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Abstract

The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol 

despite the negative consequences. The transition from the moderate use of alcohol to excessive, 

uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational 

learning and memory processes. Here, we examine studies that have combined molecular and 

behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social 

intake of alcohol in check, which we term ‘stop pathways’, and the neuroadaptations that underlie 

the transition from moderate to uncontrolled, excessive alcohol intake, which we term ‘go 

pathways’. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie 

both types of pathways.
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Introduction

According to the World Health Organization, 10–16% of individuals who consume alcohol 

and are aged 15 years or older engage in repeated, excessive episodic drinking (WHO, 2014) 

and are considered to be ‘problem drinkers’ (Enoch et al., 2002). Many of these individuals 

have a mild to moderate form of alcohol use disorder (AUD) and thus are maladaptively 

preoccupied with alcohol craving, seeking and consumption, despite the negative 

consequences of these activities (American Psychiatric Publishing, 2013). A subset of 

problem drinkers has a severe form of AUD, which is characterized by a dependence on 

alcohol and is commonly referred to as ‘alcoholism’. These individuals typically exhibit 

compulsive alcohol use and a loss of behavioural control, as well as alcohol tolerance and 

withdrawal symptoms, which may include anxiety, depressive episodes, social withdrawal, 

insomnia, nausea and seizures, which can be lethal (WHO, 2014) (Enoch et al., 2002) 

(American Psychiatric Publishing, 2013).
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Studies using animal models of alcohol consumption provided convincing data suggesting 

that alcohol, like other drugs of abuse, activates molecular cascades within the 

mesocorticolimbic system that ultimately encode drug reward and reinforcement (Koob et 

al., 2010). Over time, and in part owing to the aberrant activation of mesocorticolimbic and 

nigrostriatal pathways, a transition from moderate to excessive use of alcohol may occur 

(Koob et al., 2010). This transition is often associated with dysphoria and negative 

reinforcement mechanisms, leading to persistent cycles of excessive drug taking and 

withdrawal (Koob et al., 2013) (Wise & Koob, 2014), which are thought to result from long-

lasting molecular neuroadaptations (Hyman et al., 2006).

In this Review, we examine the molecular signalling mechanisms that prompt or prevent 

alcohol use and abuse by focusing on studies that have used rodent paradigms to model 

human patterns of drinking: that is, moderate alcohol intake, excessive consumption, 

dependence, craving and relapse (Boxes 1,2). We term the signalling pathways that 

contribute to the transition from moderate to uncontrolled excessive alcohol intake and to 

alcohol dependence as ‘go pathways’ (Fig. 1). As addiction is thought to be a maladaptive 

form of learning and memory (Hyman et al., 2006) (Torregrossa et al., 2011), we focus 

mainly on go-pathway molecules that have been linked to synaptic plasticity, learning and 

memory. We term the endogenous pathways that work in the opposite direction to the go 

pathways, and thus promote resilience against the development of AUD and keep alcohol 

intake in moderation, the ‘stop pathways’ (Fig. 2). Note that, in this article, we do not 

discuss the interaction between alcohol and G protein-coupled receptors or ion channels, and 

we do not address the mechanisms underlying processes such as tolerance, sensitization, 

intoxication and neuroinflammation (Crews et al, 2014) (Ron & Messing, 2013) 

(Ahmadiantehrani et al. 2014) (Rothenfluh et al., 2014).

Go pathways promote excessive drinking

Below, we describe examples of how voluntary alcohol intake initiates intracellular 

signalling cascades within the mesocorticolimbic and nigrostriatal regions to produce 

adaptations that ultimately drive alcohol-drinking behaviours (Fig. 1).

PKA

Cyclic AMP-dependent protein kinase A (PKA) is a serine/threonine kinase that has a 

central role in learning and memory13, 14 and in behavioural responses to drugs of abuse15; 

indeed, PKA is a key initiator of many actions of alcohol. PKA is activated by adenylyl 

cyclase (AC), which itself is activated by Gsα protein-coupled receptor stimulation (Figs 

1,2). Global inhibition of PKA activity, either by a reduction in Gsα expression16 or through 

the deletion of the genes encoding AC1 and AC8, reduces alcohol intake in a mouse model 

of moderate alcohol consumption (the continuous access to alcohol in a two-bottle choice 

(10%CA2BC) paradigm17; Box 1). Furthermore, infusion of a Gβγ inhibitory peptide 

within the nucleus accumbens (NAc) prevents alcohol-induced nuclear translocation of PKA 

and PKA-stimulated gene expression, and decreases alcohol consumption in rats in the 

10%CA2BC paradigm18. Together, these studies suggest that PKA has an important role in 

mechanisms that promote alcohol intake. Alcohol is thought to activate PKA via, in part, the 
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inhibition of equilibrative nucleoside transporter 1 (ENT1), which controls the extracellular 

levels of adenosine19. In fact, Ent1-knockout mice consume more alcohol than wild-type 

littermates in both the 10%CA2BC paradigm and a model of excessive alcohol consumption 

(the limited access to alcohol (20%LA) procedure20; Box 1). In addition, these mice exhibit 

faster acquisition of alcohol self-administration phenotypes in moderate alcohol-

consumption models (10%CA2BC and the operant self-administration of 10% alcohol 

(10%OSA) paradigms; Box 1), which may owe to reduced activity of the adenosine A1 

receptors (A1Rs) in the NAc21. Adenosine also binds to A2ARs, which are coupled to Gsα 
and PKA (Fig. 1), and the inhibition of A2ARs reduces alcohol consumption in rats in a 

moderate alcohol consumption model (10%OSA paradigm)22, 23. Alcohol-induced 

activation of PKA leads to the phosphorylation of numerous PKA substrates, including the 

FYN kinase inhibitor, striatum-enriched protein-tyrosine phosphatase (STEP; also known as 

PTPN5)24 and RAS-specific guanine nucleotide-releasing factor 1 (RAS-GRF1)25. The 

consequences of these phosphorylation events are outlined below.

FYN signalling pathway

The tyrosine-protein kinase FYN has an important role in synaptic plasticity, learning and 

memory26, 27. The activity of FYN is negatively regulated by STEP, which dephosphorylates 

and thereby inhibits the kinase28. The activity of STEP is negatively regulated by PKA, 

which phosphorylates the phosphatase and thereby inhibits its catalytic activity26 (Fig. 1). In 

mice, excessive alcohol consumption (for example, repeated cycles of binge drinking and 

alcohol withdrawal in the intermittent access to 20% alcohol in a two-bottle choice 

(20%IA2BC) paradigm; Box 1) results in PKA-mediated phosphorylation of STEP (and thus 

inhibition of the phosphatase) in the dorsomedial striatum (DMS)24. As alcohol inhibits 

STEP activity, a robust and sustained activation of FYN is detected in the DMS of rodents 

consuming high levels of alcohol (20%IA2BC paradigm)24, 29, 30. In fact, the requirement of 

PKA for alcohol-mediated activation of FYN was first reported in hippocampal slices31. 

Alcohol-mediated inhibition of STEP also enables the activation of protein-tyrosine 

phosphatase-α (PTPα)32, which is required for the activation of FYN33. Indeed, excessive 

alcohol intake (20%IA2BC model) increases the interaction between FYN and PTPα, which 

in turn contributes to the sustained activation of the kinase30. Interestingly, alcohol-induced 

inhibition of STEP, as well as activation of FYN and PTPα, can be detected in the DMS but 

not in other striatal regions (that is, the dorsolateral striatum (DLS) and the NAc)24, 29, 30, 32, 

demonstrating that the molecular changes induced by alcohol intake are highly selective.

The consequence of alcohol-mediated activation of FYN is the phosphorylation of the 

GluN2B subunit of NMDA-type glutamate receptors (NMDARs)29, which in turn produces 

a robust and long-lasting activation of NMDARs in the DMS29. Calcium entry through the 

NMDARs activates calcium/calmodulin-dependent protein kinase type II (CaMKII)34. 

Although the direct role in alcohol consumption of CaMKII in the DMS has not been 

determined, moderate alcohol consumption in mice (10%CA2BC paradigm) increases 

CaMKII activity in the central amygdala (CeA), which, in turn, contributes to alcohol 

reward35. Moreover, transgenic mice expressing an inactive mutant form of CaMKII exhibit 

a delay in the onset of moderate alcohol intake in an excessive-alcohol-consumption model 

(the continuous access to escalating concentrations of alcohol in a two-bottle choice (ESC-
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CA2BC) paradigm36; Box 1). Long-term potentiation, a cellular signature of synaptic 

plasticity, depends on NMDARs and on CaMKII-dependent trafficking of AMPA-type 

glutamate receptors (AMPARs) to the synaptic membrane37. GluN2B-dependent long-term 

potentiation, as well as the trafficking of AMPAR subunits, is detected in the DMS of rats 

consuming high levels of alcohol (20%IA2BC paradigm)38. Furthermore, repeated cycles of 

binge drinking and alcohol withdrawal in mice (20%IA2BC model) increase AMPAR 

activity and produce structural alterations in DMS neurons expressing the dopamine D1 

receptor (D1R)39. Finally, phosphorylation of AMPARs and an increase in the AMPAR to 

NMDAR ratio are also detected in the CeA of mice self-administering a moderate level of a 

sweetened alcohol solution (the oral alcohol and sucrose operant self-administration (AS-

OSA) protocol35; Box 1).

Importantly, in support of the possibility that the FYN signalling pathway is indeed a 

mechanism underlying excessive alcohol drinking, the pharmacological inhibition of FYN, 

GluN2B or AMPARs in the DMS of rats or the knockdown of PTPα in the DMS of rodents 

reduces excessive alcohol intake and the reinstatement of operant responding (20%IA2BC 

and 20%LA paradigms)29, 38, 40 (Box 2). Similarly, the inhibition of CaMKII or AMPARs in 

the CeA reduces moderate alcohol intake35. Conversely, the global or DMS-specific 

knockdown of STEP increases alcohol intake in mice in moderate and excessive alcohol 

consumption models (10%CA2BC, 20%IA2BC and ESC-CA2BC paradigms24, 41; Box 1).

HRAS signalling pathway

Another important contributor to synaptic plasticity and memory processes is HRAS, a small 

GTP-binding protein42. Rats with a history of excessive alcohol intake and abstinence show 

activation of HRAS in the NAc25, and downregulation of HRAS expression or inhibition of 

its activity in the NAc attenuates the self-administration of alcohol in models of excessive 

alcohol intake in mice (20%IA2BC paradigm) and rats (20%IA2BC and 20%LA models)25. 

In line with these findings, escalation of alcohol drinking (20%LA procedure) is not detected 

in mice with heterozygous knockout of the gene encoding another member of the RAS 

GTPases, KRAS43.

HRAS activity in the CNS is positively regulated by RAS-GRF1 and RAS-GRF2 (Ref. 44) 

(Fig. 1). PKA-mediated phosphorylation enhances the activity of RAS-GRF1, thus 

increasing the activity of HRAS45, and an increase in the level of phosphorylated RAS-

GFR1 is detected in the NAc of rats self-administering high levels of alcohol25 (20%IA2BC 

paradigm followed by the operant 20% alcohol self-administration (20%OSA) protocol; Box 

1). The levels of Rasgrf2 and Hras transcripts are higher in the brains of mice that are bred 

to consume high levels of alcohol than in the brains of mice that do not consume high levels 

of alcohol46, and global deletion of Rasgrf2 increases the moderate intake of alcohol in mice 

(ESC-CA2BC paradigm)47.

Downstream of HRAS is phosphoinositide 3-kinase (PI3K), which activates AKT (also 

known as PKB); AKT, in turn, phosphorylates and inactivates glycogen synthase kinase 3β 
(GSK3β)48 (Fig. 1). In parallel to activating HRAS, excessive alcohol intake in rats 

(20%OSA paradigm) and mice (20%LA model) activates PI3K and AKT and inhibits 

GSK3β in the NAc49, 50, 51. Furthermore, alcohol-induced inactivation of GSK3β in the 
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NAc prevents the phosphorylation of the GSK3β substrate collapsin response mediator 

protein 2 (CRMP2; also known as DRP2), enabling CRMP2 to bind to tubulin and hence to 

promote microtubule assembly51. Importantly, focal inhibition of PI3K or AKT, or 

downregulation of Crmp2 mRNA levels, in the NAc robustly reduces excessive alcohol 

drinking in rodents (shown in the 20%IA2BC and 20%LA models for mice and in the 

20%IA2BC and 10%OSA paradigms for rats)49, 50, 51.

Through intermediate steps, AKT also activates mechanistic target of rapamycin complex 1 

(mTORC1) (Fig. 1), a kinase that is responsible for the initiation of dendritic protein 

translation, synaptic plasticity, memory processes52, 53 and addiction54. mTORC1 is robustly 

activated in the NAc of rodents consuming high levels of alcohol (20%IA2BC paradigm), as 

indicated by the increased phosphorylation of its targets, p70 S6 kinase (S6K) and 

eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1)55 (Fig. 1). 

Interestingly, in mice, a single session of excessive alcohol intake (20%IA2BC model) is 

sufficient to activate mTORC1 signalling in D1R-expressing but not D2R-expressing 

neurons in the NAc shell56. These findings suggest that alcohol exerts its actions on 

signalling in a cell type-specific manner, although further investigation is required to 

determine whether this phenomenon is more generalized.

Alcohol-induced initiation of the mTORC1-dependent translational machinery leads to 

increased levels of the synaptic proteins Homer, postsynaptic density protein 95 (PSD95; 

also known as DLG4), the GluA1 subunit of AMPARs and CRMP2 in the NAc49, 51, 55, 56 

(Fig. 1). The cellular consequences of alcohol-dependent mTORC1-mediated translation of 

synaptic proteins are the enhancement of synaptic plasticity56 and, potentially, an increase in 

structural plasticity51. Importantly, systemic, as well as intra-NAc, administration of the 

mTORC1 inhibitor rapamycin attenuates alcohol seeking and drinking in excessive-alcohol-

consumption models (shown in the 20%IA2BC model for mice and in the 20%IA2BC and 

20%OSA paradigms for rats)55, 56.

Finally, retrieval of alcohol-associated memories in rats with a history of excessive alcohol 

intake (20%OSA paradigm) activates mTORC1 and leads to increased synthesis of synaptic 

proteins in the rat CeA, medial prefrontal cortex (mPFC) and orbitofrontal cortex57, 

suggesting that in these regions mTORC1 has a role in the reconsolidation of alcohol-

associated memories. Importantly, systemic or intra-CeA administration of rapamycin 

immediately after memory retrieval disrupts the reconsolidation of alcohol-associated 

memories and produces a long-lasting suppression of relapse57, as measured in a retention 

test after abstinence and then reacquisition of 20%OSA protocol (Box 2).

Taken together, these findings indicate that the PI3K–AKT–mTORC1 axis has a central role 

in the neuroadaptations that underlie go-pathway phenotypes such as alcohol seeking, 

drinking and relapse.

PKCε signalling

HRAS is also upstream of phospholipase Cγ (PLCγ), which can activate protein kinase C 

(PKC) isoforms, including PKCε (encoded by PRKCE58 (Fig. 1). Although a link between 

alcohol-mediated activation of HRAS and PLCγ–PKC signalling has yet to be determined, 
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PKCε has a well-documented and important role in go pathways. Specifically, Prkce-

knockout mice consume less alcohol than do wild-type littermates and exhibit a decrease in 

preference for alcohol over water (ESC-CA2BC and 10%OSA models)59, 60. Conditional 

overexpression of the kinase in the forebrain of mice with Prkce deletion rescued the 

alcohol-consumption phenotypes61, suggesting that the kinase contributes to alcohol-

consumption behaviours. Studies in mice further revealed that the loci of PKCε action are 

the NAc62 and the amygdala63 (20%LA procedure). The amygdala is a focal region of 

circuitries underlying stress and negative reinforcement64, and studies have shown that 

amygdalar PKCε has a role in the mechanisms that underlie anxiety-like behaviour in 

mice65. Specifically, in the CeA of Prkce-knockout mice, there is reduced expression of 

corticotropin-releasing factor (CRF)66, a neuropeptide implicated in mechanisms underlying 

stress and anxiety67. In agreement, a reduction in CRF-induced enhancement of type A 

GABA receptor-dependent inhibitory postsynaptic potentials was detected in the CeA of 

Prkce-knockout mice compared with wild-type littermates68. Finally, global knockout or a 

CeA-specific knockdown of PKCε attenuated anxiety-like behaviours in mice65, 66. 

Together, these PKCε-related results suggest that this kinase is a mediator of the interplay 

between stress and heightened alcohol intake.

ERK1/2

Another kinase downstream of HRAS is mitogen-activated protein kinase kinase 1 (MKK1; 

also known as MEK1), which activates extracellular signal-regulated kinase 1 (ERK1; also 

known as MAPK3) and ERK2 (also known as MAPK1)69. ERK1 and ERK2 (from here on 

referred to as ERK1/2) have well-established roles in learning, memory and addiction70 

(Fig. 1). Transcripts of genes in the ERK1/2 pathway are enriched in the brains of mice that 

are genetically selected to consume high levels of alcohol46, and cue-induced reinstatement 

of alcohol seeking (Box 2) is associated with activation of ERK1/2 in the NAc shell and in 

the basolateral amygdala (BLA) of alcohol-preferring rats71. Curiously, however, ERK1/2 

signalling has mainly been associated with stop pathways (see below).

Stop pathways gate drinking

Here, we describe examples of molecular adaptations that gate the level of alcohol intake, 

keeping alcohol consumption to moderate levels, and thus oppose the go pathways (Fig. 2). 

The stop pathways also provide clues as to why some individuals become problem drinkers 

and exhibit AUD phenotypes, whereas the majority of people do not.

BDNF and GDNF

Increasing evidence suggests that brain-derived neurotrophic factor (BDNF), which has roles 

in CNS development, plasticity, learning and memory72, and glial cell line-derived 

neurotrophic factor (GDNF), which is important for the function of dopaminergic neurons73, 

are components of the stop pathways. Both Bdnf and Gdnf are alcohol-responsive genes; 

moderate (10%CA2BC paradigm) but not high (20%IA2BC model) levels of alcohol intake 

increase the level of Bdnf transcripts in the DLS of rodents74, 75, and Gdnf mRNA levels are 

elevated in the ventral tegmental area (VTA) of rats consuming alcohol for a short, but not 

prolonged, period of time (1 week versus 7 weeks of the 20%IA2BC paradigm)76. In a 
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moderate alcohol-consumption model (10%CA2BC paradigm), Bdnf-heterozygous mice 

and conditional Bdnf-knockout mice consume more alcohol than wild-type 

littermates74, 77, 78, whereas global increases in BDNF levels in mice reduce alcohol 

intake74. Similarly, Gdnf-heterozygous mice consume more alcohol than wild-type mice 

after a period of deprivation (20%OSA paradigm)79.

In support of the possibility that BDNF gates the levels of alcohol intake, knockdown of 

BDNF in the DLS increases, whereas intra-DLS infusion of BDNF attenuates, the moderate 

intake of alcohol in rodents (shown in the 10%CA2BC model for mice and in the 10%OSA 

paradigm for rats)78, 80, 81. Furthermore, overexpression of BDNF in the mPFC, or systemic 

administration of an agonist of the BDNF receptor tropomyosin-related kinase B (TRKB), 

normalizes the level of alcohol intake in mice from excessive and compulsive to moderate 

(shown in the models 10%CA2BC and 20%IA2BC or in the intermittent access to alcohol 

and quinine adulteration (IA2BC-QN) paradigm82, 83; Box 1). Similarly, BDNF in the CeA 

and medial amygdala (MeA) of rats controls moderate alcohol intake (10%CA2BC model) 

as well as withdrawal-induced anxiety-like behaviours84, 85. The role of GDNF in alcohol 

consumption is comparable to that of BDNF. Short hairpin RNA-mediated knockdown of 

GDNF in the VTA or NAc of rats accelerates the escalation of excessive alcohol intake 

(20%IA2BC paradigm) and increases the intensity of relapse (that is, the amount of alcohol 

consumed) after abstinence (10%IA2BC and 10%OSA paradigms, alcohol deprivation 

effect, reinstatement and reacquisition tests76, 86; Box 2). Furthermore, infusion of GDNF 

into the VTA of rats reduces excessive alcohol intake (20%IA2BC model)87, and 

overexpression of this growth factor in the mesolimbic system prevents the transition from 

moderate to excessive alcohol consumption (20%IA2BC and 10%OSA paradigms)86. 

Finally, GDNF administration into the VTA of rats blocks relapse to alcohol drinking87. 

Together, these data suggest that alcohol induces upregulation of both BDNF and GDNF and 

that these neurotrophic factors act to keep alcohol intake in check.

Binding of BDNF to TRKB and binding of GDNF to the receptor tyrosine kinase RET and 

its co-receptor GDNF family receptor α1 (GFRα1) activate ERK1/2, PLCγ and PI3K 

signalling pathways72, 73 (Fig. 2). BDNF and GDNF gate alcohol drinking via the activation 

of ERK1/2 in the DLS and VTA, respectively81, 87. BDNF controls alcohol consumption, at 

least in part, through ERK1/2-induced expression of preprodynorphin (also known as 

proenkephalin B) and D3R in the dorsal striatum88, 89, and via increased expression of 

activity-regulated cytoskeleton-associated protein (ARC) in the CeA and MeA90, 91, 92. 

Interestingly, moderate consumption of alcohol (10%CA2BC paradigm) increases 

neurogenesis in the hippocampal dentate gyrus of mice by a TRKB-dependent mechanism93. 

GDNF reduces drinking by normalizing the deficient firing of dopaminergic neurons in the 

VTA and the low dopamine levels in the NAc that occur during withdrawal from excessive 

alcohol intake86, 94 and by upregulating its own expression95.

If the stop-pathway molecules counteract the motivation for alcohol, then the transition from 

moderate to excessive, uncontrolled consumption should stem, at least in part, from a 

breakdown of these protective pathways. In line with this possibility, long-term consumption 

of high (but not moderate) amounts of alcohol (20%IA2BC paradigm) reduces Bdnf 

expression in the mPFC of mice that are not dependent on alcohol75, 82 and alcohol-
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dependent rats (shown in the alcohol-dependence paradigm (ADEP)96; Box 1). Similarly, 

long-term, excessive alcohol drinking produces a reduction in the levels of GDNF in the 

VTA of rats (20%IA2BC model)76. Interestingly, these data are in line with human studies, 

which found that both BDNF and GDNF levels are reduced in blood serum samples from 

alcohol-dependent humans97, 98.

The discovery of these types of protective homeostatic pathways also raises the question as 

to why some individuals become problem drinkers and exhibit AUD phenotypes, whereas 

most people do not. One possibility is that innate differences in the level of specific growth 

factors may account for different alcohol-drinking levels; indeed, Bdnf levels in the CeA and 

MeA are much lower in an alcohol-preferring line of rats (P rats) than in a line of alcohol-

non-preferring rats (NP rats)99, and Gdnf levels in the VTA of rats are negatively correlated 

with the amount of alcohol consumed76. Another possibility is that loss-of-function 

mutations within stop-pathway-related genes increase the susceptibility and/or the intensity 

of AUD. In fact, loss-of-function mutations in BDNF may confer a genetic risk for the 

development of excessive alcohol drinking. Specifically, a well-described loss-of-function 

mutation in BDNF (G196A; also known as polymorphism rs6265) produces an amino acid 

substitution (Val66Met) that leads to reduced activity-dependent release of BDNF100, 101. 

We recently found that this polymorphism promotes compulsive-like alcohol consumption in 

a transgenic mouse model (IA2BC-QN paradigm)83, and human studies suggest that the 

Val66Met polymorphism is associated with earlier onset of alcoholism102, higher risk of 

relapse103 and slower recovery of the grey matter after a period of abstinence104.

ERK1/2

As stated above, BDNF and GDNF in the DLS and VTA, respectively, transduce their signal 

to gate the level of alcohol drinking through ERK1/2 (Refs 78,87). In line with the possible 

role of ERK1/2 as stop-pathway molecules, systemic inhibition of MKK, the upstream 

activator of ERK1/2 (Fig. 2), increases moderate and excessive alcohol intake in mice (AS-

OSA and 20%LA models)105, 106, 107, suggesting that alcohol-induced activation of ERK1/2 

is required for keeping consumption under control.

Circadian rhythm genes

Circadian rhythm clock genes, which allow the precise adaptation of organisms to the 

external and internal environment, have been implicated in psychiatric disorders108. 

Interestingly, clock genes are also emerging as potential players in alcohol-mediated 

actions109, specifically in the stop pathways (Fig. 2). Mice expressing a mutation in the 

clock gene Per1 (which encodes PERIOD 1) show increased alcohol intake following social 

defeat110. Furthermore, mice expressing a mutant variant of Per2 that encodes a non-

functional protein exhibit high levels of alcohol intake and an increase in the motivation to 

consume alcohol111. In humans, single point mutations in PER1 and PER2 are associated 

with heavy alcohol drinking and an increased sensitivity to stress in young adults110, 112. 

Further evidence supporting a role for circadian genes in stop pathways stems from the 

findings that mice with a dominant negative mutation in circadian locomoter output cycles 

protein kaput (Clock) show increases in the intake of and preference for high amounts of 

alcohol113, and that virus-mediated knockdown of CLOCK in the VTA of wild-type mice 
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facilitates the escalation from moderate to excessive alcohol intake (ESC-CA2BC 

paradigm)113. Finally, systemic administration of an inhibitor of casein-kinases Iε and Iδ, 

which are responsible for PER2 proteasomal degradation114, decreases alcohol consumption 

after deprivation of alcohol in rats115 (Box 2).

PKA and CREB signalling

As described above, PKA is a central player in the go pathways; however, intriguingly, PKA 

signalling also has a major role in stop pathways. For example, genetic knockout of Adcy5 

(which encodes AC5) increases alcohol intake in rodents116, and inhibition of PKA activity 

through a global deletion of the gene encoding the PKA RII regulatory subunit increases 

alcohol consumption in mice117. One well-described substrate of PKA is the transcription 

factor cAMP response element (CRE)-binding protein (CREB)14. PKA-mediated 

phosphorylation of CREB initiates CRE-dependent gene transcription14, and a large body of 

work has identified a unique role for the PKA–CREB axis in the amygdala as a ‘gatekeeper’ 

of heightened anxiety and alcohol intake118 (Fig. 2). Specifically, Creb-heterozygous mice 

consume more alcohol and have a greater preference for alcohol over water than their wild-

type littermates (10%CA2BC paradigm)84. Further studies using this paradigm revealed that 

the inhibition of PKA activity in the CeA of rats decreased the level of phosphorylated 

CREB, and this effect was associated with increased levels of anxiety-like behaviour and 

alcohol intake119, 120. By contrast, activation of PKA in the CeA produced the opposite 

effects (10%CA2BC model)119, 120. A subsequent study showed that the downstream target 

of CREB in the amygdala is neuropeptide Y (NPY)121. NPY is abundantly expressed in the 

brain and is anxiolytic when administered into the CNS122. Knockout of Npy in mice 

increases alcohol consumption, whereas transgenic overexpression of NPY reduces it123. 

Interestingly, P rats, which drink alcohol excessively and show greater anxiety-like 

behaviour, have lower levels of CREB phosphorylation and NPY in the amygdala than NP 

rats120, suggesting that an increased susceptibility to developing anxiety and AUD may owe 

to innate differences in the PKA–CREB–NPY axis. However, this possibility needs further 

investigation in human studies.

The activity of PKA is terminated by 3′,5′-cyclic nucleotide phosphodiesterases (PDEs), a 

family of enzymes that hydrolyse cAMP and thus terminate PKA activity (Fig. 2). In 

rodents, inhibition of PDE activity leads to sustained activation of PKA and to a reduction in 

alcohol intake in several alcohol-consumption paradigms124, 125, 126. Moreover, TP-10, a 

specific inhibitor of the PDE10A isoform, reduces relapse-like alcohol self-administration in 

rats127, and PDE10A levels correlate with the levels of alcohol consumption in rats during 

stress-induced relapse128, 129. Together, these data suggest that, specifically in the amygdala, 

PKA activity is required to produce neuroadaptations that gate alcohol-drinking behaviours.

Other potential stop-pathway molecules

Protein kinase Mζ (PKMζ), anaplastic lymphoma kinase (ALK), LIM domain only protein 

3 (LMO3) and neurofibromin 1 (NF1) may also contribute to the stop pathways. The 

expression of PKMζ, which is an isoform of PKC, is increased in the NAc of mice in 

response to consumption of alcohol and a period of 24 hours of withdrawal, and global 

knockout of Prkcz (which encodes PKMζ) in mice increases alcohol intake in models of 
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excessive alcohol intake (20%IA2BC and 20%LA paradigms)130. The biological function of 

PKMζ in the CNS is a matter of controversy131, 132, and the possibility that this kinase 

contributes to stop mechanisms should be further explored. The striatal expression levels of 

Alk or of the transcription regulator Lmo3 negatively correlate with the amount of alcohol 

consumed in a mouse model of excessive alcohol intake, and the genetic deletion of Alk or a 

genetic reduction in Lmo3 levels increases excessive alcohol intake in this 

paradigm133, 134, 135. Finally, the activity of HRAS and KRAS is terminated by NF1 (Ref. 

136); a recent study reported that Nf1-heterozygous mice consume less alcohol than wild-

type littermates (shown in the ADEP followed by 20%LA procedure) and that this reduced 

consumption of alcohol may be associated with increased baseline GABA release in the 

CeA137. These findings are rather surprising given the central role of RAS signalling in the 

go pathways; however, this may be another example of how signalling molecules can have 

opposite roles depending on the brain region they function through.

Epigenetic modifications

The majority of studies described above focus on a single gene or a signalling cascade; 

however, it is highly plausible that alcohol exerts its pleiotropic actions by affecting central 

molecular hubs, which in turn initiate the transcription or translation of a diverse group of 

genes. Non-coding RNAs, such as microRNAs (miRNAs), as well as epigenetic mechanisms 

that control the structure of chromatin, such as DNA methylation and histone acetylation, 

have emerged in this past decade as an exciting field to explore in addiction 

research138, 139, 140, which could fulfil the requirement of such hubs that transduce both the 

go and stop pathways.

Histone acetylation

Mice with a history of excessive alcohol intake show reduced levels of histone H4 

acetylation in the NAc (20%LA procedure)141, and alcohol withdrawal-induced anxiety-like 

behaviour is associated with decreased levels of histone H3 and H4 acetylation in the CeA 

and MeA of rats and a corresponding increase in histone deacetylase (HDAC) activity142. 

Furthermore, P rats exhibit a higher basal level of anxiety-like behaviour and lower levels of 

histone H3 acetylation than NP rats143. Higher levels of amygdalar HDAC2 protein are also 

detected in P rats than in NP rats, and knockdown of HDAC2 in the CeA of P rats reverses 

excessive alcohol drinking and anxiety-like phenotypes143. Together, these results indicate 

that high levels of HDAC activity, chromatin condensation and, consequently, low 

expression levels of specific genes may have a role in the comorbidity of anxiety, stress and 

excessive alcohol drinking. In line with this possibility, systemic administration of HDAC 

inhibitors141 or knockdown of HDAC2 in the CeA143 causes marked reductions in excessive 

alcohol seeking and drinking in rodents. By contrast, the levels of HDACs are reduced and 

histone H3 methylation is reported to be increased in hippocampal regions in response to 

moderate consumption of alcohol (10%CA2BC paradigm)93.

DNA methylation

A recent elegant study established a direct link between DNA methylation and alcohol 

dependence144. Specifically, it showed that the levels of DNA methyltransferase 1 (DNMT1) 
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are increased in the mPFC of rats with a history of alcohol dependence, and that this 

increase leads to the hypermethylation of DNA and to the downregulation of the expression 

of a group of synaptic genes144. Moreover, inhibition of DNMT1 activity in the mPFC 

restored the expression levels of the selected synaptic genes and prevented escalation of 

alcohol intake in alcohol-dependent animals144. In line with these findings, DNMT1 levels 

are markedly higher in the NAc of mice with a history of excessive alcohol intake than in 

alcohol-naive controls, and the systemic administration of DNMT1 inhibitors reduces 

alcohol consumption in these mice (20%IA2BC paradigm)141. In line with the studies in 

rodents, a genome-wide epigenomic approach identified profound disturbances in the DNA 

methylation status of numerous genes in peripheral samples from alcohol-dependent 

people145 and in the post-mortem brains of individuals with alcoholism146. Furthermore, a 

recent study in humans reported that hypermethylation of the gene encoding protein 

phosphatase 1G (PPM1G) is associated with early escalation of alcohol use147. PPM1G is a 

serine/threonine phosphatase, and thus it is plausible that a reduction in the levels of PPM1G 

in the brain is associated with hyperphosphorylation of various substrates. Finally, DNA 

methylation of the genes encoding nerve growth factor (NGF) and BDNF was increased and 

the expression level of these neurotrophic factors was decreased, in the serum of people with 

alcoholism148, 149. NGF signalling is an important contributor to normal CNS function150, 

and, as described above, BDNF has a central role in the stop pathways. Thus, DNA 

methylation-dependent reduction of the expression of these genes could contribute to the 

mechanisms that manifest in alcohol addiction.

miRNAs

The role of miRNAs in drug addiction139 and, more specifically, in AUD151, 152, 153 is 

starting to emerge. A pioneering study showed that exposure to alcohol upregulates the 

levels of miR-9 and, in doing so, downregulates the levels of large-conductance calcium- 

and voltage-gated potassium channel (BK channel; encoded by KCNMA1), which in turn 

contribute to alcohol tolerance154. Although interesting, these results were obtained in a cell 

culture model and, therefore, need to be further explored in vivo. A direct link between 

alcohol drinking and miRNAs stems from two recent studies that found that protracted 

withdrawal from alcohol in alcohol-dependent rats (ADEP)96 or excessive alcohol intake in 

non-dependent mice (20%IA2BC model)82 increases the expression of miR-206 (Ref. 96) 

and miR-30a-5p82, respectively, in the mPFC. Both miRNAs target Bdnf, and an inverse 

correlation between the levels of these miRNAs and BDNF levels was observed in both 

paradigms82, 96. Importantly, overexpression of miR-206 (Ref. 96) and miR-30a-5p82 

produced an increase in alcohol self-administration in non-dependent rats and mice, 

respectively (20%IA2BC model and ADEP). Furthermore, inhibition of miR-30a-5p 

function in the mPFC of mice restored the levels of Bdnf mRNA and, consequently, reverted 

alcohol intake from excessive to moderate levels82. Overexpression of miR-382 in the NAc 

of mice attenuated excessive alcohol consumption and preference (20%IA2BC 

paradigm)155; however, more studies are necessary to establish a direct link between 

endogenous miR-382 and alcohol intake. Furthermore, the levels of miR-10a and miR-21 

were elevated in the blood of humans who consumed excessive amounts of alcohol and were 

exposed to a stressful cue156; it would be of interest to test the role of these specific miRNAs 

in animal studies.
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The results described above show that alcohol exposure modifies the expression of miRNAs. 

Notably, changes in miRNA profiling were detected in the mPFC of alcohol-dependent 

rats157, and the levels of miRNAs were elevated in the PFC in post-mortem tissue from 

humans with a severe AUD158, 159. Interestingly, although alcohol intake produces changes 

in the levels of numerous miRNAs, the animal studies discussed above indicate that 

manipulation of the function of a single miRNA is sufficient to produce robust behavioural 

changes. This suggests that each miRNA is sufficient, but not necessary, to drive the alcohol-

drinking behaviour.

Together, these data support the notion that epigenetic modifications, which alter gene 

expression and/or mRNA degradation, have the potential of serving as network hubs that 

change the molecular landscape in response to alcohol exposure. It is noteworthy that the 

upstream initiators of HDACs, the activity of DNMT1 or the expression of miRNAs in 

response to alcohol exposure are unknown and should be further explored. Another 

interesting question is whether any of these epigenetic modifications are directly linked to 

alterations in synaptic transmission and synaptic plasticity.

From signalling to circuitries

AUD is a complex disorder, with various clusters of behavioural phenotypes characterizing 

different stages of the condition (for examples, binge drinking and intoxication, withdrawal 

and negative affect, preoccupation and anticipation, craving and relapse)4. These abnormal 

behavioural phenotypes are thought to result from malfunctioning of several brain 

circuitries4, 160. Thus, intracellular signalling cascades affected by alcohol drinking must be 

taken in the context of their effects on brain circuits. Below, we provide some selected 

examples to illustrate the potential interplay between molecular signalling cascades and 

circuits (Fig. 3).

The mesolimbic system

The best-characterized brain circuit involved in addiction is the mesolimbic system, which 

consists of projections from the VTA to limbic regions such as the NAc, hippocampus and 

amygdala (Fig. 3). The mesolimbic system has a major role in learning, memory, motivation 

and reward161, and drugs of abuse are considered to ‘hijack’ this circuit162. During episodes 

of alcohol intake, the activity of the mesolimbic system increases, resulting in enhanced 

release of dopamine in the NAc163, which correlates with reinforcement of drug taking164. 

By contrast, the transition from drug use to abuse is typically associated with a decrease in 

mesolimbic activity, and a reduction in dopamine levels in the NAc is associated with 

abstinence6, 165. This dopaminergic deficiency is thought to have a key role in the allostatic 

mechanisms that cause a progressive reduction in the hedonic set point, resulting in 

increased alcohol seeking and intake6, 165.

Several of the aforementioned go- and stop-pathway molecules act within the mesolimbic 

system, and it is highly likely that imbalanced signalling within neurons projecting from the 

VTA to the limbic regions contributes to the transition from initial, moderate consumption of 

alcohol to alcohol abuse (Fig. 3). For example, the first drink of alcohol activates mTORC1 

in D1R-expressing neurons in the NAc to stimulate synaptic plasticity and promote alcohol 
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consumption56. In parallel, short-term consumption of alcohol leads to an increase in the 

expression of GDNF in the VTA76, enabling the activation of the ERK1/2 pathway to 

dampen consumption86, 87. Activation of mTORC1 in the NAc is maintained in response to 

long-term excessive drinking55, which is accompanied by the activation of PKCε62. 

However, long-term excessive drinking of alcohol also dysregulates GDNF signalling in the 

VTA76, which is correlated with mesolimbic dopamine deficiency86, 94. Thus, it is plausible 

that an orchestrated balance between go and stop processes, mediated by the mesolimbic 

dopaminergic signalling cascades, prevents or promotes escalation to pathological alcohol-

drinking behaviours.

The nigrostriatal system

It is increasingly accepted that the dopaminergic nigrostriatal system, which projects from 

the substantia nigra to the dorsal striatum (Fig. 3), has a crucial role in the habitual and 

compulsive nature of alcohol addiction166, 167. Alcohol consumption is initially maintained 

by goal-directed behaviours, which are controlled by the NAc and the DMS; however, 

chronic drug and alcohol intake attenuates cortical control, and the subcortical dominance 

shifts from the DMS to the DLS, a brain region that drives habit learning167, 168, thus 

leading to impulsive and compulsive behaviours associated with addiction.

The FYN signalling cascade in the DMS promotes synaptic and structural plasticity, which, 

in turn, induce and maintain excessive alcohol consumption29, 40. By contrast, BDNF 

signalling in the DLS keeps alcohol intake in moderation78, 80, 81, possibly by preventing 

habit learning and/or compulsive behaviours. Thus, it is plausible that BDNF in the DLS 

maintains the drinking behaviour in a controlled, goal-directed manner. However, excessive 

drinking over a prolonged period leads to the inhibition of the actions of BDNF in the 

corticostriatal circuitry78, enabling the FYN pathway in the DMS to take over, followed by 

DLS-dependent habit formation via a yet-to-be-identified signalling pathway.

The extended amygdala

In addition to these mesencephalic–striatal circuits, the negative emotional state that often 

accompanies alcohol withdrawal is thought to engage the extended amygdala, an area 

composed of several basal forebrain regions, including the bed nucleus of the stria 

terminalis, the BLA, the CeA and the posterior shell of the NAc4, 165. These structures 

receive afferent connections from cortical and subcortical limbic regions, the midbrain and 

the lateral hypothalamus, and in turn project to the ventral pallidum, the VTA and the lateral 

hypothalamus64, 169, 170. The extended amygdala includes major components of the stress 

regulatory system of the brain, which also have a major role in negative reinforcement, in 

which alcohol intake serves to suppress negative states, to control behaviour4, 64. Activation 

of PKCε and the inhibition of PKA in the CeA, MeA or BLA of rodents drive anxiety-like 

behaviour during alcohol withdrawal and promote alcohol 

consumption65, 66, 119, 120, 127, 171. Thus, the balance between the activation state of PKA 

and PKCε in the extended amygdala seems to have a crucial role in the transition from 

positive to negative reinforcement mechanisms that govern the escalation and maintenance 

of alcohol intake after repeated alcohol intoxication.
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Cortico-amygdalar pathways

The cortico-amygdalar networks mediate the retrieval and maintenance of long-term fear 

memories172, as well as fear extinction173. Retrieval of alcohol-associated memories 

activates mTORC1 in the mPFC, orbitofrontal cortex and CeA57; thus, this kinase is 

implicated in synaptic plasticity changes in the cortico-amygdalar circuitries that drive the 

retrieval and reconsolidation of these persistent memories, leading to relapse to alcohol 

seeking and drinking. Interestingly, cortico-amygdalar projections provide a link from 

mesocorticolimbic and corticostriatal neurons to the extended amygdala, as well as direct 

mesolimbic connections.

Together, the data discussed above indicate that alcohol can cause a multi-target imbalance 

in various signalling pathways within several brain circuitries (Fig. 3), which drive and 

maintain excessive, compulsive alcohol-drinking behaviours. A major challenge is 

identifying a direct link between the molecular cascades and the brain circuitries. The 

emergence of new state-of-the-art techniques that enable optical or chemical stimulation of 

intracellular signalling174, 175, 176 will allow the examination of signalling in the context of 

circuitries and behaviour. Indeed, using optogenetics, a recent study explored the circuit-

specific role of ΔFOSB, a truncated product of the Fosb gene, in alcohol-drinking 

behaviours177, and showed that alcohol consumption induces ΔFOSB expression selectively 

in D1R-expressing neurons across all striatal regions. The authors used optogenetic tools to 

enhance neuronal activity in limbic regions that send synaptic inputs to the NAc, showing 

distinct patterns of ΔFOSB induction in medium spiny neuron subtypes in the NAc core and 

shell177.

Conclusions and open questions

Several interesting themes have emerged from the studies described above. First, alcohol use 

leads to brain region-specific and, potentially, neuron- and circuit-specific neuroadaptations 

that prevent or promote the transition from moderate to excessive alcohol use (the stop 

pathways and go pathways, respectively) (Figs 1,2,3). Second, alcohol-induced activation or 

inhibition of intracellular signalling seems to be determined by the amount of alcohol 

consumed and by the duration of exposure. For example, the levels of BDNF are increased 

in the DLS only in response to moderate alcohol intake, and mTORC1 signalling is activated 

only in response to high intake. Third, the same signalling molecules (for example, PKA and 

ERK1/2) contribute to both the go and stop pathways, making it likely that the opposing 

actions of these molecules are determined by the locus of activity.

Although alcohol seems to alter molecular cascades in a spatiotemporal-dependent manner, 

it is unclear how a seemingly nonspecific agent such as alcohol can produce such restricted 

signalling events. Indeed, this point leads to the fundamental question: how does alcohol 

exactly work? One possibility is that the primary effects of alcohol, like of other drugs of 

abuse, occur through a well-defined, limited number of binding partners, which then initiate 

the intracellular events. Several channels have been identified that directly interact with 

alcohol178, 179. However, these interactions cannot explain all, or even most, of the actions 

of alcohol on signalling.
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Another intriguing possibility is that alcohol alters the architecture of membranes, especially 

the composition of lipid rafts. Specifically, participants in the go and stop pathways, such as 

HRAS, PLCγ, RET, TRKB and AC, reside in lipid rafts180, 181. By virtue of its structure, 

alcohol can easily penetrate membrane lipids, and pioneering studies in the 1970s 

discovered that alcohol can alter membrane fluidity and cholesterol content182, 183. 

Cholesterol content varies across brain regions, and thus alcohol may regulate a broad range 

of cell-surface receptor-induced signalling in a brain region-specific manner by changing the 

structure, fluidity and composition of membrane lipids, including cholesterol-enriched rafts. 

Several studies have started to address this possibility in cells184, 185 and in vivo30, 186, 187. 

However, data from animal models of alcohol consumption are sparse30, in part owing to 

technical limitations.

A related question is: how does alcohol simultaneously change the expression level and/or 

the activity of so many genes? Many of the signalling cascades described herein can 

potentially activate the transcription of immediate-early genes, including the FOS family of 

transcription factors. In fact, FOS immunoreactivity is increased in numerous brain regions 

in response to alcohol intake or withdrawal in rodents (for examples, see Refs188,189,190,191). 

FOS labelling is commonly used as a marker of neuronal activation; however, surprisingly 

little is known about the downstream consequences of FOS activation. This interesting line 

of investigation is now possible with the use of Fos–lacZ transgenic rats in combination with 

fluorescence-activated cell sorting (FACS), which allows the sorting of FOS-positive 

neurons192. Another intriguing possibility is that epigenetic modifications are upstream 

initiators of some, or most, of the molecular changes that occur in response to alcohol 

consumption and act as molecular network hubs that change the intracellular molecular 

landscape. Although, as described above, large-scale human genomic and epigenomic 

studies have been conducted in recent years, further studies are required to determine 

whether all, or a subset, of these genes contribute to (or prevent) the development of AUD 

and/or are related to pathological by-products of the disorder. Finally, it is noteworthy that 

epigenetic changes in the offspring of animals that have consumed alcohol have been 

recently reported193, and this exciting line of research merits further investigation.

It is important to note that the signalling cascades described in this Review have been 

directly linked to alcohol intake. However, the potential contribution of other alcohol-

sensitive signalling molecules (Box 3) requires further investigation. Finally, the 

identification of genetic loci associated with AUD has been challenging, most likely because 

of the complexity of the disorder. Recent elegant investigations that combined animal and 

human studies have pushed the field forward, leading to the identification of mutations 

within novel signalling genes that may contribute to the innate differences in the 

susceptibility to develop these disorders (Box 4).

Interestingly, the go and stop pathways consist of different signalling and regional pathways 

that are not necessarily dependent on each other. For example, in the go pathways, blocking 

the alcohol-induced activation of the PI3K–AKT–mTORC1 pathway in the NAc prevents 

excessive alcohol drinking independently of the activation of the FYN–GluN2B–AMPAR 

pathway in the DMS, and vice versa. Thus, the normal function of each of the different 

components in the go pathways is sufficient, but not necessary, for the establishment and/or 
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maintenance of alcohol-drinking behaviours. Furthermore, the same signalling pathways 

may have different roles in different phases and phenotypes of AUD. This interesting 

conclusion provides new promising opportunities for developing treatments for AUD, as 

targeting a single molecule may have sufficient efficacy to reduce alcohol-drinking 

behaviours. Several drugs that act on signalling have been approved by the US Food and 

Drug Administration (FDA) for other indications and have the potential to be used for the 

treatment of AUD. For example, in rodents, the FDA-approved drug cabergoline suppresses 

excessive alcohol drinking and relapse by upregulating GDNF in the VTA194, and the FDA-

approved drug rapamycin decreases alcohol-drinking behaviours or prevents relapse55, 57. 

Rapamycin is an immunosuppressant, and it is therefore unlikely that it can be used to treat 

AUD; however, the rapid development of second-generation mTORC1 inhibitors195 provides 

an exciting new therapeutic opportunity. Finally, targeting enzymes that control epigenetic 

modifications may be another promising pharmacotherapeutic strategy, as it may be 

sufficient to inhibit a hub to produce desirable changes in behaviour. For example, the 

HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), an FDA-approved drug, is an 

effective inhibitor of alcohol-drinking behaviours in rodent models141. Thus, elucidating the 

molecular mechanisms underlying alcohol-drinking behaviours should allow us to move 

forward to translational paths for the treatment of AUD.
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Box 1

Behavioural models of alcohol consumption

Models of moderate alcohol consumption

Continuous access to alcohol in a two-bottle choice (10%CA2BC)

A home cage-based voluntary drinking procedure in which rodents are given continuous 

access to one bottle of water and one bottle of alcohol in tap water (typically 10% (vol/

vol); the alcohol concentration may vary (but remains mostly under 15%)). This training 

protocol typically results in alcohol consumption levels of 2–5 g per kg per 24 h in mice 

and <1 g per kg per 24 h in rats; the animals show no escalation in alcohol consumption 

across the weeks and a blood alcohol concentration (BAC) of 50 mg per dl (mouse). 

Thus, this protocol is used as a model of moderate drinking. Variants of this protocol use 

exposure to a gradually increasing concentration of alcohol (for example, from 4% to 

16%) or the addition of saccharin (0.2%) to the alcohol solution.

Operant self-administration of 10% alcohol (10%OSA)

In this paradigm, animals typically press a lever to receive a contingent oral reward of 

alcohol (the premise of this procedure is that drugs of abuse control behaviour by 

functioning as positive reinforcers196). To obtain lever pressing for a moderate amount of 

alcohol, the rats are pre-trained on a continuous access to one bottle of water and one 

bottle of alcohol (typically 10% alcohol in tap water) protocol or undergo a sucrose 

fading protocol197. Indeed, this approach typically leads to a moderate consumption level 

of 0.2–0.5 g per kg per 1 h, which generates a BAC of 5–20 mg per dl (Ref. 197).

Oral alcohol and sucrose operant self-administration (AS-OSA)

This protocol is similar to that described above, except that lever presses deliver a 

solution containing alcohol (typically 8–12%) and sucrose (~2%).

Models of excessive drinking

Intermittent access to 20% alcohol in a two-bottle choice (20%IA2BC)

This is a voluntary drinking procedure that is applied in the animal’s home cage. Rodents 

are given 24 hours of concurrent access to one bottle containing typically 20% alcohol in 

tap water and one bottle of water every other day, followed by 24 hours of alcohol 

deprivation. Rodents typically show an escalation of alcohol intake and preference across 

the weeks, eventually reaching alcohol consumption levels of 15–20 g per kg per 24 h in 

C57BL/6 mice and 5–6 g per kg per 24 h in rats, inducing BACs that correspond to binge 

drinking levels (~80 mg per dl per 0.5 h for rats and 97.9–179.4 mg per dl per 2 h for 

mice)197, 198, 199.

Continuous access to escalating concentrations of alcohol in a two-bottle 
choice (ESC-CA2BC)

This is a variant of the continuous access protocol, which is used mostly in mice; it 

models the transition from moderate to excessive alcohol intake by gradually increasing 

the concentration of alcohol (for example, from 4% to 20% over the course of a few 
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days). Alcohol intake levels start at 1.5 g per kg (at 3% alcohol) and escalate to 15 g per 

kg (at 20% alcohol)113.

Limited access to alcohol (20%LA)

Models such as the ‘drinking in the dark’ procedure in mice promote high, binge-like 

drinking by introducing one bottle containing 20% alcohol each day, typically for 2–4 

hours, beginning 3 hours into the dark cycle. This procedure results in an alcohol 

consumption level of 8 g per kg per 4 h of alcohol and a BAC of 160 mg per dl (Ref. 

200).

Operant self-administration of 20% alcohol (20%OSA)

To model excessive drinking, animals undergo intermittent access to 20% alcohol in a 

two-bottle choice (as described above) and, subsequently, operant self-administration of 

alcohol, with rats pressing the lever to obtain a 20% solution of alcohol197. Operant 

responding and alcohol intake are high, and rats typically consume 0.4–1.0 g per kg per 

0.5 h, which generates a BAC of 30–90 mg per dl (Ref. 197).

Alcohol dependence paradigm (ADEP)

To model alcohol dependence, animals are chronically pre-exposed to alcohol in a non-

contingent manner by using vapour inhalation or ingestion of a liquid diet144, 199, 201, 202. 

Pre-exposure of the animals to high alcohol concentrations by vapour inhalation leads to 

high levels of alcohol self-administration and can produce BACs of 150–250 mg per dl in 

rats and 175 mg per dl in mice203. In these animals, alcohol withdrawal produces 

physical and motivational symptoms of alcohol dependence201, 202. This model provides 

the advantage of experimentally controlling the BAC levels.

Intermittent access to alcohol and quinine adulteration (IA2BC-QN)

This protocol is used to model compulsive-like alcohol intake, despite the unpleasant 

consequences (that is, the bitter taste of quinine). Mice are trained in an intermittent 

access to alcohol in a two-bottle choice procedure. After achieving a stable consumption, 

quinine (0.1 g per l) is added to the alcohol solution83.
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Box 2

Behavioural models of alcohol relapse

Alcohol deprivation effect

In this model, animals are given voluntary access to alcohol for several days, weeks or 

months, are then deprived of alcohol for a certain period of time, and subsequently 

presented again with alcohol. This protocol leads to a robust, albeit temporary, 

enhancement in alcohol consumption after the period of deprivation, which is considered 

to model relapse204. A variant of this protocol uses long-term continuous access to 

alcohol in a four-bottle choice, in which animals have continuous access to four bottles, 

each containing water, 5% alcohol, 10% alcohol or 20% alcohol (vol/vol)115. The alcohol 

intake is then measured after the alcohol deprivation period204.

Reinstatement

This protocol models relapse to drug or alcohol seeking; animals are trained to respond 

for alcohol reinforcement, typically by pressing a lever. Then, after extinction of the 

responding by no reward delivery, the non-reinforced pressing on the alcohol-associated 

lever is significantly enhanced by alcohol priming injections, alcohol-related cues (for 

example, a light, a tone, or the odour and taste of alcohol) or stressors205.

Reacquisition

This is an operant animal model of relapse to drug or alcohol consumption; the training is 

similar to that of the reinstatement procedure, except that a non-contingent alcohol 

primer, which is delivered in the reward port at the beginning of the test session, triggers 

a rapid reacquisition of operant responding for alcohol205.
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Figure 1. Signalling pathways underlying the go pathways
Repeated cycles of excessive alcohol exposure and withdrawal lead to aberrant activation of 

specific intracellular signalling cascades (the go pathways), the nature of which varies 

depending on the brain region. Collectively, these alcohol-related changes in intracellular 

signalling cascades drive long-lasting, detrimental behavioural phenotypes associated with 

alcohol abuse, such as excessive consumption, alcohol seeking, craving and relapse. Protein 

kinase A (PKA) has a central role in the go pathways. PKA is activated by adenylyl cyclase 

(AC), which hydrolyses ATP to cyclic AMP and is activated by alcohol through several 

mechanisms, including the inhibition of equilibrative nucleoside transporter 1 (ENT1) 

(inactivated proteins are shown in dark green) and subsequent activation of the Gsα-coupled 

adenosine A2A receptors (A2ARs) and/or the activation of the Gsα-coupled dopamine D1 

receptor (D1R). cAMP binds to the regulatory subunit of PKA, thus freeing the catalytic 

subunit of the kinase to phosphorylate its substrates, which include striatum-enriched 

protein-tyrosine phosphatase (STEP). Activation of FYN requires the recruitment of protein-

tyrosine phosphatase-α (PTPα), which dephosphorylates an inhibitory phosphorylation site. 

STEP is inactivated by PKA phosphorylation, which enables the sustained activation of 

FYN. Alcohol might also activate FYN by additional mechanisms (as indicated by the 

dashed line). When FYN is activated, it phosphorylates the GluN2B subunit of NMDA-type 

glutamate receptors (NMDARs), resulting in enhancement of NMDAR activity. Calcium 

entry via the NMDARs activates calcium/calmodulin-dependent protein kinase type II 

(CaMKII), resulting in autophosphorylation of the kinase. CaMKII phosphorylates the 

AMPA-type glutamate receptor (AMPAR) subunit GluA2, resulting in forward trafficking of 

these receptors to the synaptic membrane. Another target of PKA is RAS-specific guanine 
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nucleotide-releasing factor 1 (RAS-GRF1), which, when activated, promotes the transition 

of the small GTP-binding proteins HRAS and KRAS from inactive GDP-bound forms to 

active GTP-bound forms. Activation of HRAS leads to the activation of phosphoinositide 3-

kinase (PI3K). PI3K, in turn, activates AKT, which phosphorylates glycogen synthase kinase 

3β (GSK3β), thus inhibiting its activity. When GSK3β activity is reduced, collapsin 

response mediator protein 2 (CRMP2) binds to tubulin, enabling microtubule assembly. 

AKT, through intermediate proteins, also activates mechanistic target of rapamycin complex 

1 (mTORC1) (as indicated by the dashed line). mTORC1 phosphorylates its substrates 

eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase 

(S6K), which then phosphorylates its substrate S6. 4E-BP1, S6K and S6 are part of the 

ribosomal translational machinery, and activation of mTORC1 initiates the translation of 

postsynaptic density protein 95 (PSD95), Homer, CRMP2 and GluA1. HRAS also activates 

mitogen-activated protein kinase kinase 1 (MKK1), which in turn activates extracellular 

signal-regulated kinases 1 and 2 (ERK1/2), inducing gene transcription. Moreover, HRAS 

indirectly activates (as indicated by the dashed line) phospholipase Cγ (PLCγ), which in 

turn activates protein kinase Cε (PKCε).
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Figure 2. Signalling pathways underlying the stop pathways
Moderate, but not excessive, alcohol consumption causes activation of intracellular 

signalling cascades that lead to the expression of genes encoding growth factors or 

neuropeptides. These signalling molecules have a protective role by promoting downstream 

cascades that prevent the dominance of the go pathway and the establishment of detrimental 

behavioural phenotypes. Moderate intake of alcohol increases the levels of brain-derived 

neurotrophic factor (Bdnf) mRNA. Binding of BDNF to tropomyosin-related kinase B 

(TRKB) activates extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling, thus 

promoting the expression of Drd3 (which encodes the dopamine D3 receptor) and Pdyn 

(which encodes preprodynorphin). Similarly, binding of glial cell line-derived neurotrophic 

factor (GDNF) to its receptors RET and GDNF family receptor α1 (GFRα1) results in the 

activation of ERK1/2 and the induction of the transcription of Gdnf. Activated protein kinase 

A (PKA) phosphorylates the transcription factor cyclic AMP response element (CRE)-

binding protein (CREB). PKA-mediated phosphorylation of CREB results in the activation 

of the transcription machinery and in the induction of expression of genes, including 
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neuropeptide Y (Npy). Activity of PKA is terminated by 3′,5′-cyclic nucleotide 

phosphodiesterase (PDE), which hydrolyses cAMP to 5′ AMP. Alcohol-induced inhibition 

of PDE activity enables the sustained activation of PKA. Activity of HRAS and KRAS is 

terminated by GTPase-activating proteins, including neurofibromin (NF1). Circadian 

locomoter output cycles protein kaput (CLOCK) drives the transcription of Per1 and Per2, 

which encode the period proteins. PER1 and PER2 suppress the transcription of Clock. The 

casein-kinases Iε and Iδ (CKIε/δ) phosphorylate PER1 and PER2, leading to the 

proteasomal degradation of these proteins. AC, adenylyl cyclase; MKK1, mitogen-activated 

protein kinase kinase 1.
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Figure 3. Signalling, neural circuits and alcohol
The go (part a) and stop (part b) pathways affect the function of several neural circuits. In 

the schematics, up arrows depict activation or increased expression of a molecule, whereas 

down arrows depict decreases in expression and/or activity of a molecule. The 

mesocorticolimbic circuitry (blue) mediates reward processing. Glial cell line-derived 

neurotrophic factor (GDNF), signalling via extracellular signal-regulated kinases 1 and 2 

(ERK1/2) and circadian locomoter output cycles protein kaput (CLOCK), acts as a stop-

pathway molecule in the ventral tegmental area (VTA) and dampens alcohol drinking, 

whereas HRAS–phosphoinositide 3-kinase (PI3K)–mechanistic target of rapamycin 

complex 1 (mTORC1), calcium/calmodulin-dependent protein kinase type II (CaMKII), 

protein kinase Cε (PKCε) and microRNA-382 (miR-382) act as go-pathway molecules in 

the nucleus accumbens (NAc) and promote alcohol drinking. In the prefrontal cortex (PFC), 

mTORC1 (go pathway) is activated in a reconsolidation of an alcohol-seeking session, and 

brain-derived neurotrophic factor (BDNF) levels are reduced after excessive drinking in 

response to increases in miR-206 and miR-30a-5p levels (go-pathway molecules). The 

nigrostriatal circuitry (purple) has a role in goal-directed behaviours (dorsomedial striatum 

(DMS)), habitual learning and compulsive behaviour (dorsolateral striatum (DLS)). The 

tyrosine-protein kinase FYN–protein-tyrosine phosphatase-α (PTPα)–GluN2B signalling 

pathway is centred in the DMS (go pathway), and BDNF–ERK1/2 signalling mainly occurs 

in the DLS (stop pathway). The reduction in activity of striatum-enriched protein-tyrosine 

phosphatase (STEP) in the DMS also contributes to the go pathway. The extended amygdala 

(grey) is implicated in the negative emotional state that characterizes alcohol withdrawal and 

relapse. The go-pathway actions of PKCε–corticotropin-releasing factor (CRF) and 3′,5′-

cyclic nucleotide phosphodiesterase 10A (PDE10A) are centred in the central amygdala 

(CeA) and basolateral amygdala, respectively; CaMKII and ERK1/2 also have a role in go-

pathway signalling in the CeA. These signalling molecules promote anxiety-like and 

alcohol-drinking behaviours. By contrast, the BDNF–ERK1/2 (stop) pathway in the CeA 

and medial amygdala (MeA) dampens these phenotypes. In addition, malfunctioning of 

cyclic AMP-dependent protein kinase A (PKA)–cAMP response element (CRE)-binding 

protein (CREB) signalling in the CeA and MeA also contributes to the interplay between 

stress and heightened drinking. Finally, mTORC1 (go pathway) in the CeA mediates 

alcohol-associated memory reconsolidation. ALK, anaplastic lymphoma kinase; DS, dorsal 
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striatum; LMO3, LIM domain only protein 3; NPY, neuropeptide Y; PKMζ, protein kinase 

Mζ; SNc, substantia nigra pars compacta.
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