has been shown to result in enhanced synaptic 

responses in M1 excitatory neurons after learning (Hodgson et al., 2005; Rioult-Pedotti et 

al., 1998). Such training also briefly occluded the induction of long-term potentiation (LTP), 

suggesting that LTP-like mechanisms are invoked during motor skill learning (Hodgson et 

al., 2005; Rioult-Pedotti et al., 2007; Rioult-Pedotti et al., 2000). More recently, it was 

shown that thalamocortical inputs in the rat motor cortex are potentiated specifically for 

those cells that correspond to the trained motor group (in this case, the distal forelimb used 

for a reaching task), indicating that thalamo-recipient synapses in the motor cortex undergo 

LTP in a use-dependent fashion (Biane et al., 2016). Other indications of LTP have also been 

observed to occur during motor learning in rodents, such as the increase in dendritic spine 

size (Fu et al., 2012).

Motor learning has also been shown to cause an increase in the density of incoming axonal 

projections (Sampaio-Baptista et al., 2013) as well as an elaboration of the dendritic arbor of 

M1 neurons (Gloor et al., 2015; Greenough et al., 1985). Furthermore, dendritic spines on 

M1 pyramidal cells increase in number during the early stages of learning (Fu et al., 2012; 

Peters et al., 2014; Xu et al., 2009), indicating the formation of new putative synaptic sites. 

The individual newly formed spines are long-lasting and thus might represent enduring 

physical traces of motor learning (Xu et al., 2009). The increase in spine number overlaps 

temporally with the expansion of the size of the neuronal ensemble, suggesting that these 

two processes are potentially related (Peters et al., 2014). The overall spine density 

subsequently returns to pre-learning levels, notably also in parallel with the late-stage 

reduction in ensemble size (Chen et al., 2015b; Xu et al., 2009). Interestingly, spines that 

form during learning have been shown to spatially cluster on a subset of dendritic branches 

(Lai et al., 2012; Yang et al., 2014) as well as within branches (Fu et al., 2012). Such an 

arrangement of dendritic spines might afford nonlinear behavior of dendrites, increasing the 

efficacy of new spines in driving the neuron to spike (Govindarajan et al., 2006).

The mechanisms by which the addition of dendritic spines is controlled during learning are 

likely numerous, allowing the recruitment of a variety of context-specific signals to 

influence the process. Local inhibitory circuits may play a role to gate synaptic changes onto 

motor cortical neurons during motor learning (Chen et al., 2015b; Donato et al., 2013). One 

study used longitudinal imaging to show that motor learning induces a reduction in the 

number of inhibitory synapses onto apical dendritic tufts of excitatory neurons, the dendritic 

compartment where the addition of dendritic spines is the most pronounced. Furthermore, 

specific stimulation of a subset of inhibitory neurons that selectively inhibit apical dendritic 

tufts impaired the stabilization of new spines and motor learning (Chen et al., 2015b). Thus, 

local inhibitory microcircuits can tune excitatory neurons to be more or less plastic and 

determine their incorporation into a learning-related ensemble.

In summary, the early stages of motor learning are marked by an expansion of the neural 

ensemble in the motor cortex available for use by the learned motor skill, thus allowing the 

sampling of a number of new circuit options (Figure 4A). This expansion is potentially 

explained by plasticity of cells in the motor cortex that renders these cells more synaptically 

connected and more sensitive to synaptic input. Importantly, the motor cortex is a layered 

structure in which the superficial layer sends feedforward excitation to deep layer output 
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neurons (Weiler et al., 2008), and neurons in different layers likely exhibit distinct dynamics 

during learning (Masamizu et al., 2014). It should also be noted that other brain regions also 

contribute to the early phase of learning. Indeed, signals from other regions likely act to 

drive or facilitate the cortical plasticity described above. For instance, as described in the 

previous section, the basal ganglia are thought to provide important signals for increasing 

the variability of motor behaviors via output from the globus pallidus internus. Determining 

how such signals interact with the cortical networks during the processes described above 

requires further study. The advent of new imaging approaches that allow for the 

simultaneous imaging of multiple brain regions, combined with projection-specific labeling 

and perturbation, will help to facilitate this advancement.

Selection of a mean: creating effective motor circuits

The exploration of movements and circuits necessitates that the brain must select a circuit 

that can reliably produce the target movement. How is such a selection made? A natural 

expectation is that successful/unsuccessful pathways are reinforced/punished through 

feedback-based mechanisms. In fact, there is significant evidence implicating the basal 

ganglia and cerebellum in performing exactly these tasks for the selection of an appropriate 

motor behavior. In particular, the basal ganglia are specialized in reinforcement learning, as 

discussed in the previous section, while the cerebellum is thought to facilitate learning based 

on error signals. Thus, it is perhaps the joint efforts of these brain areas that allow for the 

selection of an appropriate target behavior and corresponding circuit. If behavioral 

exploration by ensemble expansion broadens the distribution of behavioral options, these 

feedback-based mechanisms may dictate a new mean about which the final distribution will 

center (Figure 4B).

Basal Ganglia—As briefly mentioned in the previous section, the recruitment of the basal 

ganglia seems to occur in two parallel, anatomically distinct streams. DMS, or the 

‘associative’ striatum, which receives inputs from association cortices (e.g. the prefrontal 

cortex) (McGeorge and Faull, 1989; Voorn et al., 2004), is involved primarily in the early 

stages of motor learning, probably reflecting associative learning to establish action goals 

(Yin et al., 2009). Correspondingly, there is an increase in the glutamatergic sensitivity of 

medium spiny neurons (MSNs, the primary output neurons of the striatum) in DMS during 

this period (Yin et al., 2009), suggesting the occurrence of learning-induced potentiation. In 

contrast, DLS, or ‘sensorimotor’ striatum, which receives sensory and motor inputs from a 

variety of cortical regions, is primarily engaged during the later stages of learning, when task 

performance starts to plateau (Yin et al., 2009). Likewise, the glutamatergic sensitivity of 

MSNs in this region were found to only increase in the late stages of learning (Yin et al., 

2009). The changes in synaptic strength are likely due to potentiation of currents through 

AMPAR-type glutamate receptors at the synaptic surface of MSNs (Yin et al., 2009). Thus, 

LTP-like plastic changes of MSNs in these regions are likely critical for motor learning. 

Consistent with this notion, genetic removal of functional NMDARs from MSNs impair 

motor learning (Beutler et al., 2011). The differential temporal recruitment of DMS and DLS 

suggests an evolving importance of different information streams (i.e. associative vs. 

sensorimotor) for reward-mediated shaping of behavior, consistent with the hierarchical 

reinforcement learning model (Haruno and Kawato, 2006).
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Cerebellum—Complementing the role of the basal ganglia, the cerebellum is also critical 

in the learning of new motor skills (Sanes et al., 1990). Cerebellar learning is thought to be 

driven by error signals that indicate differences between the intended movement and the one 

that was actually executed. The best studied cellular modifications observed in the 

cerebellum during learning involve long-term depression (LTD) of the parallel fiber-to-

Purkinje cell synapse (De Zeeuw and Yeo, 2005). This LTD is triggered by movement errors 

originating from climbing fiber input (Ito and Kano, 1982). More prolonged bursts of 

activity from climbing fibers, scaling with movement error, induces more complex spiking in 

Purkinje cells. Thus, the size of the error proportionally increases intracellular calcium levels 

and therefore the expression of LTD (Yang and Lisberger, 2014). Cerebellar LTD has been 

repeatedly observed to occur in response to learning, and forms the basis of many standard 

models of cerebellar learning. However, there is also evidence that potentiation of the 

Purkinje cell response (e.g. enhanced simple and complex spike discharge rate) occurs 

during learning (Berthier and Moore, 1986; Ojakangas and Ebner, 1994), and that there are 

accompanying structural modifications, including the addition of dendritic spines. The 

acquisition of complex motor skills, for instance, has been shown to increase the number of 

parallel fiber-to-Purkinje cell synapses in the cerebellum (Kleim et al., 1998b). Furthermore, 

a recent study showed that optogenetic activation of Purkinje cells was sufficient to drive 

learned changes in the vestibulo-ocular reflex (Nguyen-Vu et al., 2013), suggesting that 

Purkinje cell output, in addition to changes in Purkinje cell inputs, can drive behavioral 

modifications.

Motor cortex—Basal ganglia and cerebellar circuits provide major inputs to the motor 

cortex through the thalamus, so the feedback-based learning in these circuits likely assist in 

selecting effective circuits in the motor cortex from the broadened population initially 

explored. Less is known about mechanisms that work within motor cortex to select 

appropriate circuits. However, it has been proposed that dopamine plays an important role in 

regulating spine plasticity in the motor cortex during learning. Dopaminergic projections 

from the ventral tegmental area are present in the motor cortex, and ablation of 

dopaminergic terminals in the motor cortex impaired the learning of a reaching task (Hosp et 

al., 2011). A subsequent study revealed D2-type dopamine receptors mediate spine addition 

in the motor cortex (Guo et al., 2015). The information conveyed by dopaminergic input to 

the motor cortex during learning is still unclear; dopamine could be actively selecting 

rewarding pathways, analogous to striatum, but it is also possible that it simply functions as 

a permissive factor for normal plasticity.

Importantly, however, recent studies have indicated that there is significant degeneracy in the 

cortical populations corresponding to a particular movement; i.e., there are multiple 

populations that are effective in eliciting a similar motor behavior. Furthermore, early motor 

movements that were by chance very similar to the expert movement were shown to utilize a 

cortical population that did not necessarily resemble the expert circuit in any clear way 

(Peters et al., 2014). Thus, the mechanisms and criteria on which cells are selected for 

inclusion into a stable motor ensemble require further investigation. This process involves 

activity-induced transcriptional mechanisms, as motor cortex neurons that activate the 
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immediate early gene Arc during motor learning are more likely to be active during 

subsequent execution of the learned behavior (Cao et al., 2015).

Refinement of a final learned representation

Once a successful motor behavior has been identified, continued practice leads to a highly 

refined, low-variability version of the skill. What are the circuit dynamics that correspond to 

this change? Since the population of possible cells initially expanded so as to increase 
behavioral variability, does the population then decrease to reduce this variability?

In line with exactly this possibility, some studies suggest that the initial expansion of the 

somatotopic map can be followed by a period of contraction, returning the map to a near 

pre-training size without a corresponding deterioration in the performance of the skill 

(Molina-Luna et al., 2008; Pascual-Leone et al., 1994). This phenomenon is echoed by 

several studies that suggest an overall reduced level of cortical activation during execution of 

a highly practiced motor behavior (Jenkins et al., 1994; Ma et al., 2010; Picard et al., 2013; 

Toni et al., 1998; Ungerleider et al., 2002; Wymbs and Grafton, 2015). For example, fMRI 

measurements in humans showed that professional piano players recruit smaller regions of 

cortex than control subjects when performing a complex finger movement (Krings et al., 

2000). It should be noted, however, that other studies support the notion that M1 activity 

actually increases during performance of a highly learned skill (Floyer-Lea and Matthews, 

2005; Karni et al., 1995; Penhune and Doyon, 2002). This apparent discrepancy could be 

due to differences in the nature of the motor tasks, or perhaps the different time points used. 

Nonetheless, consistent with the reduction in activation size during skilled movements, the 

later stages of learning in mice yield a renormalization of the neuronal ensemble size in 

layer 2/3 of motor cortex. This phase of learning coincides with increased rate of spine 

elimination on the dendrites of excitatory neurons (Peters et al., 2014). It is likely that this 

process of refinement is at least partially dissociable from the feedback-based selection 

discussed earlier, in that the refinement process is selecting from a variety of circuits that can 

all successfully lead to the desired motor output. While outcome-mediated feedback likely 

still provides basic boundaries for the behavior to ensure that it is shaped based on outcome, 

the existing motor-related ensemble at this stage of learning likely operates mostly within 

these bounds. Thus any plasticity acting on such an ensemble may rely mostly on outcome-

independent mechanisms. Refinement in this context can therefore be thought of as a 

reduction in the circuit-level degeneracy for the corresponding motor skill (Figure 4C).

How could this degeneracy reduction be achieved? The best-known form of feedback-

independent plasticity is of the classical Hebbian form. Such a mechanism of selectively 

strengthening connections between co-active neurons, combined with homeostatic plasticity 

to keep the total synaptic strengths constant, could generate a local circuit that can 

autonomously generate a particular activity pattern in response to repeated activation 

coinciding with the repetition of the motor skill. In support of this idea, modeling work 

suggests that unconstrained repetition of an artificial neural network, accounting for only 

Hebbian mechanisms of plasticity and heterosynaptic competition, can lead to the 

emergence of a stable, reproducible activity pattern (Fiete et al., 2010).
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This process could thus be classified as unsupervised learning, in which neither an error nor 

a reward signal need be present for the system to continue to evolve. Unsupervised learning 

is likely of primary importance for the later stages of skill learning, when a basic model of 

the behavior has already been generated, allowing mere repetition to ultimately achieve 

effortless, reproducible performance. Motor cortex is likely a central locus of unsupervised 

learning, as suggested previously (Doya, 1999). We again note that it is probable that 

unsupervised learning and feedback-based mechanisms overlap to a certain degree, with 

feedback continuing to provide a level of supervision over the behavioral products of the 

Hebbian plasticity in the cortex.

As a final note, it should be pointed out that the role of motor cortex in motor learning and 

movement execution is debated. While motor cortex is unambiguously required for the 

learning of motor skills, its involvement in the execution of learned or highly stereotyped 

movements is controversial. A recent study showed that post-learning lesion of motor cortex 

did not affect the execution of stereotyped sequences of movements learned in an 

unconstrained manner (Kawai et al., 2015), while another study has shown that the same 

manipulation eliminated the ability to perform a skilled reach-and-grasp task (Conner et al., 

2005). A unifying principle seems to be that the more dexterous and awkward the learned 

movements are, the more dependent the execution is on the motor cortex. Furthermore, the 

degree of training may also be an important factor such that overtraining may gradually 

reduce cortical dependence.

Concluding Remarks

We have reviewed a variety of changes in neural activity and connectivity patterns during 

sensorimotor learning. While these changes underscore the dynamic nature of the 

sensorimotor pathway, drawing a causal link between neural changes and behavioral 

improvement remains a fundamental challenge in the study of learning. This is especially 

challenging in cases where neural changes are highly distributed across many brain areas. 

For example, we have reviewed that perceptual learning induces neural changes at multiple 

levels of sensory processing. An ideal test for the necessity of neural changes in learning 

would be to block the changes without affecting other aspects of circuit functions. 

Pharmacological or genetic inactivation of NMDARs has been used as a means to assess the 

necessity of synaptic plasticity in a brain region of interest. However, NMDAR signaling is 

required not only for synaptic plasticity but also for basal synaptic transmission, so the 

interpretation of these experiments is not straightforward. As a potentially more specific 

approach, a study reported the development of a molecular genetic tool that is designed to 

reverse recent synaptic potentiation events when activated by light (Hayashi-Takagi et al., 

2015). When this tool was activated in the motor cortex following training, impairment in 

motor skill learning was observed. Another study identified a plasticity event in a specific 

class of inhibitory neurons associated with motor skill learning, which could play a 

permissive role in allowing excitatory circuit plasticity. The authors attempted to test this 

idea by controlling the activity of these inhibitory neurons using optogenetics, which 

blocked normal synaptic plasticity in excitatory neurons and impaired motor skill learning 

(Chen et al., 2015b). Additionally, an interesting study reported that the expression of 

conditioned fear response could be inactivated and reactivated by optogenetic protocols that 

Makino et al. Page 19

Neuron. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



would weaken or strengthen the synapses of auditory inputs onto the amygdala (Nabavi et 

al., 2014). While the need for the test of specificity for these manipulations cannot be 

overstated, the expanding molecular toolkit will allow researchers to perform increasingly 

more specific manipulations to test the causality of neural changes in learning.

Lastly, we note that the pursuit of the precise neural changes that support learning is further 

confounded by the fundamentally fluid nature of memory. It has long been appreciated that 

the stability of a memory is dependent on time such that older memories are often more 

stably maintained. This implies that the underlying neural mechanisms, including involved 

brain regions, may be dynamically shifting over time. In fact, an emerging principle that we 

proposed in the associative learning section is a gradual shortening of the pathway 

connecting sensory inputs to motor outputs. Such fluidity and distributed nature of memory 

trace makes it a major challenge to identify the precise changes in brain circuits that mediate 

behavioral improvement during learning. Major progress would be afforded by holistic, 

brain-wide observations of changes combined with manipulations with high molecular, 

temporal and spatial precision.
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Figure 1. 
Three hierarchical levels of sensorimotor learning and their unique tasks.

Makino et al. Page 30

Neuron. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Emerging principles and changes in the circuit operation during perceptual learning
(A) Changes in neural activity during perceptual learning. Left, changes in single neuron 

activity. Perceptual learning could involve changes in the tuning of individual neurons by 

increasing its sharpness or gain, or shifting its peak. Right, changes in population activity. 

Perceptual learning could enhance discriminability of stimuli by decreasing the trial-by-trial 

response fluctuations (σ), increasing the distance between mean responses (d) or changing 

noise correlations. Individual dots indicate single trials.

Note that the changes in fluctuations and distance can be achieved by independent changes 

of single neurons, while noise correlation changes would require a coordination across 

neurons.

(B) Perceptual learning could involve changes in the circuit operation. Learning-dependent 

suppression of distal dendritic inhibition (top) or perisomatic inhibition (bottom) could 

enhance the impact of top-down processing or the gain of principal neurons, respectively.
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Figure 3. Circuit models of sensorimotor associative learning
(A) In this model, sensorimotor association is initially executed by dopamine-dependent 

plasticity to strengthen the corticostriatal synapses in the basal ganglia carrying specific 

sensory inputs (‘1’). The downstream pathway drives specific motor responses via PFC 

(blue). The basal ganglia output to PFC also strengthens sensory input synapses in PFC 

(‘2’), which subsequently forms a pathway from sensory to prefrontal to motor cortices, 

bypassing the basal ganglia (green). Further training creates direct cortico-cortical pathways 

between sensory and motor cortices, via coincidental activation-dependent plasticity (red, 

‘3’).

(B) Alternative hypothesis: The basal ganglia output to PFC provides a teaching signal, 

without driving specific motor responses. During the exploration phase of learning, striatal 

neurons that receive convergent inputs carrying specific sensory and motor information 

undergo plasticity based on the dopamine prediction error signal (left). This association-

specific activity in the basal ganglia provides a teaching signal for PFC neurons that drive 

the specific motor program to strengthen the synapses carrying the specific sensory 

information (right). Grey boxes denote the sites of plasticity. In this model, learning is 

behaviorally evident only after the plasticity in PFC.
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Figure 4. Hierarchical mechanisms of circuit modification shape the formation of novel motor 
skills
(A) During the early phases of learning, the system explores a variety of behavioral options, 

which coincides with an expansion of the neuronal ensemble size in the motor cortex.

(B) Favorable outcomes reinforce a corresponding population of cells, shifting the mean 

behavior in the process.

(C) The repetition of the selected behavior drives Hebbian plasticity in the associated 

population of cells, eventually resulting in a refined ensemble and highly stereotyped 

behavior.
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