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Targeted nucleases have provided researchers with the ability to manipulate virtually any
genomic sequence, enabling the facile creation of isogenic cell lines and animal models for
the study of human disease, and promoting exciting new possibilities for human gene
therapy. Here we review three foundational technologies—clustered regularly interspaced
short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription acti-
vator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the
engineering advances that facilitated their development and highlight several achievements
in genome engineering that were made possible by these tools. We also consider artificial
transcription factors, illustrating how this technology can complement targeted nucleases for
synthetic biology and gene therapy.

In recent years, the emergence of highly versa-
tile genome-editing technologies has pro-

vided investigators with the ability to rapidly
and economically introduce sequence-specific
modifications into the genomes of a broad spec-
trum of cell types and organisms. The core tech-
nologies now most commonly used to facilitate
genome editing, shown in Figure 1, are (1) clus-
tered regularly interspaced short palindromic
repeats (CRISPR)-CRISPR-associated protein
9 (Cas9), (2) transcription activator-like effec-
tor nucleases (TALENs), (3) zinc-finger nucle-
ases (ZFNs), and (4) homing endonucleases or
meganucleases.

In particular, the ease with which CRISPR-
Cas9 and TALENs can be configured to recog-

nize new genomic sequences has driven a revo-
lution in genome editing that has accelerated
scientific breakthroughs and discoveries in dis-
ciplines as diverse as synthetic biology, human
gene therapy, disease modeling, drug discovery,
neuroscience, and the agricultural sciences.

The diverse array of genetic outcomes made
possible by these technologies is the result, in
large part, of their ability to efficiently induce
targeted DNA double-strand breaks (DSBs).
These DNA breaks then drive activation of cel-
lular DNA repair pathways and facilitate the in-
troduction of site-specific genomic modifica-
tions (Rouet et al. 1994; Choulika et al. 1995).
This process is most often used to achieve gene
knockout via random base insertions and/or
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deletions that can be introduced by nonhomol-
ogous end joining (NHEJ) (Fig. 2A) (Bibikova
et al. 2002). Alternatively, in the presence of a
donor template with homology to the targeted
chromosomal site, gene integration, or base
correction via homology-directed repair (HDR)
can occur (HDR) (Fig. 2B) (see Fig. 2 for an
overview of other possible genome-editing out-

comes) (Bibikova et al. 2001, 2003; Porteus and
Baltimore 2003; Urnov et al. 2005). Indeed, the
broad versatility of these genome-modifying
enzymes is evidenced by the fact that they also
serve as the foundation for artificial transcrip-
tion factors, a class of tools capable of modulat-
ing the expression of nearly any gene within a
genome.
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Figure 1. Genome-editing technologies. Cartoons illustrating the mechanisms of targeted nucleases. From top to
bottom: homing endonucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector (TALE) nu-
cleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated
protein 9 (Cas9). Homing endonucleases generally cleave their DNA substrates as dimers, and do not have
distinct binding and cleavage domains. ZFNs recognize target sites that consist of two zinc-finger binding sites
that flank a 5- to 7-base pair (bp) spacer sequence recognized by the FokI cleavage domain. TALENs recognize
target sites that consist of two TALE DNA-binding sites that flank a 12- to 20-bp spacer sequence recognized by
the FokI cleavage domain. The Cas9 nuclease is targeted to DNA sequences complementary to the targeting
sequence within the single guide RNA (gRNA) located immediately upstream of a compatible protospacer
adjacent motif (PAM). DNA and protein are not drawn to scale.
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Here we review key principles of genome
editing, emphasizing many of the engineering
advances that have laid the groundwork for the
creation, refinement, and implementation of
the current suite of genome-modifying tools.
We also provide an overview of the achieve-
ments made possible by genome editing, illus-
trating how this technology can enable advances
throughout the life sciences.

TARGETED NUCLEASES

Zinc-Finger Nucleases

ZFNs, which are fusions between a custom-
designed Cys2-His2 zinc-finger protein and the
cleavage domain of the FokI restriction endo-
nuclease (Kim et al. 1996), were the first target-
ed nuclease to achieve widespread use (Porteus

and Carroll 2005; Urnov et al. 2010). ZFNs
function as dimers, with each monomer recog-
nizing a specific “half site” sequence—typically
nine to 18 base pairs (bps) of DNA—via the
zinc-finger DNA-binding domain (Fig. 1). Di-
merization of the ZFN proteins is mediated by
the FokI cleavage domain, which cuts DNA
within a five- to seven-bp spacer sequence that
separates two flanking zinc-finger binding sites
(Smith et al. 2000). Each ZFN is typically com-
posed of three or four zinc-finger domains, with
each individual domain composed of �30 ami-
no acid residues that are organized in a bba

motif (Pavletich and Pabo 1991). The residues
that facilitate DNA recognition are located
within thea-helical domain and typically inter-
act with three bps of DNA, with occasional over-
lap from an adjacent domain (Wolfe et al. 2000).
Using methods such as phage display (Choo
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Figure 2. Genome-editing outcomes. Targeted nucleases induce DNA double-strand breaks (DSBs) that are
repaired by nonhomologous end joining (NHEJ) or, in the presence of donor template, homology-directed
repair (HDR). (A) In the absence of a donor template, NHEJ introduces small base insertions or deletions that
can result in gene disruption. When two DSBs are induced simultaneously, the intervening genomic sequence
can be deleted or inverted. (B) In the presence of donor DNA (plasmid or single-stranded oligonucleotide),
recombination between homologous DNA sequences present on the donor template and a specific chromo-
somal site can facilitate targeted integration. Lightning bolts indicate DSBs.
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and Klug 1994; Jamieson et al. 1994; Wu et al.
1995), a large number of zinc-finger domains
recognizing distinct DNA triplets have been
identified (Segal et al. 1999; Dreier et al. 2001,
2005; Bae et al. 2003). These domains can be
fused together in tandem using a canonical
linker peptide (Liu et al. 1997) to generate poly-
dactyl zinc-finger proteins that can target a wide
range of possible DNA sequences (Beerli et al.
1998, 2000a; Kim et al. 2009). In addition to this
“modular assembly” approach to zinc-finger
construction, selection-based methods for con-
structing zinc-finger proteins have also been re-
ported (Greisman and Pabo 1997; Isalan et al.
2001; Hurt et al. 2003; Magnenat et al. 2004),
including those that consider context-depen-
dent interactions between adjacent zinc-finger
domains, such as oligomerized pool engineer-
ing (OPEN) (Maeder et al. 2008). In addition,
specialized sets of validated two-finger, zinc-fin-
ger modules have been used to assemble zinc-
finger arrays (Kim et al. 2009; Bhakta et al.
2013), including those that take context-depen-
dent effects into account (Sander et al. 2011b;
Gupta et al. 2012).

One major concern associated with the use
of ZFNs for genome editing (in addition to all
targeted nucleases) is off-target mutations (Ga-
briel et al. 2011; Pattanayak et al. 2011). As a
result, several approaches have been undertaken
to enhance their specificity. Among the most
successful of these has been the creation of
obligate heterodimeric ZFN architectures that
rely on charge–charge repulsion to prevent un-
wanted homodimerization of the FokI cleavage
domain (Miller et al. 2007; Doyon et al. 2011),
thereby minimizing the potential for ZFNs to
dimerize at off-target sites. Additionally, pro-
tein-engineering methods have been used to
enhance the cleavage efficiency of the FokI
cleavage domain (Guo et al. 2010). One par-
ticularly promising approach for improving
ZFN specificity is to deliver them into cells as
protein. Because of the intrinsic cell-penetrat-
ing activity of zinc-finger domains (Gaj et al.
2014a), ZFN proteins themselves are inherently
cell-permeable and can facilitate gene editing
with fewer off-target effects when applied di-
rectly onto cells as purified protein compared

to when expressed within cells from nucleic ac-
ids (Gaj et al. 2012). Modified ZFN proteins
endowed with improved cell-penetrating activ-
ity have since been described (Liu et al. 2015a).
ZFNickases can also facilitate gene correction in
the absence of a DSB (Kim et al. 2012; Ramirez
et al. 2012; Wang et al. 2012). These enzymes,
which consist of one catalytically inactivated
ZFN monomer in combination with a second
native ZFN monomer, can stimulate HDR by
nicking or cleaving one strand of DNA and are
derived from a concept first illustrated by Stod-
dard and colleagues using homing endonucle-
ases (McConnell Smith et al. 2009).

Unlike TALENs and CRISPR-Cas9, the dif-
ficulty associated with constructing zinc-finger
arrays has hindered their widespread adoption
in unspecialized laboratories. In particular, it
remains challenging to create zinc-finger do-
mains that can effectively recognize all DNA
triplets, especially those of the 50-CNN-30 and
50-TNN-30 variety. As a result, ZFNs lack the
target flexibility inherent to more recent ge-
nome-editing platforms. Nevertheless, the po-
tential for ZFNs to mediate specific and efficient
genome editing is evidenced by ongoing clinical
trials based on ZFN-mediated knockout of the
human immunodeficiency virus (HIV)-1 co-
receptor CCR5 for treatment of HIV/acquired
immune deficiency syndrome (AIDS) (Tebas
et al. 2014) and a planned clinical trial based
on site-specific integration of the factor IX
gene into the albumin locus to treat hemophilia
B (Clinical Trial ID: NCT02695160) (Sharma
et al. 2015).

TALE Nucleases

TALE proteins are bacterial effectors. In 2009,
the code used by TALE proteins to recognize
DNA was uncovered (Boch et al. 2009; Moscou
and Bogdanove 2009). In a matter of months,
this discovery enabled the creation of custom
TALENs capable of modifying nearly any gene.
Like ZFNs, TALENs are modular in form and
function, comprised of an amino-terminal
TALE DNA-binding domain fused to a car-
boxy-terminal FokI cleavage domain (Christian
et al. 2010; Miller et al. 2011). Also like ZFNs,
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dimerization of TALEN proteins is mediated by
the FokI cleavage domain, which cuts within a
12- to 19-bp spacer sequence that separates each
TALE binding site (Fig. 1) (Miller et al. 2011).
TALEs are typically assembled to recognize
between 12- to 20-bps of DNA, with more bases
typically leading to higher genome-editing
specificity (Guilinger et al. 2014a). The TALE-
binding domain consists of a series of repeat
domains, each �34 residues in length. Each re-
peat contacts DNA via the amino acid residues
at positions 12 and 13, known as the repeat
variable diresidues (RVDs) (Boch et al. 2009;
Moscou and Bogdanove 2009). Unlike zinc fin-
gers, which recognize DNA triplets, each TALE
repeat recognizes only a single bp, with little to
no target site overlap from adjacent domains
(Deng et al. 2012; Mak et al. 2012). The most
commonly used RVDs for assembling synthetic
TALE arrays are: NI for adenine, HD for cyto-
sine, NG for thymine, and NN or HN for gua-
nine or adenine (Boch et al. 2009; Moscou and
Bogdanove 2009; Cong et al. 2012; Streubel
et al. 2012). TALE DNA-binding domains can
be constructed using a variety of methods,
with the most straightforward approach being
Golden Gate assembly (Cermak et al. 2011).
However, high-throughput TALE assembly
methods have also been developed, including
FLASH assembly (Reyon et al. 2012), iterative
capped assembly (Briggs et al. 2012), and liga-
tion independent cloning (Schmid-Burgk et al.
2013), among others. More recent advances
in TALEN assembly, though, have focused on
the development of methods that can enhance
their performance, including specificity profil-
ing to uncover nonconventional RVDs that
improve TALEN activity (Guilinger et al. 2014a;
Yang et al. 2014; Juillerat et al. 2015; Miller
et al. 2015), directed evolution as means to re-
fine TALE specificity (Hubbard et al. 2015), and
even fusing TALE domains to homing endonu-
clease variants to generate chimeric nucleases
with extended targeting specificity (discussed
in more detail below) (Boissel et al. 2014).

Compared to ZFNs, TALENs offer two dis-
tinct advantages for genome editing. First, no
selection or directed evolution is necessary to
engineer TALE arrays, dramatically reducing the

amount of time and experience needed to as-
semble a functional nuclease. Second, TALENs
have been reported to show improved specificity
and reduced toxicity compared to some ZFNs
(Mussolino et al. 2014), potentially because of
their increased affinity for target DNA (Meckler
et al. 2013) or perhaps a greater energetic pen-
alty for associating with base mismatches.
However, TALENs are substantially larger than
ZFNs, and have a highly repetitive structure,
making their efficient delivery into cells through
the use of lentivirus (Holkers et al. 2013) or a
single adeno-associated virus (AAV) particle
challenging. Methods for overcoming these lim-
itations have emerged as TALENs can be readily
delivered into cells as mRNA (Mahiny et al.
2015; Mock et al. 2015) and even protein (Cai
et al. 2014; Liu et al. 2014a), although alterna-
tive codon usage and amino acid degeneracy
can also be leveraged to express RVD arrays
that might be less susceptible to recombina-
tion (Kim et al. 2013a). In addition, adenoviral
vectors have also proven particularly useful for
mediating TALEN delivery to hard-to-transfect
cell types (Holkers et al. 2014; Maggio et al.
2016).

CRISPR-Cas9

The CRISPR-Cas9 system, which has a role in
adaptive immunity in bacteria (Horvath and
Barrangou 2010; Marraffini and Sontheimer
2010), is the most recent addition to the ge-
nome-editing toolbox. In bacteria, the type-II
CRISPR system provides protection against
DNA from invading viruses and plasmids via
RNA-guided DNA cleavage by Cas proteins
(Wiedenheft et al. 2012; Sorek et al. 2013). Short
segments of foreign DNA are integrated within
the CRISPR locus and transcribed into CRISPR
RNA (crRNA), which then anneal to trans-ac-
tivating crRNA (tracrRNA) to direct sequence-
specific degradation of pathogenic DNA by the
Cas9 protein (Jinek et al. 2012). In 2012, Char-
pentier, Doudna, and co-workers reported that
target recognition by the Cas9 protein only re-
quires a seed sequence within the crRNA and a
conserved protospacer-adjacent motif (PAM)
upstream of the crRNA binding site (Jinek
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et al. 2012). This system has since been simpli-
fied for genome engineering (Cho et al. 2013;
Cong et al. 2013; Jinek et al. 2013; Mali et al.
2013b) and now consists of only the Cas9 nu-
clease and a single guide RNA (gRNA) contain-
ing the essential crRNA and tracrRNA elements
(Fig. 1). Because target site recognition is me-
diated entirely by the gRNA, CRISPR-Cas9 has
emerged as the most flexible and user-friendly
platform for genome editing, eliminating the
need for engineering new proteins to recognize
each new target site. The only major restriction
for Cas9 target site recognition is that the PAM
motif—which is recognized by the Cas9 nucle-
ase and is essential for DNA cleavage—be locat-
ed immediately downstream of the gRNA target
site. The PAM sequence for the Streptococcus
pyogenes Cas9, for example, is 50-NGG-30 (al-
though in some cases 50-NAG-30 can be tolerat-
ed) (Hsu et al. 2013; Jiang et al. 2013; Mali et al.
2013a). Several studies have now shed light on
the structural basis of DNA recognition by Cas9,
revealing that the heteroduplex formed by the
gRNA and its complementary strand of DNA is
housed in a positively charged groove between
the two nuclease domains (RuvC and HNH)
within the Cas9 protein (Nishimasu et al.
2014), and that PAM recognition is mediated
by an arginine-rich motif present in Cas9 (An-
ders et al. 2014). Doudna and colleagues have
since proposed that DNA strand displacement
induces a structural rearrangement within the
Cas9 protein that directs the nontarget DNA
strand into the RuvC active site, which then
positions the HNH domain near target DNA
(Jiang et al. 2016), enabling Cas9-mediated
cleavage of both DNA strands.

The Cas9 nuclease and its gRNA can be de-
livered into cells for genome editing on the same
or separate plasmids, and numerous resources
have been developed to facilitate target site
selection and gRNA construction, including
E-CRISP (Heigwer et al. 2014), among others.
Although Cas9 boasts the highest ease of use
among the targeted nuclease platforms, several
reports have indicated that it could be prone to
inducing off-target mutations (Cradick et al.
2013; Fu et al. 2013). To this end, considerable
effort has been devoted to improving the spe-

cificity of this system, including using paired
Cas9 nickases (Mali et al. 2013a; Ran et al.
2013), which increase gene-editing specificity
by requiring the induction of two sequential
and adjacent nicking events for DSB formation,
or truncated gRNA that are more sensitive to
mismatches at the genomic target site than a
full-length gRNA (Fu et al. 2014). Off-target
cleavage has also been reduced by controlling
the dosage of either the Cas9 protein or gRNA
within the cell (Hsu et al. 2013), or even by
using Cas9 variants configured to enable con-
ditional genome editing, such as a rapamycin-
inducible split-Cas9 architecture (Zetsche et al.
2015b) or a Cas9 variant that contains a strate-
gically placed small-molecule-responsive intein
domain (Davis et al. 2015). Nucleofection (Kim
et al. 2014) or transient transfection (Zuris et al.
2015) of a preformed Cas9 ribonucleoprotein
complex has also been shown to reduce off-
target effects, enabling DNA-free gene editing
in primary human T cells (Schumann et al.
2015), embryonic stem cells (Liu et al. 2015b),
Caenorhabditis elegans gonads (Paix et al. 2015),
mouse (Menoret et al. 2015; Wang et al. 2015a)
and zebrafish embryos (Sung et al. 2014), and
even plant protoplasts (Woo et al. 2015). The
incorporation of specific chemical modifica-
tions known to protect RNA from nuclease deg-
radation and stabilize secondary structure can
further enhance Cas9 ribonucleoprotein activi-
ty (Hendel et al. 2015; Rahdar et al. 2015). In a
clever marriage of genome-editing platforms,
the FokI cleavage domain has even been fused
to an inactivated Cas9 variant to generate hy-
brid nucleases that require protein dimerization
for DNA cleavage (Guilinger et al. 2014b; Tsai
et al. 2014), theoretically increasing CRISPR-
Cas9 specificity. Similarly, fusing Cas9 to
DNA-binding domains has also proven effective
at improving its specificity (Bolukbasi et al.
2015). Finally, several studies have recently
showed that protein engineering can broadly
enhance Cas9 specificity (Kleinstiver et al.
2016; Slaymaker et al. 2016) and even alter its
PAM requirements (Kleinstiver et al. 2015), the
latter having the potential to enable creation of
customized variants of Cas9 for allele-specific
gene editing, although Cas9 orthologs (Cong
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et al. 2013; Esvelt et al. 2013; Hou et al. 2013;
Ran et al. 2015) or alternative CRISPR systems
(Zetsche et al. 2015a) with unique PAM speci-
ficities have been uncovered in nature.

Homing Endonucleases

Homing endonucleases, also known as mega-
nucleases, represent the final member of the
targeted nuclease family. These enzymes have
been reviewed at length elsewhere (Silva et al.
2011; Stoddard 2014) but, briefly, members of
the LAGLIDADG family of endonucleases—
so named for the conserved amino acid motif
present within these enzymes that interacts with
DNA—are a collection of naturally occurring
enzymes that recognize and cleave long DNA
sequences (14–40 bps) (Fig. 1). These enzymes
make extensive sequence-specific contacts with
their DNA substrate (Stoddard 2011), and thus
typically show exquisite specificity. However,
unlike ZFNs and TALENs, the binding and
cleavage domains in homing endonucleases
are not modular. This overlap in form and func-
tion make their repurposing challenging, and
limits their utility for more routine applications
of genome editing. More recently megaTALs—
fusions of a rare-cleaving homing endonuclease
to a TALE-binding domain—have been report-
ed to induce highly specific gene modifications
(Boissel et al. 2014; Lin et al. 2015a). These en-
zymes have enabled integration of antitumor
and anti-HIV factors into the human CCR5
gene in both primary T cells and hematopoietic
stem/progenitor cells (Sather et al. 2015), as
well as disruption of endogenous T-cell receptor
elements in T cells (Osborn et al. 2016), indi-
cating their potential for enabling and enhanc-
ing immunotherapies.

GENOME-EDITING APPLICATIONS

Engineering Cell Lines and Organisms

Before the emergence of engineered nucleases,
genetically modifying mammalian cell lines was
labor intensive, costly, and often times limited
to laboratories with specialized expertise. How-
ever, with the advent of cost-effective and user-
friendly gene-editing technologies, custom cell

lines carrying nearly any genomic modification
can now be generated in simply a matter of
weeks. Examples of some of the outcomes that
have become routine because of the emergence
of targeted nucleases include gene knockout
(Santiago et al. 2008; Mali et al. 2013b), gene
deletion (Lee et al. 2010), gene inversion (Xiao
et al. 2013), gene correction (Urnov et al. 2005;
Ran et al. 2013), gene addition (Moehle et al.
2007; Hockemeyer et al. 2011; Hou et al. 2013),
and even chromosomal translocation (Fig. 2)
(Torres et al. 2014). In addition to cell line en-
gineering, targeted nucleases have also expedit-
ed the generation of genetically modified or-
ganisms, facilitating the rapid creation of
transgenic zebrafish (Doyon et al. 2008; Sander
et al. 2011a; Hwang et al. 2013), mice (Cui et al.
2011; Wang et al. 2013; Wu et al. 2013), rats
(Geurts et al. 2009; Tesson et al. 2011; Li et al.
2013), monkeys (Liu et al. 2014c), and livestock
(Hauschild et al. 2011; Carlson et al. 2012),
which together have the capacity to accelerate
human disease modeling and the discovery of
new therapeutics.

Targeted nucleases have also emerged as
powerful tools for plant engineering (Baltes
and Voytas 2015). Both TALENs and CRISPR-
Cas9 have been used to modify multiple alleles
within hexaploid bread wheat to confer herita-
ble resistance to powdery mildew (Wang et al.
2014b). In another study, TALENs were used to
knock out nonessential genes in the fatty acid
metabolic pathway in soybean to generate a sim-
plified plant cell with reduced metabolic com-
ponents (Haun et al. 2014). Of special note, two
recent reports showed that purified nuclease
proteins can be introduced directly into plant
protoplasts, enabling the introduction of germ-
line-transmissible modifications that are virtu-
ally indistinguishable from naturally occurring
(Luo et al. 2015; Woo et al. 2015). This technical
advance could help to overcome certain regula-
tory hurdles associated with the use of transgen-
ic crops. Finally, targeted nucleases have also
been used to inactivate pathogenic genes to pre-
vent viral (Lin et al. 2014) or parasitic (Ghorbal
et al. 2014) infection, as well as to introduce
knockin-specific factors capable of imparting
pathogen resistance (Wu et al. 2015).
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Intriguingly, targeted nucleases could also
serve as conduits for curbing mosquito- or in-
sect-borne diseases through a technique known
as gene drive (Burt 2003; Sinkins and Gould
2006), which harnesses genome editing to facil-
itate the introduction of a specific gene or mu-
tation that can then confer a particular pheno-
type into a host and also be transmitted to its
progeny (Windbichler et al. 2011). Gene drives
have now been tested in the malaria vector mos-
quitos Anopheles stephensi (Gantz et al. 2015)
and Anopheles gambiae (Hammond et al. 2016)
as a means for achieving population control
and to prevent disease transmission, respective-
ly. However, owing to the ease with which
CRISPR-Cas9 can be programmed (Gantz and
Bier 2015), debate has ignited on the potential
societal and environmental impact of this tech-
nology (Esvelt et al. 2014; Akbari et al. 2015),
spurring the development of safeguard ele-
ments that could help to minimize the risk of
gene-edited organisms escaping from the labo-
ratory (DiCarlo et al. 2015).

Synthetic Biology and Genome-Scale
Engineering

Targeted nucleases also offer a facile means for
generating modified bacterial and yeast strains
for synthetic biology, including metabolic path-
way engineering. Bacterial species of the order
Actinomycetales, for instance, are one of the
most important sources of industrially relevant
secondary metabolites. However, many Actino-
mycetales species are recalcitrant to genetic
manipulation, a fact that has severely hampered
their use for metabolic engineering. CRISPR-
Cas9 has been used to inactivate multiple genes
in actinomycetes (Tong et al. 2015), indicating
its ability to enable the creation of designer
bacterial strains with enhanced metabolite
production capabilities. CRISPR has also facil-
itated multiplexed metabolic pathway engi-
neering in yeast at high efficiencies (Jakociunas
et al. 2015a,b), as well as random mutagenesis
of yeast chromosomal DNA for phenotypic
screening of desired mutants (Ryan et al.
2014). Indeed, genome-wide CRISPR-based
knockout screens hold tremendous potential

for functional genomics (Hilton and Gersbach
2015), having facilitated the discovery of geno-
mic loci that confer drug resistance to cells
(Koike-Yusa et al. 2014; Shalem et al. 2014;
Wang et al. 2014a; Zhou et al. 2014), uncovered
how cells can control induction of the host
immune response (Parnas et al. 2015), provided
new insights into the genetic basis of cellular
fitness (Hart et al. 2015; Wang et al. 2015b),
and even shed light on how certain viruses in-
duce cell death (Ma et al. 2015). Genome-wide
CRISPR screens can also facilitate the discovery
of functional noncoding elements (Kim et al.
2013b; Korkmaz et al. 2016), and provide a
means for studying the structure and evolution
of the human genome. In a remarkable example
of the latter, Shendure and colleagues used Cas9
to mediate integration of short randomized
DNA sequences into the BRCA1 and DBR1
genes (Findlay et al. 2014). They then measured
the functional consequences of these mutations
on fitness, achieving an unprecedented look at
some of the factors driving genome and disease
evolution. Finally, CRISPR screens have even
proven effective in vivo, enabling the identifica-
tion of factors involved in zebrafish develop-
ment (Shah et al. 2015) and disease progression
in mice (Chen et al. 2015).

Therapeutic Genome Editing

Genome editing itself also holds tremendous
potential for treating the underlying genetic
causes of certain diseases (Cox et al. 2015; Por-
teus 2015; Maeder and Gersbach 2016). In one
of the most successful examples of this to date,
ZFN-mediated disruption of the HIV corecep-
tor CCR5 was used to engineer HIV resistance
into both CD4þ T cells (Perez et al. 2008) and
CD34þ hematopoietic stem/progenitor cells
(HSPCs) (Holt et al. 2010), proving safe and
well-tolerated in a phase I clinical trial that in-
fused these gene-modified T cells into individ-
uals with HIV/AIDS (Tebas et al. 2014). In ad-
dition to enabling the introduction of gene
modification that can enhance autologous cell
therapies, targeted nucleases can also be com-
bined with viral vectors—including AAV—to
mediate genome editing in situ (Gaj et al.
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2016). For instance, delivery of an AAV vector
encoding a ZFN pair designed to target a defec-
tive copy of the factor IX gene, along with its
repair template, led to efficient gene correction
in mouse liver, increasing factor IX protein pro-
duction in both neonatal (Li et al. 2011) and
adult (Anguela et al. 2013) models of the dis-
ease. In vivo genome editing also recently en-
abled the restoration of dystrophin gene expres-
sion and the rescue of muscle function in mouse
models of Duchenne muscular dystrophy (Long
et al. 2015; Nelson et al. 2015; Tabebordbar et al.
2015). Therapeutic gene editing in a mouse
model of human hereditary tyrosinemia has
also been reported using both hydrodynamic
injection of plasmid DNA encoding CRISPR-
Cas9 (Yin et al. 2014) and by combining nano-
particle-mediated delivery of Cas9-encoding
mRNA with AAV-mediated delivery of the
DNA template for gene correction (Yin et al.
2016). More recently, a dual particle AAV sys-
tem, wherein one AAV vector carried the Cas9
nuclease and a second harbored the gRNA and
donor repair template, was able to mediate cor-
rection of a disease-causing mutation in the or-
nithine transcarbamylase gene in the liver of a
neonatal model of the disease (Yang et al. 2016).
This work, in particular, showed that therapeu-
tic levels of gene correction could be achieved in
a regenerating tissue even when using multiple
AAV particles. Although highly promising, nu-
merous hurdles still need to be overcome for in
vivo applications of genome editing to reach its
full potential. Chief among these are methods
that can facilitate nuclease delivery or expression
to only diseased cells or tissues, and the devel-
opment of new strategies that can enhance HDR
in disease-associated postmitotic cells in vivo.

TARGETED TRANSCRIPTION FACTORS

Tools for Modulating Gene Expression

The modular qualities of zinc-finger and TALE
proteins, in addition to the highly flexible DNA
recognition ability of CRISPR-Cas9, also pro-
vide investigators with the ability to modulate
the expression of nearly any gene from its pro-
moter or enhancer sequences via their fusion to
transcriptional activator and repressor protein

domains. Among the first fully synthetic tran-
scriptional effector proteins to be generated
(Beerli et al. 1998) were those based on the fu-
sion of engineered zinc-finger proteins with
either the Herpes simplex–derived transactiva-
tion domain (Sadowski et al. 1988) or the Krüp-
pel-associated box (KRAB) repression protein
(Margolin et al. 1994). Over the course of the
next 15 years, zinc-finger-based transcriptional
modulators were expanded and featured sever-
al other types of effector domains (Beerli and
Barbas 2002), including, for example, the
Dnmt3a methyltransferase domain (Rivenbark
et al. 2012; Siddique et al. 2013) and the ten-elev-
en translocation methylcytosine dioxygenase 1
(TET1) (Chen et al. 2014), which can modulate
transcription via targeted methylation or de-
methylation, respectively. As a natural extension
of zinc-finger transcription factors, and further
drawing on the parallels with zinc-finger pro-
teins, TALE transcription factors have also
emerged as an especially effective platform for
achieving targeted transcriptional modulation
(Miller et al. 2011; Zhang et al. 2011). Effector
domains are generally fused to the carboxyl ter-
minus of the synthetic TALE array and, contrary
to the longer sequence typically required for
efficient modulation by zinc-finger transcrip-
tion factors, TALEs have been reported to regu-
late gene expression with as few as 10.5 repeats
(Boch et al. 2009). Like zinc fingers, TALEs are
also compatible with numerous epigenetic
modifiers, including the TET1 hydroxylase cat-
alytic domain (Maeder et al. 2013b) and the
lysine-specific histone demethylase 1 (LSD1)
(Mendenhall et al. 2013) domains, which have
been used for targeted CpG demethylation and
histone demethylation, respectively. In particu-
lar, the ease with which a large number of TALEs
can be constructed has enabled the discovery
that tiling a promoter sequence with combina-
tions of synthetic transcription factors can lead
to a synergistic increase in gene expression
(Maeder et al. 2013b; Perez-Pinera et al. 2013).
And, like zinc fingers (Beerli et al. 2000b; Pol-
lock et al. 2002; Magnenat et al. 2008; Polstein
and Gersbach 2012), TALE activators have also
been successfully engineered to regulate gene
expression in response to external (Mercer
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et al. 2014) or endogenous (Li et al. 2012) chem-
ical stimuli, optical signals (Konermann et al.
2013), and even proteolytic cues (Copeland
et al. 2016; Lonzaric et al. 2016).

Because of the exquisite ease with which it
can be programmed, the CRISPR-Cas9 system
has also been adapted for transcriptional mod-
ulation through fusion of specific effector do-
mains to a catalytically inactivated variant of the
Cas9 protein (Qi et al. 2013). Deactivation is
achieved by introducing two amino acid substi-
tutions, D10A and H840A, into the RuvC and
NHN endonuclease domains of Cas9, respec-
tively. Although unable to cleave DNA, this mu-
tant, referred to as dCas9, retains its ability to
bind DNA in an RNA-directed manner. Effector
domains are fused to the carboxyl terminus of
the dCas9 protein and can modulate gene ex-
pression from either strand of the targeted DNA
sequence (Farzadfard et al. 2013; Maeder et al.
2013a; Perez-Pinera et al. 2013). Genome-scale
activation studies have indicated that the most
robust levels of activation are generally observed
when dCas9 activators are targeted to -400 to
-50 bp upstream from the transcriptional start
site (Gilbert et al. 2014; Hu et al. 2014). Addi-
tionally, dCas9 can inhibit gene expression by
simply blocking transcriptional initiation or
elongation through a process known as CRISPR
interference (Qi et al. 2013), although fusing
dCas9 to transcriptional repressor domains
can also lead to efficient silencing from the pro-
moter (Gilbert et al. 2013; Zalatan et al. 2015).
Much like zinc fingers and TALEs, methods for
achieving conditional gene modulation using
dCas9 have also been reported, including the
fusion of a dihydrofolate reductase destabiliza-
tion domain to dCas9, which can provide
chemical control over activation, enabling cel-
lular reprogramming or differentiation (Balboa
et al. 2015). Light-inducible dCas9-based sys-
tems capable of providing optical control of
gene expression provide another means for
achieving conditional control of gene expres-
sion (Nihongaki et al. 2015; Polstein and Gers-
bach 2015).

Although flexible, first-generation dCas9
activators were routinely found to display sub-
optimal levels of activation. As a result, the de-

velopment of second-generation CRISPR acti-
vators quickly emerged as a highly active area of
research. One particularly elegant approach for
overcoming the low activation thresholds inher-
ent within first-generation systems was by stra-
tegically inserting an RNA aptamer within a
functionally inert region of the gRNA. This ap-
tamer recruits specific activation helper pro-
teins that work in concert with a dCas9 activator
to enhance transcription (Konermann et al.
2015; Zalatan et al. 2015). Other strategies based
on directly fusing additional helper activation
domains to dCas9 have also been shown to en-
hance transcription (Chavez et al. 2015). Target-
ed acetylation of histone proteins within a pro-
moter or enhancer sequence via epigenome
editing using the catalytic core of the human
acetyltransferase p300 fused to dCas9 can also
lead to robust levels of gene activation (Hilton
et al. 2015). Similarly, dCas9 repressor proteins
targeted to distal regulatory elements have been
found to facilitate chromatin remodeling and
gene repression via epigenomic modification
(Thakore et al. 2015). Finally, by simply reduc-
ing the length of the gRNA, catalytically active
variants of Cas9 can stimulate transcription
without inducing DNA breaks (Dahlman et al.
2015; Kiani et al. 2015), enabling orthogonal
gene knockout and activation with the same
Cas9 variant in a single cell.

Applications of Targeted Transcriptional
Regulation

Early work on the use of engineered zinc-finger
transcription factors revealed that synthetic
transcriptional modulators are effective tools
for a broad range of applications, enabling
such tasks as inhibiting viral replication (Pap-
worth et al. 2003; Reynolds et al. 2003; Segal
et al. 2004; Eberhardy et al. 2006), modulating
the expression of disease-associated loci (Gras-
lund et al. 2005; Wilber et al. 2010), inducing
angiogenesis for accelerated wound healing (Re-
bar et al. 2002), and genomic screening of cel-
lular targets for cancer progression and drug
resistance (Park et al. 2003; Blancafort et al.
2005, 2008). Facilitated by many of the insights
gained from zinc-finger transcription factor
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technology, both TALEs and CRISPR-Cas9 have
now further expanded the possibilities of engi-
neered transcriptional activators and repressors.
For example, TALEs and CRISPR-Cas9 have
enabled rapid construction of custom genetic
circuits and logic gates (Gaber et al. 2014; Lebar
et al. 2014; Liu et al. 2014b), complex gene
regulation networks (Nielsen and Voigt 2014;
Nissim et al. 2014), and even facilitated cellular
reprogramming (Gao et al. 2013) and the dif-
ferentiation of mouse embryonic fibroblasts to
skeletal myocytes (Chakraborty et al. 2014).
dCas9 transcriptional effectors have even been
used to efficiently mediate repression and acti-
vation of endogenous genes in Drosophila (Lin
et al. 2015b) and in plant cells (Piatek et al.
2015). Both TALE and Cas9 activators have
also been configured to stimulate transcription
of latent HIV (Zhang et al. 2015; Ji et al. 2016;
Limsirichai et al. 2016; Perdigao et al. 2016;
Saayman et al. 2016), indicating their potential
to work in concert with antiretroviral therapy
for eradicating HIV infection. Importantly,
because of the ease with which the CRISPR-
Cas9 system can be used, genome-wide screens
using Cas9 transcriptional activators (Gilbert
et al. 2014; Konermann et al. 2015) and re-
pressors (Gilbert et al. 2014) can be easily
implemented to discover genes involved in a
number of diverse processes, including drug
resistance and cancer metastasis. In particular,
CRISPR-based genome-scale screening meth-
ods have the potential to overcome many of
the technical hurdles associated with other
contemporary screening technologies, such as
cDNA libraries and RNAi, indicating its poten-
tial for facilitating drug discovery and basic
biological research.

CONCLUSIONS

Despite the successes already achieved, many
challenges remain before the full potential of
genome editing can be realized. First and fore-
most are the development of new tools cap-
able of introducing genomic modifications in
the absence of DNA breaks. Targeted recombi-
nases (Akopian et al. 2003; Mercer et al. 2012),
which can be programmed to recognize specific

DNA sequences (Gaj et al. 2013; Sirk et al. 2014;
Wallen et al. 2015) and even integrate therapeu-
tic factors into the human genome (Gaj et al.
2014b), are one such option. More recent work
has indicated that single-base editing without
DNA breaks can be achieved using an engi-
neered Cas9 nickase complex (Komor et al.
2016), although it remains unknown how effec-
tive this technology is in therapeutically rele-
vant settings. By linking genomic modifications
induced by targeted nucleases to their own self-
degradation, self-inactivating vectors are also
poised to improve the specificity of genome
editing, especially because the frequency of
off-target modifications can be directly propor-
tional to the duration of cellular exposure to a
nuclease (Pruett-Miller et al. 2009). In addition,
much of the knowledge behind genome engi-
neering has been obtained in immortalized cell
lines. However, in the case of regenerative med-
icine, it is highly desirable to genetically manip-
ulate progenitor or stem-cell populations, both
of which can differ markedly from transformed
cell lines with respect to their epigenome or
three-dimensional organization of their geno-
mic DNA. These differences can have profound
effects on the ability of genome-editing tools to
either modify a specific sequence or regulate
gene expression. Although the union between
genome engineering and regenerative medicine
is still in its infancy, realizing the full potential of
these technologies in stem/progenitor cells re-
quires that their functional landscape be fully
explored in these genetic backgrounds. Only
then will genome editing technologies truly be
able to reprogram cell fate and behavior for the
next generation of advances in synthetic biology
and gene therapy.
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