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SUMMARY

The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of
the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by
elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest.
New studies hint that the centrosome functions in more than MTorganization. For instance, it
has recently been shown that a specific substructure of the centrosome—the mother centriole
appendages—are required for the recycling of endosomes back to the plasma membrane. This
alone could have important implications for a renaissance in our understanding of the devel-
opment of primary cilia, endosome recycling, and the immune response. Here, we review
newly identified roles for the centrosome in directing membrane traffic, the immunological
synapse, and the stress response.
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1 INTRODUCTION: CENTROSOMES—SMALL
BUT NOT SIMPLE

Theodore Boveri published his seminal work in 1888, de-
scribing the origin of the centrosome from the sperm cen-
triole after fertilization (Scheer 2014). This initial centriole
will become the mother centriole and will duplicate to form
a daughter centriole. Another round of duplication is re-
quired to make two mitotic spindle poles, each containing
two centrioles. These two duplication cycles are required to
form the first mitotic spindle, thus initiating the process of
development and growth of an embryo.

The centrosome has been visualized by light micros-
copy since the 1880s and, subsequently, by transmission
electron microscopy (TEM), which revealed the two bar-
rel-shaped centrioles surrounded by pericentriolar material
(PCM). The centriole itself contains substructures such as a
cartwheel-like structure and two sets of appendages at the
distal end of the oldest centriole (a.k.a. “mother centriole”;
Fig. 1). The cartwheel-like structure serves as a platform to
assemble microtubule (MT) triplets arranged with ninefold
symmetry. It is argued that the assembly of this structure de
novo involves a complex of proteins (Kitagawa et al. 2011),
which are regulated by a polo-like kinase—the serine/thre-
onine-protein kinase PLK4 (centriole assembly has been
reviewed elsewhere; Brito et al. 2012). However, the role
of appendages in centrosome function remains more enig-
matic. We know that the oldest centriole (the mother) is
structurally distinct from the younger centriole (the
“daughter”) in that it contains distal appendages and sub-
distal appendages (Fig. 1). The proteins that comprise these
appendages are enriched specifically at the mother centri-
ole, whereas the daughter centriole possesses its own spe-
cific molecular components (e.g., centrobin—a protein
required to ensure the length of the newly formed centri-
oles; Zou et al. 2005; Gudi et al. 2015). The current pro-
posed role for distal appendages is in docking the cen-
trosome to the plasma membrane during the formation
of cilia (Tanos et al. 2013), whereas the subdistal append-
ages are proposed to act in MTanchoring in interphase cells
(Delgehyr et al. 2005). More recent evidence indicates that
these appendage proteins are also important for ensuring
symmetric division and membrane trafficking (see below).

Another important structure of the centrosome is the
PCM that surrounds the two centrioles. It was originally
speculated that the PCM was a disorganized meshwork of
proteins (as reviewed elsewhere; Mennella et al. 2014). With
the advent of superresolution microscopy and deconvolu-
tion, the PCM appears to have a lattice-like organization
(Dictenberg et al. 1998) and ring-like arrangements (Lawo
et al. 2012). Superresolution microscopy also revealed mo-
lecularcomponents of the PCM (e.g., pericentrin,g-tubulin),

which were detected at a resolution of ,200 nm. These
studies allowed the precise modeling of different PCM com-
ponents within the lattice (Fu and Glover 2012; Lawo et al.
2012; Mennella et al. 2012; Sonnen et al. 2012). The first
striking observation was that pericentrin is organized with
its carboxyl terminus closer to the centriole wall, and the
amino terminus of the protein extends toward the outer
layer of the lattice (Mennella et al. 2012).g-tubulin is found
in a more peripheral layer. Pericentrin displays a structure
similar to “arms” reaching across and, potentially, securing
the lattice network (Lawo et al. 2012), arguing for its im-
portance in lattice stability (Mennella et al. 2012). This
topology might explain why g-tubulin is lost so readily in
cells lacking pericentrin (Zimmerman et al. 2004; Chen
et al. 2014).

2 THE CONSTANTLY EVOLVING ROLE OF THE
CENTROSOME THROUGHOUT THE CELL CYCLE

The dynamic, yet organized, centrosome provides a plat-
form for multiple functions. As the cell enters mitosis, the
ability of the centrosome to nucleate MTs increases, con-
comitant with recruitment of additional PCM and signal-
ing components, thus transforming the once PCM-poor
interphase centrosome into a mature PCM-rich spindle
pole. Once division is completed and the cell commits to
differentiate, the once-again PCM-poor centrosome can
move toward the plasma membrane and function as a basal
body for cilia formation (Fig. 2). Besides these classical
functions of the centrosome, its recently appreciated roles
in membrane trafficking and formation of immunological
synapses (Fig. 2) direct a fast-burgeoning area of research,
driven in part by the identification of more than 100 dif-
ferent centrosome proteins and an open-access centrosome
proteome to peruse (Andersen et al. 2003; Jakobsen et al.
2011). However, the framework for how these proteins are
organized, the dynamics of their localization to the centro-
some throughout the cell cycle, and their organization have
not been fully elucidated. With the ability to use live-cell
imaging and superresolution microscopy, we envision that
these questions will quickly be resolved.

Proteins that make up the proteasome were one of many
interesting centrosome candidates that have been identified
(Badano et al. 2005; Wigley et al. 1999), but their specific
subcentrosome localization is still unknown. In eukaryotes,
proteasomes drive the selective degradation of protein
substrates containing covalently linked ubiquitin chains.
Although proteasomes are distributed throughout the
cell, their localization at the centrosome argues for a spe-
cific biological function at this distinct subcellular site. For
instance, studies linking the proteasome to the centrosome
show a role for centrosome localization in neuronal func-
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Figure 1. Centrosome substructures. A model highlighting the centrosome and its specific substructures, namely,
(A) the centrioles, (B) distal appendages, (C) subdistal appendages, and (D) pericentriolar material (PCM). The
centrosome comprises the mother centriole (MC), daughter centriole (DC), tethered together by “linker” structures,
PCM, and satellites. The “linker” ensures centriole engagement and timely linker degradation that licenses centriole
duplication during S phase. The protein composition of the “linker” remains elusive, but the involvement of
pericentrin, Cep215, and Cep68 in centriole connections has recently been shown (Pagan et al. 2015). (A) Illustra-
tion showing the centriole barrel (in top view). Depicted is a central hub, a rod-shaped structure of SAS6 homo-
dimers that form oligomers (Kitagawa et al. 2011; Guichard et al. 2013), from which nine spokes of SAS6
homodimers emanate, which each radiate toward a microtubule (MT) triplet. (B) Relative organization of molecular
players forming the distal appendages (DAs), with Cep83 being in closest proximity to the centriole. (C) A model in
which it is proposed that cenexin/Odf2 is responsible for the integrity of the subdistal appendages (SDAs) and for
connecting them to the MC. (D) Organization of the PCM into 13 protofilament oligomers that contain g-tubulin
in the outermost layer; the carboxyl terminus (C term) of pericentrin is located close to the centriole barrel, whereas
the amino terminus (A term) is oriented toward the outer lattice layer. (E) Electron micrograph of a mother centriole
with two sets of appendages; DAs are highlighted by blue arrows and SDAs are highlighted by red arrows. Scale bar,
0.1 mm. (E, Reproduced from Hung et al. 2016, with permission from Elsevier.)
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tion. Specifically, an E3-ubiquitin ligase linked to Parkin-
son’s disease is enriched at the centrosome (Zhao et al.
2003). These E3 ligases are enzymes that recognize targets
for degradation by tagging them with ubiquitin. This work
suggests that the centrosomal localization of this E3 ligase
provides a subcellular site to specifically ubiquitinate and
degrade protein aggregates that are crucially involved in the
pathogenesis of Parkinson’s disease. A centrosomal locali-
zation of proteasome components was also proposed to be
important for the development of dendrites. This was test-
ed by developing a tool to inhibit proteasome function
specifically at the centrosome (Puram et al. 2013). The
proteasomal subunit S5a/Rpn10 was identified as an es-
sential component for proteasomal activity specifically at
the centrosome in neurons to promote dendrite arbor elab-

oration. A deeper understanding of the molecular relation-
ship between the centrosome and the proteasome could
elucidate potential therapeutic targets in Parkinson’s dis-
ease progression and, thus, expand our understanding of
neuronal development.

3 MT-ORGANIZING CENTER AND SPINDLE POLES

The centrosome is most commonly known as a microtu-
bule-organizing center (MTOC). MTs appear to be orga-
nized at the centrosome in three different ways. They can
be nucleated at this site from/by g-tubulin ring complexes
(g-TuRCs) located in the PCM (Fig. 1). g-TuRCs consist of
g-tubulin small complexes (g-TuSCs) and accessory pro-
teins (Doxsey 2001). Unlike MT growth in vitro, in which
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Figure 2. The various functions of the centrosome. The figure summarizes the main activities of the centrosome,
including (A) organization of membrane organelles (e.g., recycling endosome); (B) cilium formation and function;
(C) spindle pole maturation during mitosis; and (D) formation of an immunological synapse, in which a natural
killer cell recognizes an infected cell. IFT, intraflagellar transport; RE, recycling endosome.
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variable numbers of protofilaments are formed, centro-
some-nucleated MTs typically comprise 13 protofilaments
(reviewed in Doxsey 2001). g-TuRCs form oligomers that
have a slight helical geometry similar to the helical turns of
the MT itself and are consistent with a role for the g-TuRCs
templating the assembly of 13-fold microtubule protofila-
ments to form an MT (Kollman et al. 2010). MTs (appar-
ently centrosome-nucleated) can also be anchored at
subdistal appendages of the centrosome in interphase cells,
but little is known about how these MTs arise and anchor,
other than them requiring ninein for their anchoring (Del-
gehyr et al. 2005). MTs can also be elongated from the older
centriole during ciliogenesis.

The centrosome function expands when the interphase
centrosome matures into a mitotic spindle pole. Centro-
some maturation occurs every cell cycle and involves re-
cruitment of signaling molecules to initiate centrosome
separation and maturation, followed by the addition of
PCM components to increase MT nucleation. The role of
centrioles in mitotic spindle assembly appears to be dispen-
sable during Drosophila development (Basto et al. 2006)—
in this case, the cells rely on acentriolar MTOCs. However,
in chicken DT40 cells, centrioles are required for timely
spindle assembly and chromosome stability (Sir et al.
2013). In developing mouse embryos, acentriolar mitosis
causes early embryonic lethality, arguing for an essential
role for centrioles in mammalian development (Bazzi and
Anderson 2014). To initiate spindle maturation in either
Drosophila or mammalian cells, two well-studied kinases—
Aurora A and Plk1—must be recruited to the spindle poles
(reviewed in Barr and Gergely 2007), where they play
crucial roles in spindle assembly and mitotic progression.
Interestingly, Aurora A modifies several important cell cy-
cle–related proteins that include CPEB (cytoplasmic poly-
adenylation element binding) to regulate translation of
cyclin-B–Cdk1 for mitotic entry (Mendez and Richter
2001; Sasayama et al. 2005); Eg5, LATS2, and NDEL1,
which are required for centrosome separation and matura-
tion (Toji et al. 2004); and TACC (transforming acid coiled
coil) for astral MT stability (Conte et al. 2003; Barros et al.
2005). Therefore, it is not surprising that defects in Aurora
A signaling ultimately delay mitotic entry, induce mono-
polar spindle formation, and cause misaligned chromo-
somes (Hochegger et al. 2013). Plk1 seems to be more
specific and directly phosphorylates substrates required
for centrosome maturation and spindle assembly proteins
(reviewed by Lens et al. 2010).

4 BASAL BODY

When a cell exits the cell cycle, during differentiation or
because of a lack of nutrients (Goto et al. 2013), the cen-

trosome relinquishes its main role as an MTOC and relo-
cates from its perinuclear site to the apical plasma
membrane where one of the two centrioles, the mother
centriole, serves as a basal body for ciliogenesis (Fig. 2)
(reviewed by Kobayashi and Dynlacht 2011; Hehnly and
Doxsey 2012). The basal body can revert back to an
MTOC and reenter the cell cycle by reabsorbing the cilia
and moving away from the apical membrane.

As the centrosome is at the base of the primary cilium
and is required for anchoring the cilium at the plasma
membrane, it is not surprising that many centrosome pro-
teins were found to be crucial for ciliogenesis (Graser et al.
2007; Mikule et al. 2007; Nigg and Raff 2009). The mother
centriole appendages comprise a handful of centrosome
proteins that have been implicated in the formation of cilia
(e.g., Cep164, ODF2/Cenexin, Cep83, and centriolin;
Gromley et al. 2003; Ishikawa et al. 2005; Graser et al.
2007; Chang et al. 2013; Tanos et al. 2013). The distal ap-
pendage molecular components, Cep164 and Cep83, are
thought to be important for docking of the mother centri-
ole at the plasma membrane during ciliogenesis. The role of
the subdistal appendages is less defined. Interestingly,
ODF2/cenexin localizes to both subdistal and distal ap-
pendages and contributes to the formation of both (Ishi-
kawa et al. 2005; Chang et al. 2013). One interesting role for
subdistal appendages is that they might act as a site to
assemble a ciliary vesicle (Sorokin 1962), which is a mem-
branous capsule proposed to be required for fusion of the
cilium with the plasma membrane (Hehnly et al. 2013).
Another recent study showed that ciliary components, in-
cluding membrane vesicles, remain associated with the
mother centriole during mitosis (Paridaen et al. 2013).
Furthermore, it seems that the daughter cell that inherits
the oldest centriole will be the first to form a primary cilium
(Paridaen et al. 2013).

Besides the formation of the ciliary vesicle, the centro-
some undergoes additional changes during ciliogenesis
that include the establishment of a ciliary rootlet (Yang
et al. 2002). During assembly of cilia, the centrosome (basal
body) facilitates the formation of the ciliary rootlet. Root-
letin—a structural component of the ciliary rootlet (Yang
et al. 2002)—is also a component of the centrosome during
G1–S cell cycle stages and is required for centrosome co-
hesion (Bahe et al. 2005). Interestingly, a lack of rootletin
does not affect initial cilia development, but is implicated
in long-term cilia stability in photoreceptors and, when
lost, leads to retinal degeneration (Yang et al. 2005).

PCM components of the centrosome, such as pericen-
trin, are also implicated in ciliogenesis (for further details,
see Delaval and Doxsey 2010). One possible explanation for
the perturbation of ciliogenesis that accompanies the loss
of pericentrin is that pericentrin interacts with components
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of the intraflagellar transport (IFT) system, IFT20 and
IFT88 (Jurczyk et al. 2004). IFT is a cargo-trafficking path-
way that functions inside cilia and contributes to their
assembly and the delivery of signaling proteins (e.g., sonic
hedgehog; reviewed by Sung and Leroux 2013). The IFT
system efficiently delivers cargo to the cilium in a timely
manner, which is important as the cilium itself lacks trans-
lational machinery. The cilium consists of two protein sub-
complexes, IFT-A and IFT-B, which use the motor proteins
kinesin 2 and dynein to move bidirectionally along MTs in
the cilium.

An unexpected recent finding showed that formation of
the cilium involves autophagy-regulated degradation of
centrosome satellite proteins. Centriolar satellites (Fig. 1)
are cytoplasmic granules that have been proposed to func-
tion in centrosome protein targeting and exchange, as well
as communication between centrosomes and the cyto-
plasm. More specifically, the centriolar satellite protein
oral-facial-digital syndrome 1 protein (OFD1) is specifi-
cally degraded by autophagy, and this degradation is im-
portant for ciliogenesis (Tang et al. 2013). The interaction
of OFD1 with the autophagic protein LC3 is enhanced by
another satellite protein, PCM1. It has also been shown that
there is a mutual interdependence between ciliogenesis and
autophagy, favoring a model in which autophagy influenc-
es ciliogenesis (Pampliega et al. 2013). Other support for
this comes from the observation that cigarette smoke caus-
es the loss or shortening of cilia, and this is correlated with
an overall increase in autophagy (Lam et al. 2013). Inhibi-
tion of autophagy prevents cilia shortening in response to
cigarette smoke, thus supporting the notion regarding an
inhibitory effect of autophagy on ciliogenesis.

Most cell types contain primary cilia, implicating their
importance in cellular function. One particularly interest-
ing observation is the presence of signaling receptors at the
primary cilium, suggesting a role as a specialized signaling
“antenna.” Proteome analyses of nonmotile cilia have iden-
tified signaling components such as sonic hedgehog,
smoothened and Wnt (Liu et al. 2007; Mayer et al. 2009;
Ishikawa et al. 2012). These cilia-localized signaling cas-
cades have been modeled to influence neuronal migration
and cerebral cortical development (reviewed by Guemez-
Gamboa et al. 2014). One proposed mechanism for how
cilia might regulate neuronal migration is that they could
act as an antenna sensing hormonal changes in the extra-
cellular environment. Strikingly, a recent study revealed a
branched cilium in neurons of the nematode Caenorhab-
ditis elegans, suggesting that there could be some diversity
in the range of morphology of primary cilia (Doroquez
et al. 2014). Another example of the diversity of cilia comes
from comparative proteomic studies (Liu et al. 2007).
When compared with proteome analysis between photore-

ceptor sensory cilia and other cilia proteomes, a higher
number of transport and light-perception components,
such as photoreceptors and photoadaptor proteins, were
detected in photoreceptor cilia. This specialized organiza-
tion of distinct signaling components suggests that the cil-
ium is an organelle that is “tunable” to specific cell types.

5 LOSS OF CENTROSOME OR CILIA FUNCTION
LEADS TO CILIOPATHIES

Dysfunction of primary (sensory) cilia is associated with
several human disorders, collectively termed ciliopathies.
The primary cilium was thought to be the reason behind
the syndromic phenotypes associated with their disrup-
tion, including obesity, cystic kidneys, polydactyly, situs
inversus, and encephalocele, to name just a few. One recent
example linking primary cilia with obesity is a study on the
obesity-linked hormone leptin. Leptin is produced by ad-
ipocytes and was shown to stimulate elongation of cilia in
the hypothalamus neurons in adulthood (Han et al. 2014).
These findings suggested that leptin governs cilia length,
possibly to increase the sensitivity of hypothalamic neu-
rons to metabolic signals.

One specific ciliopathy, Bardet–Biedl syndrome (BBS),
has at least nine associated “ciliopathy” phenotypes that
include retinopathy, polydactyly, situs inversus, and devel-
opmental delays such as a hypoplastic (underdeveloped)
cerebellum and obesity. The multiple phenotypes of BBS
make it difficult to determine whether loss of cilia is the sole
defect in this disorder. BBS can result from mutations in at
least 14 different genes, some of which are involved in a
protein complex called the BBSome that contributes to cilia
structure, formation, and function. However, some BBS
proteins have been implicated in cellular structures outside
the cilium (reviewed by Vertii et al. 2015a). For instance,
BBS4 and BBS6 both localize to the centrosome/basal body
during interphase, when a cilium is emanating from the
basal body, and during mitotic progression, when the cili-
um is not present (Kim et al. 2004, 2005). Based on these
known BBS protein localizations to the centrosome, we
propose that defects in centrosome function, leading to
mitotic or cilia defects, might cocontribute to the etiology
of ciliopathies.

6 THE ENDOCYTIC RECYCLING MACHINERY
INTERACTS DIRECTLY WITH THE CENTROSOME
AND PLAYS A ROLE IN CILIA FORMATION AND
THE CELL CYCLE

Intercellular trafficking is dependent on centrosome struc-
ture (Fig. 2). One example of this is the recycling endosome
and its interaction with mother centriole appendages
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(Hehnly et al. 2012). The appendages are required for the
assembly of the ciliary vesicle, which forms at the mother
centriole before the centriole docks to the plasma mem-
brane from which the primary cilium emerges (Sorokin
1962). The recycling endosome contains two GTPases—
Rab11 and Rab8—that regulate cargo recycling in and
out of this organelle. Recently, these GTPases were shown
to interact directly with a mother centriole appendage pro-
tein, cenexin (Hehnly et al. 2012, 2013; Chang et al. 2013).
In addition, a Rab11–Rab8 GTPase cascade was shown to
be required for formation of cilia, in which active Rab11
recruits the Rab8 GDP–GTP exchange factor (GEF) Ra-
bin8 to activate Rab8 and, thus, induce cilia formation
(Knödler et al. 2010; Westlake et al. 2011). Rab8 and
Rab11 also interact with several well-defined proteins re-
quired for ciliogenesis such as the BBSome, the vesicle teth-
ering complex known as the exocyst, and the mother
centriole appendage protein cenexin (Fielding et al. 2005;
Wu et al. 2005; Nachury et al. 2007; Hehnly et al. 2012,
2013; Chang et al. 2013). However, the molecular mecha-
nism underlying the interplay between these molecular
components during ciliogenesis is unknown. Early steps
in ciliogenesis require the Rab8–Rab11 cascade and the
membrane-shaping proteins EHD1 and EHD3 (Lu et al.
2015). We speculate that the interaction between the recy-
cling endosome and its machinery with mother centriole
appendages facilitates the organization of the Rab11–Rab8
GTPase cascade, ensuring the initiation of the formation of
cilia at the appropriate time during the cell cycle.

Strikingly, a recent study implicated Rab11 and its role
in dynein-based endosome motility in maturation of spin-
dle poles and mitotic progression. Time-lapse imaging
showed Rab11-associated endosomes organized around in-
terphase centrosomes, mitotic spindles, and mitotic spin-
dle poles (Hehnly and Doxsey 2014). The Rab11-decorated
endosomes contained g-tubulin and dynein, suggesting
that endosomes might act as carriers for localizing MT-
nucleating and spindle pole proteins to the mitotic spindle
poles. Taken together, the results show that Rab11-associ-
ated endosomes are important in centrosome maturation
(Hehnly and Doxsey 2014) and ciliogenesis (Knödler et al.
2010; Westlake et al. 2011), thus showing their role in cen-
trosome function.

7 THE CENTROSOME AS A STRESS SENSOR

Signaling by centrosomes is crucial for cell cycle pro-
gression (Doxsey et al. 2005). Cyclin-dependent kinases
(CDKs) are well-known regulators of cell cycle progression,
and so it is not surprising that two cyclins—cyclin E and
cyclin A—physically interact with and activate CDKs,
including Cdk2 and Cdk1, and activate these kinases.

Interestingly, cyclins E and A both display centrosome lo-
calization and are required not only for centriole duplica-
tion but also for DNA replication. Each of these cyclins,
cyclin E and A, contain their own unique centrosome-lo-
calization signals, which are thought to spatially activate
CDKs (Matsumoto and Maller 2004; Pascreau et al. 2010).
Cyclin B also localizes to the centrosome. However, in this
case, the sequestration at the centrosome serves to prevent
cyclin B from conducting its nuclear function (Krämer
et al. 2004) and does not directly affect the centrosome.

On induction of DNA damage, the pathway involving
the proteins ATM, ATR, and Chk1 regulates the localization
of cyclin B at centrosomes. Normal entry into mitosis oc-
curs after activation of Cdk1, resulting in chromosome
condensation in the nucleus and centrosome separation,
as well as increased MT-nucleation activity in the cyto-
plasm. The centrosome-associated serine/threonine pro-
tein kinase Chk1 is proposed to colocalize with, and thus
shield, centrosome-localized Cdk1 from unscheduled acti-
vation by the cytoplasmic tyrosine-protein phosphatase
Cdc25B, thereby contributing to the accurate timing of
the initial steps of cell division, including mitotic spindle
formation (Krämer et al. 2004). However, on DNA damage,
a Chk1-mediated checkpoint induces excessive formation
of centriolar satellites that constitute assembly platforms
for centrosomal proteins, which subsequently leads to cen-
trosome amplification (Löffler et al. 2013). This proposed
centrosome-inactivation checkpoint comprising centro-
some amplification might lead to the elimination of cells
by mitotic catastrophe in response to DNA damage.
Furthermore, following UV-induced DNA damage, Chk1
first accumulates, and then becomes phosphorylated, at the
centrosome (Löffler et al. 2007). The specific phosphory-
lation of Chk1 is a prerequisite for its degradation by the
proteasome (Zhang et al. 2005). One interesting possibility
is that, on DNA damage, the nuclear fraction of Chk1 ac-
cumulates at the centrosome, where it is then spatially, and
in a timely manner, modified for degradation. This would
be one of several examples showing that signaling activities
involving centrosomes and nuclear events are linked in the
response to cellular stress. For example, it appears that the
disruption of centrosome structure results in a G1 arrest
through a p38–p53 stress pathway (Mikule et al. 2007).
Similarly, increasing p38 or p53 expression modulates
PLK4 activity, thereby regulating centriole duplication
(Nakamura et al. 2013).

8 CAN THE CENTROSOME DISCRIMINATE
BETWEEN DIFFERENT TYPES OF STRESS?

Heat stress, like DNA damage, can have a deleterious effect
on centrosome function. For instance, cells either under-
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going heat stress, such as fever, or incurring DNA damage
have a higher propensity to form a primary cilium (Villum-
sen et al. 2013), suggesting that multiple cellular stresses can
cause cells to exit the cell cycle and remain in G0. The
centrosome seems to be sensitive to stress. When com-
paring the DNA damage response in Drosophila embryos
(Sibon et al. 2000) with the heat-stress response of mam-
malian cells (Vidair et al. 1993), both undergo dramatic but
somewhat opposite changes in centrosome structure. For
example, although UV stress causes centriolar satellite am-
plification and centrosome overduplication, heat stress in
some cases causes disassembly of the PCM (Vidair et al.
1993; Brown et al. 1996b; Löffler et al. 2013). There have
been several discrepancies between studies on changes in
centrosome function that might have resulted from differ-
ences in heat-stress intensity and/or duration (Vidair et al.
1993; Brown et al. 1996b; Villumsen et al. 2013). Based on
these differences, it is important to define the physiological
relevance of heat stress in vivo on centrosome structure/
function and correlate these phenotypes to what has been
reported in the literature. Analysis of leukocytes from pa-
tients with febrile condition revealed decreased centrosome
integrity compared with that of healthy controls (Vertii
et al. 2015b). These data are supported by experiments in
vitro with fever-mimicking temperature regimens, indicat-
ing that the centrosome is a heat-stress-sensitive organelle.
Moreover, this sensitivity is unique to the centrosome, as
other nonmembranous organelles, the midbody, and kinet-
ochore appear to be heat-stress-tolerant (Vertii et al.
2015b). The heat-stress-related defects in centrosome in-
tegrity resulted in functional consequences for the centro-
some, such as its ability to nucleate MTs and polarize
during formation of the immunological synapse (IS; see
below).

9 CENTROSOMES IN THE IMMUNE RESPONSE

Recent studies have shown that centrosome reorientation
occurs during formation of the IS. IS formation is a neces-
sary step within the immune response that includes mem-
brane rearrangement at the sites where a T cell contacts an
antigen-presenting cell (APC), resulting in activation of the
T cell (Kloc et al. 2013). Cytotoxic T lymphocyte (CTL) or
natural killer (NK) cells form one type of IS that can elim-
inate infected or tumorigenic cells by releasing cytolytic
granules. Another type of IS occurs when T helper cells
recognize an antigen presented by the APC through its T-
cell receptor (TCR). The IS then assembles into a highly
organized structure that contains a peripheral and central
supramolecular activation complex (pSMAC and cSMAC,
respectively) (Dustin et al. 2010; Thauland and Parker
2010). Once formation of the IS is initiated, the centrosome

reorients toward the cSMAC within the IS and proceeds to
dock at the plasma membrane where it can control secre-
tion of lytic granules (Fig. 2) (Stinchcombe et al. 2006).
At the same time that the centrosome docks at the plasma
membrane, secretory granules move in a dynein-depen-
dent manner toward the centrosome (Mentlik et al.
2010). Centrosome reorientation and movement toward
the IS depends on several molecular factors that include
MTs; MT motors such as dynein and kinesin; membrane
components such as diacylglycerol; and signaling compo-
nents that include protein kinase C (PKC), casein kinase 1
delta, Lck, Fyn, and Zap-70 (Knox et al. 1993; Kuhné et al.
2003; Combs et al. 2006; Martı́n-Cófreces et al. 2006;
Quann et al. 2009; Bertrand et al. 2010; Tsun et al. 2011;
Zyss et al. 2011; Liu et al. 2013; Jenkins et al. 2014).
The molecular interplay between all these components
has yet to be deciphered. However, recent evidence illus-
trates that MTs are required for centrosomes to orient
themselves at the IS, and that this process is biphasic with
centrosome polarization toward, and docking at, the IS (Yi
et al. 2013). This work suggests an interesting model where-
by centrosome reorientation might influence polarity for-
mation in the IS. Future studies are required to investigate
whether reorientation of the centrosome sets up T-cell
polarity or whether T-cell polarity initiates centrosome
reorientation.

Recently, similarities have been discerned between IS
formation and cilia formation. For instance, in both cases,
the centrosome is required to reorient toward a polarized
membrane, either the apical membrane in the context of
cilia formation or the IS in T cells. Both these processes
involve hedgehog signaling either to function (Rohatgi
et al. 2007; Tasouri and Tucker 2011) or to dock the
centrosome at the plasma membrane (Stinchcombe et al.
2006; de la Roche et al. 2013). The similarities between IS
formation and cilia formation provide a rationale to test
whether proteins involved in cilia formation are also re-
quired in IS formation (e.g., IFT proteins, mother centriole
appendage proteins). Along these lines, a recent finding has
implicated an IFT protein—IFT20—in assembly of the IS
in T cells (Finetti et al. 2009). Specifically, IFT20 is impli-
cated as a central regulator of TCR recycling to the IS,
possibly through an interplay between IFT20 and the Rab
GTPase network that controls endosomal recycling (Finetti
et al. 2014). Recycling endosomes, specifically ones con-
taining either the Rab8 or Rab11 GTPases, have also been
implicated in formation of cilia (Knödler et al. 2010).
Therefore, we propose that the centrosome might be the
control center for organizing the endosomal pathway con-
taining IFT20 (Hehnly et al. 2012; Finetti et al. 2014) to
initiate either cilia formation or IS formation at the right
time and place.
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10 MAINTAINING CENTROSOME INTEGRITY
REQUIRES CHAPERONE MACHINERY

A high percentage of centrosomal proteins are .150 kDa
in size and contain large hydrophobic coiled-coil motifs
that are important in centrosome assembly. However, these
characteristics imply a risk of rapid aggregation under cel-
lular stress, suggesting that the centrosome is a highly un-
stable macromolecular complex. Maintaining centrosome
integrity is essential for cell cycle progression and cilia for-
mation. One proposed mechanism for maintaining centro-
some integrity, and thus function, is through chaperone
assistance. Chaperones are important components that
aid folding of newly synthesized proteins, prevent aggrega-
tion of misfolded proteins, and target misfolded proteins
for proteasome-mediated degradation (Horwich 2014). In
mammalian cells, there are multiple chaperones, including
heat-shock protein (Hsp) families: Hsp100, Hsp90, Hsp70,
the chaperonin complex TRiC/CCT, and small chaperones
such as crystallins (Kampinga et al. 2009). Some of these,
such as Hsp70 and Hsp90, use ATP to prevent protein
aggregation and facilitate proper folding of target proteins,
whereas others, such as the small chaperones Hsp27 andaB
crystallin, are ATP-independent but still efficient in their
chaperone function.

The molecular chaperonin system differs dramatically
from other chaperones (Kim et al. 2013). Chaperonins have
been implicated in facilitating molecular components that
assist in centrosome function. The chaperonin TRiC/CCT
is responsible for folding tubulin and actin intermediates,
as well as the PLK1 kinase (Llorca et al. 2000; Liu et al. 2005;
Muñoz et al. 2011), and localizes to the centrosome (Brown
et al. 1996a). Interestingly, CCT chaperonins have been
identified as molecular components contributing to the
onset of BBS (see Sec. 5 above). Two protein complexes
implicated in the etiology of BBS consist of an octameric
complex, the BBSome, and a handful of chaperonin-TRiC/
CCT-like proteins (BBS6, BBS10, BBS12) (Nachury et al.
2007; Loktev et al. 2008; Jin et al. 2010; Wei et al. 2012). Any
defect in protein complex assembly can result in BBS (Kat-
sanis 2004; Yang et al. 2008; Billingsley et al. 2010). Many of
the components that assist in formation of the BBSome
localize to the centrosome and include BBS6 and the
CCT proteins CCT1, CCT4, CCT5, and CCT8 (Kim et al.
2005; Seo et al. 2010; Zhang et al. 2012, 2013). Whether
chaperonins require centrosome localization to interact
with BBSome components is unknown. We speculate that
the centrosome, which already contains many chaperone
components, acts as a checkpoint to investigate the integ-
rity of the BBSome complex.

Like the chaperonin system, the Hsp70–Hsp90 chap-
erone machinery localizes to the centrosome (Wigley et al.

1999). This localization suggests that Hsp70–Hsp90 might
be involved in maintaining centrosome structure. In fact,
when centrosome structure is compromised (by depletion
of 13 specific centrosome proteins; Mikule et al. 2007), the
cells arrest in G1 phase. Strikingly, this same cell cycle arrest
occurs when Hsp/Hsc70 is depleted (Powers et al. 2008).
This finding suggests that the Hsp/Hsc70 depletion, like
depletion of centrosome proteins, compromises centro-
some structure and, thus, leads to cell cycle arrest. Such
an intriguing correlation led to the hypothesis that chap-
erones have a bona fide role in centrosome structure/func-
tion, in addition to their role in being recruited to the
centrosome under stress. For example, under heat stress,
the PCM of the centrosome is disrupted (Vidair et al. 1993;
Hut et al. 2005). This disruption occurs concomitant with
Hsp70 recruitment to the centrosome, suggesting a role for
this chaperone in centrosome protection. Furthermore, ec-
topic expression of Hsp70 protects the PCM when under
heat stress (Brown et al. 1996a,b). However, as increased
cellular levels of chaperones will protect multiple cellular
organelles from stress-related defects, from these studies it
is difficult to determine whether Hsp70 expression is di-
rectly protecting the centrosome or whether this effect is
indirect. Specific targeting of Hsp70 to the centrosome
rescues centrosomal defects during stress, most likely
through its ability to nucleate MTs and to serve as a basal
body for polarizing toward the IS (Vertii et al. 2015b).

11 CONCLUSION

The emerging roles of the centrosome in underpinning a
myriad of cellular functions might be related to the pos-
session by the centrosome of many unique structural com-
ponents. For example, the centrosome nucleates most of its
MTs from the PCM and anchors MTs at the subdistal ap-
pendages, which are also implicated in organizing recycling
endosomes. Furthermore, the distal appendages are linked
to a separate centrosome function that involves centriole
docking to the plasma membrane for both cilia formation
and the formation of the IS. Although these different cen-
trosome substructures can be linked to different cellular
processes, we still do not know whether there is cross talk
between the substructures themselves. For instance, could
the subdistal appendages regulate PCM function? Support
for this idea comes from the observation that several sub-
distal appendage proteins become more PCM-like (e.g.,
ninein) during maturation of the spindle pole, suggesting
that these molecular players “toggle” between their roles at
the appendages and their roles at the PCM. However, the
role of appendage proteins at the PCM is unclear, although
we do know that the appendage protein ninein is required
for symmetric cell division (Wang et al. 2009; Dauber et al.

Multiple Functions of the Centrosome

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a025049 9



2012). We propose that chaperone components guard these
different centrosome structures and assist in the assembly
and disassembly of the many substructures of centrosomes.

Centrosome multitasking involves dynamic molecular
rearrangements and, sometimes, movement of the entire
centrosome during cell migration or ciliogenesis. These
changes are probably due to MT-based transport to and
from the centrosome. However, an alternative method to
reorganize centrosome structure could involve local degra-
dation of protein pools through centrosome-localized pro-
teasome activity. One can imagine that maintaining the
centrosome requires dynamic transport of material to
and from the centrosome, the initiation of newly synthe-
sized material at the centrosome, and the degradation of
material no longer needed. If any of these pathways are
improperly regulated, the fate of the cell will ultimately
be decided by the centrosome. Therefore, it will be impor-
tant to gain a greater understanding of the molecular path-
ways that feed into the centrosome and how the centrosome
ultimately influences them.
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Bertrand F, Esquerré M, Petit A-E, Rodrigues M, Duchez S, Delon J,
Valitutti S. 2010. Activation of the ancestral polarity regulator protein
kinase Cz at the immunological synapse drives polarization of Th cell
secretory machinery toward APCs. J Immunol 185: 2887–2894.

Billingsley G, Bin J, Fieggen KJ, Duncan JL, Gerth C, Ogata K, Wodak SS,
Traboulsi EI, Fishman GA, Paterson A, et al. 2010. Mutations in chap-
eronin-like BBS genes are a major contributor to disease development
in a multiethnic Bardet–Biedl syndrome patient population. J Med
Genet 47: 453–463.

Brito DA, Gouveia SM, Bettencourt-Dias M. 2012. Deconstructing
the centriole: Structure and number control. Curr Opin Cell Biol 24:
4–13.

Brown CR, Hong-Brown LQ, Doxsey SJ, Welch WJ. 1996a. Molecular
chaperones and the centrosome. A role for HSP 73 in centrosomal
repair following heat shock treatment. J Biol Chem 271: 833–840.

Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ. 1996b.
Molecular chaperones and the centrosome. A role for TCP-1 in mi-
crotubule nucleation. J Biol Chem 271: 824–832.

Chang J, Seo SG, Lee KH, Nagashima K, Bang JK, Kim BY, Erikson RL,
Lee K-W, Lee HJ, Park J-E, et al. 2013. Essential role of Cenexin1, but
not Odf2, in ciliogenesis. Cell Cycle 12: 655–662.

Chen CT, Hehnly H, Yu Q, Farkas D, Zheng G, Redick S, Hung H,
Samtani R, Jurczyk A, Akbarian S, et al. 2014. A unique set of centro-
some proteins requires pericentrin for spindle-pole localization and
spindle orientation. Curr Biol 24: 2327–2334.

Combs J, Kim SJ, Tan S, Ligon LA, Holzbaur ELF, Kuhn J, Poenie M. 2006.
Recruitment of dynein to the Jurkat immunological synapse. Proc.
Natl Acad Sci 103: 14883–14888.

Conte N, Delaval B, Ginestier C, Ferrand A, Isnardon D, Larroque C,
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Krämer A, Mailand N, Lukas C, Syljuåsen R.G, Wilkinson CJ, Nigg EA,
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