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Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quan-

tification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform

(BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge

requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high

speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a fewminutes.

Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop com-

puters. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonre-

dundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based

indexing schemes, which require far more extensive space.

[Supplemental material is available for this article.]

Microbes such as archaea and bacteria are found virtually every-
where on earth, from soils and oceans to hot springs and deep
mines (Keller and Zengler 2004). They are also abundant on and
inside living creatures, including a variety of niches on the human
body such as the skin and the intestinal tract (HumanMicrobiome
Project Consortium2012). These invisible life forms perform a vast
range of biological functions; they are indispensable for the sur-
vival of many species; and they maintain the ecological balance
of the planet. Many millions of prokaryotic species exist (Schloss
and Handelsman 2004), although only a small fraction of them
(<1% in soil and even fewer in the ocean) can be isolated and cul-
tivated (Amann et al. 1995). High-throughput sequencing of mi-
crobial communities, known as metagenomic sequencing, does
not require cultivation and therefore has the potential to provide
countless insights into the biological functions of microbial spe-
cies and their effects on the visible world.

In 2004, the RefSeq database contained 179 complete pro-
karyotic genomes, a number that grew to 954 genomes by 2009
and to 4278 by December 2015. Together with advances in se-
quencing throughput, this ever-increasing number of genomes
presents a challenge for computational methods that compare
DNA sequences to the full database of microbial genomes.
Analysis of metagenomics samples, which contain millions of
reads from complex mixtures of species, necessitates a compact
and scalable indexing scheme for classifying these sequences
quickly and accurately. Most of the current metagenomics classifi-
cation programs either suffer from slow classification speed, a large
index size, or both. For example, machine-learning-based ap-
proaches such as the Naive Bayes Classifier (NBC) (Rosen et al.
2008) and PhymmBL (Brady and Salzberg 2009, 2011) classify
<100 reads per minute, which is too slow for data sets that contain

millions of reads. In contrast, the pseudoalignment approach em-
ployed in Kraken (Wood and Salzberg 2014) processes reads far
more quickly, more than 1 million reads per minute, but its exact
k-mer matching algorithm requires a large index. For example,
Kraken’s 31-mer database requires 93 GB of memory (RAM) for
4278 prokaryotic genomes, considerably more memory than to-
day’s desktop computers contain.

Fortunately, modern read-mapping algorithms such as
Bowtie (Langmead et al. 2009; Langmead and Salzberg 2012) and
BWA (Li and Durbin 2009, 2010) have developed a data structure
that provides very fast alignment with a relatively small memory
footprint. We have adapted this data structure, which is based
on the Burrows-Wheeler transform (Burrows and Wheeler 1994)
and the Ferragina-Manzini (FM) index (Ferragina and Manzini
2000), to create a metagenomics classifier, Centrifuge, that can ef-
ficiently store large numbers of genome sequences, taxonomical
mappings of the sequences, and the taxonomical tree.

Methods

Database sequence compression

We implemented memory-efficient indexing schemes for the clas-
sification of microbial sequences based on the FM-index, which
also permits very fast search operations. We further reduced the
size of the index by compressing genomic sequences and building
a modified version of the FM-index for those compressed ge-
nomes, as follows. First, we observed that for some bacterial spe-
cies, large numbers of closely related strains and isolates have
been sequenced, usually because they represent significant human
pathogens. Such genomes include Salmonella entericawith 138 ge-
nomes, Escherichia coli with 131 genomes, and Helicobacter pylori
with 73 genomes available (these figures represent the contents
of RefSeq as of December 2015). As expected, the genomic se-
quences of strains within the same species are likely to be highly
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similar to one another. We leveraged this fact to remove such re-
dundant genomic sequences, so that the storage size of our index
can remain compact even as the number of sequenced isolates for
these species increases.

Figure 1 illustrates howwe compress multiple genomes of the
same species by storing near-identical sequences only once. First,
we choose the two genomes (G1 and G2 in the figure) that are
most similar among all genomes. We define the two most similar
genomes as those that share the greatest number of k-mers (using
k = 53 for this study) after k-mers are randomly sampled at a rate of
1% from the genomes of the same species. In order to facilitate this
selection process, we used Jellyfish (Marcais and Kingsford 2011)
to build a table indicatingwhich k-mers belong towhich genomes.
Using the twomost similar genomes allows for better compression
as they tend to share larger chunks of genomic sequences than two

randomly selected genomes.We then compared the twomost sim-
ilar genomes using nucmer (Kurtz et al. 2004), which outputs a list
of the nearly or completely identical regions in both genomes.
When combining the two genomes, we discard those sequences
of G2 with ≥99% identity to G1 and retain the remaining sequenc-
es to use in our index. We then find the genome that is most sim-
ilar to the combined sequences from G1 and G2 and combine this
in the same manner as just described. This process is repeated for
the rest of the genomes.

As a result of this concatenation procedure, we obtained dra-
matic space reductions for many species; e.g., the total sequence
was reduced from 661 to 74 Mbp (11% of the original sequence
size) in S. enterica and from 655 to 107 Mbp (16%) in E. coli (see
Table 1). Overall, the number of base pairs from ∼4300 bacterial
and archaeal genomeswas reduced from15 to 9.1 billion base pairs

Figure 1. Compression of genome sequences before building the Centrifuge index. All genomes are compared and similarities are computed based on
shared 53-mers. In the figure, genomes G1 andG2 are themost similar pair. Sequences of G2 that are≥99% identical to G1 are discarded, and the remaining
“unique” sequences fromG2 are added to genome G1, creating a merged genome, G1+2. Similarity between all genomes is recomputed using themerged
genomes. Sequences <99% identical in genome G3 are then added to the merged genome, creating genome G1+2+3. This process repeats for the entire
Centrifuge database until each merged genome has no sequences ≥99% identical to any other genome.
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(Gbp). The FM-index for these compressed sequences occupies 4.2
GB ofmemory, which is small enough to fit into themainmemory
(RAM) on a conventional desktop computer. As we demonstrate in
the Supplemental Methods and Supplemental Table S1, this com-
pression operation has only a negligible impact on classification
sensitivity and accuracy.

Classification based on the FM-index

The FM-index provides several advantages over k-mer-based index-
ing schemes that store all k-mers in the target genomes. First, the
size of the k-mer table is usually large; for example, Kraken’s k-
mer table for storing all 31-mers in∼4300 prokaryotic genomes oc-
cupies ∼100 GB of disk space. Second, using a fixed value for k in-
curs a tradeoff between sensitivity and precision: Classification
based on exactmatches of large k-mers (e.g., 31 bp) provides higher
precision but at the expense of lower sensitivity, especially when
the data being analyzed originate from divergent species. To
achieve higher sensitivity, smaller k-mer matches (e.g., 20–25 bp)
can be used; however, this results in more false-positive matches.
The FM-index provides a means to exploit both large and small
k-mer matches by enabling rapid search of k-mers of any length,
at speeds comparable to those of k-mer table indexing algorithms
(see Results).

Using this FM-index, Centrifuge classifies DNA sequences as
follows. Suppose we are given a 100-bp read (note the Centrifuge
can just as easily process very long reads, assembled contigs from
a draft genome, or even entire chromosomes). We search both the
read (forward) and its reverse complement from right to left (3′ to
5′) as illustrated in Figure 2A. Centrifuge begins with a short exact
match (16-bp minimum) and extends the match as far as possi-
ble. In the example shown in Figure 2A, the first 40 bp match ex-
actly, with a mismatch at the 41st base from the right. The
rightmost 40-bp segment of the read is found in six species (A,
B, C, D, E, and F) that had been stored in the Centrifuge database.
The algorithm then resumes the search beginning at the 42nd
base and stops at the next mismatch, which occurs at the 68th
base. The 26-bp segment in the middle of the read is found in spe-
cies G and H. We then continue to search for mappings in the rest
of the read, identifying a 32-bp segment that matches species
G. Note that only exact matches are considered throughout this
process, which is a key factor in the speed of the algorithm. We
perform the same procedure for the reverse complement of the
read which, in this example, produces more mappings with
smaller lengths (17, 16, 28, 18, and 17) compared to the forward
strand.

Based on the exact matches found in the read and its reverse
complement, Centrifuge then classifies the read using only those
mappings with at least one 22-bp match. Figure 2A shows three
segment mappings on the forward strand read and one on the

read’s reverse complement that meet this length threshold.
Centrifuge then scores each species using the following formula,
which assigns greater weight to the longer segments:

Score(Species X) =
∑

hit[Species X

(length(hit) − 15)2.

After assessing a variety of formulas, we empirically found
that the sum of squared lengths of segments provides the best clas-
sification precision. Because almost all sequences of 15 bp or short-
er occur in the database by chance, we subtract 15 from the match
length. Other values such as 0 and 7 bp work almost as well, while
higher values such as 21 bp result in slightly lower precision and
sensitivity. For the example in Figure 2, species A, B, C, D, E, and
F are assigned the highest score (625), based on the relatively
long 40-bp exact match. Species G and H get lower scores because
they have considerably shorter matches, even though each has
two distinct matches. Note that H has mappings on both the
read and its reverse complement, and in this case, Centrifuge
chooses the strand that gives the maximum score, rather than us-
ing the summed score on both strands, whichmight bias it toward
palindromic sequences.

Centrifuge can assign a sequence to multiple taxonomic cat-
egories; by default, it allows up to five labels per sequence. (Note
that this strategy differs from Kraken, which always chooses a sin-
gle taxonomic category, using the lowest common ancestor of all
matching species.) In Figure 2, six different species match the
read equally well. In order to reduce the number of assignments,
Centrifuge traverses up the taxonomic tree. First, it considers the
genus that includes the largest number of species, which, in this
example (Fig. 2B), is genus I, which covers species A, B, and C. It
then replaces these three species with the genus, thereby reducing
the number of assignments to four (genus I plus species D, E, and
F). If more than five taxonomic labels had remained, Centrifuge
would repeat this process for other genera and subsequently for
higher taxonomic units until it reduced the number of labels to
five or fewer.

The user can easily change the default threshold of five labels
per sequence; for example, if this threshold is set to one, then
Centrifugewill report only the lowest common ancestor as the tax-
onomic label, mimicking the behavior of Kraken. In the example
shown in Figure 2, this label would be at the family level, which
would lose some of the more specific information about which
genera and species the reads matched best.

If the size of the index is not a constraint, then the user can
also use Centrifuge with uncompressed indexes, which classify
reads using the same algorithm. Although considerably larger,
the uncompressed indexes allow Centrifuge to classify reads at
the strain or genome level; e.g., as E. coliK12 rather than just E. coli.

Table 1. Compression ratios for 10 bacterial species that have multiple genomes fully sequenced and available in RefSeq

Species name Number of genomes Total size (Mbp) Total size after compression (Mbp) Compression ratio

Salmonella enterica 138 661 74 8.9
Escherichia coli 131 655 107 6.1
Staphylococcus aureus 77 220 31 7.1
Helicobacter pylori 73 119 78 1.5
Chlamydia trachomatis 66 69 4 17.3
Listeria monocytogenes 54 160 25 6.5
Burkholderia pseudomallei 47 341 46 7.4
Klebsiella pneumoniae 41 230 47 4.9
Streptococcus pyogenes 39 72 13 5.5
Campylobacter jejuni 37 62 13 4.8
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Abundance analysis

In addition to per-read classification, Centrifuge performs abun-
dance analysis at any taxonomic rank (e.g., strain, species, genus).
Because many genomes share near-identical segments of DNA
with other species, reads originating from those segments will be
classified as multiple species. Simply counting the number of the
reads that are uniquely classified as a given genome (ignoring
those thatmatch other genomes)will therefore give poor estimates
of that species’ abundance. To address this problem, we define the
following statistical model and use it to find maximum likelihood
estimates of abundance through an Expectation-Maximization

(EM) algorithm.Detailed EM solutions to themodel have been pre-
viously described and implemented in theCufflinks (Trapnell et al.
2010) and Sailfish (Patro et al. 2014) software packages.

Similar to how Cufflinks calculates gene/transcript expres-
sions, the likelihood for a specific configuration of species abun-
dance α, given the read assignments C, is defined as follows:

L(a|C) =
∏R

i=1

∑S

j=1

ajlj∑S
k aklk

Cij,

where R is the number of the reads, S is the number of species, αj is

Figure 2. Classification of reads. (A) The figure shows how the score for a candidate at the species level is calculated. Given a 100-bp read, both the read
(forward) and its reverse complement from right to left are searched. Centrifuge first identifies a short exact match, then continues until reaching a mis-
match: The first 40-bp segment exactly matches six species (A, B, C, D, E, F), followed by a mismatch at the 41st base; the second 26-bp segment matches
two species (G and H), followed by a mismatch at the 68th base; and the third 32-bp segment matches only species G. This procedure is repeated for the
reverse complement of the read. Centrifuge assigns the highest score (625) to species A, B, C, D, E, and F. (B) Centrifuge then traverses up the taxonomic
tree to reduce the number of assignments, first by considering the genus that includes the largest number of species, genus I, which covers species A, B, and
C, and then replacing these three species with the genus. This procedure results in reducing the number of assignments to four (genus I plus species D, E,
and F).

Kim et al.

1724 Genome Research
www.genome.org



the abundance of species j, summing up to 1 over all S species, lj is
the average length of the genomes of species j, andCij is 1 if read i is
classified to species j and 0 otherwise.

To find the abundances α that maximize the likelihood func-
tion L(α|C ), Centrifuge repeats the following EM procedure as also
implemented in Cufflinks until the difference between the previ-
ous estimate of abundances and the current estimate,∑S

j=1 |aj − a′j|, is less than 10−10.
Expectation (E-step):

nj =
∑R

i=1

ajCij∑S
k=1 akCik

,

where nj is the estimated number of reads assigned to species j.
Maximization (M-step):

a′
j =

nj/lj∑S
k=1 nk/lk

,

where a′
j is the updated estimate of species j’s abundance. α′ is then

used in the next iteration as α.

Results

We demonstrated the performance of Centrifuge in four different
settings involving both real and simulated reads and using several
databases with different sizes, specifically one consisting of ∼4300
prokaryotic genomes (index name: p, index size: 4.2 GB), another
with ∼4300 prokaryotic genomes plus human and viral genomes
(p + h + v, 6.9 GB), and a third comprised of NCBI nucleotide se-
quences (nt, 69 GB). We compared the sensitivity and speed of
Centrifuge to one of the leading classification programs, Kraken
(v0.10.5-beta) (Wood and Salzberg 2014). We also included
MegaBLAST (Zhang et al. 2000) in our assessment, as it is a very
widely used program that is often used for classification. In terms
of both sensitivity and precision of classification, Centrifuge dem-
onstrated similar accuracy to the other programs we tested.
Centrifuge’s principal advantage is that it provides a combination
of fast classification speed and lowmemory requirements, making
it possible to perform large metagenomics analyses on a desktop
computer using p or p + h + v index. For example, Centrifuge took
only 47 min on a standard desktop computer to analyze 130
paired-end RNA sequencing runs (a total of 26 GB) from patients
infected with Ebola virus (Baize et al. 2014; Gire et al. 2014; Park
et al. 2015) as described below. Centrifuge’s efficient indexing
scheme makes it possible to index the NCBI nucleotide collection
(nt) database, which is a comprehensive set of sequences (>36 mil-
lion nonredundant sequences, ∼110 billion bp) collected from vi-
ruses, archaea, bacteria, and eukaryotes, and enables rapid and
accurate classification of metagenomic samples.

Comparison of Centrifuge, Kraken, and MegaBLAST on

simulated reads from 4278 prokaryotic genomes

We created a simulated read data set from the 4278 complete pro-
karyotic genomes in RefSeq (Pruitt et al. 2014) that were used to
build the database, p. From these genomes, we generated 10 mil-
lion 100-bp reads with a per-base error rate of 3% using the
Mason simulator, v0.1.2 (Luke et al. 2005). We used an error rate
higher than found in Illumina reads (≤0.5%) in order to model
the high mutation rates of prokaryotes. Reads were generated ran-
domly from the entire data set; thus, longer genomes had propor-
tionally more reads. The full set of genomes is provided in
Supplemental Table S2. We built indexes for each of the respective
programs. Kraken and MegaBLAST require 100 GB and 25 GB of
space (respectively) for their indexes. In contrast, Centrifuge re-
quires only 4.2 GB to store and index the same genomes. The
run-time memory footprint of MegaBLAST is small (Table 2)
because it does not read the entire database into memory, in con-
trast to Kraken and Centrifuge. We classified the reads with
Centrifuge, Kraken, and MegaBLAST and calculated sensitivity
and precision at the genus and species levels for each program
(Table 2). Centrifuge andMegaBLAST often reportmultiple assign-
ments for a given read, while Kraken instead reports the lowest
common ancestor. To make our evaluation consistent across the
programs, we only considered uniquely classified reads. Here, we
define sensitivity as the number of reads that are correctly classi-
fied divided by the total number of reads. Precision (also called
positive predictive value) is defined as the number of correctly clas-
sified reads divided by the number of predictions made (i.e., reads
that have no match and are not classified at a given taxonomic
rank or below are not counted).

At the species level,MegaBLAST provides the highest sensitiv-
ity at 78.8%, followed by Centrifuge (76.9%) and then Kraken
(73.9%). Overall sensitivity is relatively low because many reads
are assigned to multiple species and considered as unclassified in
our evaluation. MegaBLAST provides the highest precision,
99.4%, followed closely by Kraken at 99%, then Centrifuge at
98.4%. At the genus level, MegaBLAST provides the highest sensi-
tivity at 93.4%, followed by Centrifuge (93.1%) and then by
Kraken (90.4%) (Supplemental Table S2). All three programs had
near-perfect precision at the genus level, from 99.6% to 99.9%.
Kraken was the fastest program on these data, classifying about
1,062,000 reads per minute (rpm), followed by Centrifuge, which
was approximately one-half as fast at 563,000 rpm. MegaBLAST is
far slower, processing only 327 rpm.

As a side note, fast alignment programs such as Bowtie 2
(Langmead and Salzberg 2012) and BWA (Li and Durbin 2009)
can be used for classifying reads, though they were not designed
for that purpose. To explore such repurposing, we built a Bowtie
2 index and used Bowtie 2 on the simulated reads. Bowtie 2 is

Table 2. Classification sensitivity and precision for Centrifuge, Kraken, and MegaBLAST using simulated reads

Classifier

Genus Species

Sensitivity Precision Sensitivity Precision Speed (reads/min) Memory usage (GB of RAM)

Centrifuge 93.1 99.6 76.9 98.4 563,380 4.2
Kraken 90.4 99.8 73.9 99.0 1,061,947 93.0
MegaBLAST 93.4 99.9 78.8 99.4 327 9.9

In Centrifuge, we used only uniquely classified reads to compute accuracy. To measure speed, we used 10 million reads for Centrifuge and Kraken and
100,000 reads for MegaBLAST. We ran all programs on a Linux system with 1 TB of RAM using one CPU (2.1 GHz Intel Xeon).
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very fast, processing >56,000 reads/minute, but is still only one-
tenth as fast as Centrifuge. Bowtie 2 also requires 21 GB of RAM,
five times more than required by Centrifuge. Bowtie 2 has classifi-
cation sensitivity and precision comparable to Centrifuge (e.g.,
sensitivity of 96.8% and precision of 99.1% at the genus level).

In addition to the above per-read classification, Centrifuge es-
timates abundance at various taxonomic ranks. Centrifuge’s abun-
dance assessment closelymatches the true abundance distribution
of genomes in the simulated reads (Supplemental Fig. S1) at the
species level (Pearson’s correlation coefficient of 0.919) and the ge-
nus level (correlation of 0.986).

Comparison of Centrifuge and Kraken performance on real data

sets from sequencing reads of bacterial genomes

To test our method on real sequencing data sets, we downloaded
530 DNA sequencing data sets from the Sequence Read Archive
(SRA). We selected them according to whether the SRA samples
had been assigned a taxonomic identifier that belongs to a genus
for which we have at least one genome in the database. All of
the data sets were generated by whole-genome shotgun projects
using recent Illumina platforms; 225 were sequenced on HiSeq
and 305 on MiSeq instruments, with mean read lengths of 100
and 218 bp, respectively. Supplemental Table S3 contains a com-
plete list of the SRA identifiers, taxonomy IDs, number of reads,
and classification results. In total, these data contain over 560mil-
lion reads, with an average of 1,061,536 reads per sample.

For this experiment, we compared Centrifuge and Kraken but
omitted MegaBLAST because it would take far too long to run.

Krakenwas chosen as the standard for comparison because it dem-
onstrated superior accuracy over multiple other programs in a re-
cent comparisonofmetagenomicclassifiers (Lindgreenet al. 2016).

Figure 3 and Supplemental Figure S2 show the results for clas-
sification sensitivity, accuracy, speed, andmemory usage using the
database p of ∼4300 prokaryotic genomes. On average, Centrifuge
had slightly higher sensitivity (0.6% higher) than Kraken. Perhaps
due to its use of a longer exact match requirement (31 bases),
Kraken had slightly higher precision (2%) than Centrifuge. The
lower accuracy of both programs on some data sets may be due
to: (1) substantial differences between the genome that we have
in the database and the strain that was sequenced; (2) numerous
contaminating reads from the host or reagents; or (3) a high se-
quencing error rate for a particular sample. For example,
SRR2225903 is labeled as a strain of Acinetobacter, but 85% of the
reads are assigned to Escherichia. SRR1656428 is labeled as a clinical
isolate of Shigella dysenteriae, but 92% of the reads are classified as
Klebsiella (note that for this experiment the taxonomy IDhas since
been updated by NCBI, but the name has not changed). In other
instances (such as SRR1656029 and SRR1655687, labeled as clini-
cal isolates of Ferrimonas balearica and Kytococcus sedentarius, re-
spectively), we could not match taxonomic IDs to a substantial
fraction of the reads, even when searching against the nt database.
The readsmight have come froma species that has no close relative
in the database or could not be assigned due to poor quality.

Overall accuracy for both programs was very similar. Kraken
was slightly faster, with an average run time of 39.3 sec per ge-
nome, while Centrifuge required 50.9 sec per genome (both using
eight cores).

Figure 3. Results on 530 sequencing data sets from bacterial genomes retrieved from the Sequence Read Archive at NCBI. Each dot represents the results
for one genome, with Centrifuge shown in orange and Kraken in teal. The upper left plot shows sensitivity, computed as the percentage of reads classified as
the correct genus. The upper right plot shows precision, computed as the percentage of genus-level classifications made by a program that were correct.
The lower left plot shows runtime measured in seconds.
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Application of Centrifuge for analyzing samples with Ebola virus

and GB virus C co-infections on a desktop

To demonstrate the speed, sensitivity, and applicability of
Centrifuge on a real data set, we used data from the Ebola virus dis-
ease (EVD) outbreak. The 2013–2015 EVD outbreak in West Africa
cost the lives of over 11,000 people as of August 26, 2015
(WHO Ebola Situation Report, http://apps.who.int/ebola/ebola-
situation-reports). In an international effort to research the disease
and stop its spread, several groups sequenced the Ebola virus col-
lected frompatients’ blood samples and released their data sets on-
line (Baize et al. 2014; Gire et al. 2014; Park et al. 2015). The
genomic data were used to trace the disease and mutations in
the Ebola genome and inform further public health and research
efforts. Lauck et al. (2015) reanalyzed one of the data sets (Gire
et al. 2014) in order to assess the prevalence and effect of GB virus
C co-infection on the outcome of EVD.

We analyzed 130 paired-end sequencing runs from 49 pa-
tients reported inGire et al. (2014) using Centrifuge to look for fur-
ther co-infections. This data set has a total of 97,097,119 reads (26
GB of FASTA files). The accession IDs of these data are provided in
Supplemental Table S4. For this analysis, we used the database p +
h + v containing all prokaryotic genomes (compressed), all viral ge-
nomes, and the humangenome (total index size: 6.9GB). Running
on a desktop computer (quad-core, Intel Core i5-4460 @ 3.2 GHz
with 8 GB RAM), Centrifuge completed the analysis of all samples
in 47min with four cores. RNA-sequencing (Mortazavi et al. 2008)
requires more steps than DNA-sequencing, including the reverse-
transcription of RNA to DNA molecules, which introduces se-
quencing biases and artifacts. In order to handle these additional
sources of errors and remove spurious detections, we filtered the re-
sults to include only reads that have a matching length of at least
60 bp on the 2 × 100-bp reads.

Figure 4 shows our classification results for the 49 patients.
Centrifuge detects between 3853 and 6,781,684 Ebola virus reads
per patient. As reported by Lauck et al., we also detected co-infec-
tion of Ebola virus and GB virus C in many of the patients.
Centrifuge identified at least one read from this virus in 27 of
the 49 patients; nine patient samples had 50 or more reads.
Nine patients had between one and 10 reads matching the
Hepatitis B virus, and in one sample, over 1000 reads aligned
uniquely to this virus. This Hepatitis B co-infection has not been
reported previously, demonstrating the inherent advantage of us-

ing a metagenomics classification tool, which can also detect off-
target species.

Application of Centrifuge for analyzing Oxford Nanopore

MinION reads of fruitshake using nt database

As a test of Centrifuge’s nt database, we used it to analyze se-
quences from a mixture of common fruits and vegetables se-
quenced using long-read single-molecule technology. The
mixture included more than a dozen common foods: grape, blue-
berry, yam (sweet potato), asparagus, cranberry, lemon, orange,
iceberg lettuce, black pepper, wheat (flour), cherry tomato,
pear, bread (wheat plus other ingredients), and coffee (beans).
The “fruitshake” mixture was blended together, DNA was extract-
ed, and sequencing was run on an Oxford Nanopore MinION.
The number of reads generated from the fruitshake sample was
20,809, with lengths ranging from 90 to 13,174 bp and a mean
length of 893 bp. Although MinION platforms produce much
longer reads than Illumina platforms, MinIONs’ high sequencing
error rates (estimated at 15%) (Jain et al. 2015) prevent reads from
containing long exact matches and increase the chance of noisy
and incorrect matches. We initially labeled 8236 reads using
Centrifuge. In order to reduce false-positive assignments for these
error-prone reads, we filtered out those reads that scored ≤300
and had match lengths ≤50 bp, resulting in 3617 reads ultimately
classified. Table 3 shows 14 species to which at least five reads are
uniquely assigned, encompassing many of the species included
in the sample, such as wheat, tomato, lettuce, grape, barley,
and pear. Note that as with any real sample, the true composition
of the reads is unknown; we present these results here to illustrate
(1) the use of the large nt database, and (2) the use of Centrifuge
on long, high-error-rate reads. Although apple was not known to
be present in the sample, the five reads assigned to apple might
have been due to similarity between the apple genome and the
pear genome. Twenty-six reads were identified as sheep and eight
as cow, which were confirmed separately by BLAST searches.
These could represent sample contamination or possibly contam-
inants in the sheep and cow assemblies. Missing species can be
explained either by low abundance in the sample or because their
genomes are substantially different from those in the Centrifuge
nt database.

Figure 4. Heatmap of the most abundant species in Ebola samples. The color scale encodes species abundance (the number of unique reads normalized
by genome size), ranging from yellow (<0.1% of the normalized read count) to red (100%), with white representing an abundance of zero. All species that
have a normalized read count over 1% in any of the samples are shown. Zaire ebolavirus dominates the samples; however, there is also a signal for other
viruses in some of the patients—namely GB virus C and Hepatitis B virus.
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Discussion

Centrifuge requires a relatively small index for representing and
searching ∼4300 prokaryotic genomes, only 4.2 GB, lean enough
to fit thememory of a personal desktop. These space-optimized in-
dexing schemes alsomake it possible to index theNCBI nucleotide
sequence database that includes a comprehensive set of sequences
collected from viruses, archaea, bacteria, and eukaryotes. Identical
sequences have been removed to make it nonredundant, but even
after this reduction, the database contains over 36.5 million se-
quences with a total of ∼109 billion base pairs (Gbp). This rapidly
growing database, called nt, enables the classification of sequenc-
ing data sets from hundreds of plant, animal, and fungal species
as well as thousands of viruses and bacteria and many other eu-
karyotes. Metagenomics projects often include substantial quanti-
ties of eukaryotic DNA, and a prokaryotes-only index cannot
identify these species.

The challenge in using a much larger database is the far great-
er number of unique k-mers thatmust be indexed. For example, us-
ing Kraken’s default k-mer length of 31 bp, the nt database
contains ∼57 billion distinct k-mers. Although it employs several
elegant techniques to minimize space, Kraken still requires 12
bytes per k-mer, which means it would require an index size of
684 GB for the full nt database. Reducing the k-mer size helps
only slightly: With k = 22, Kraken would require an index of 520
GB. Either of these indexes would require a specialized computer
with very large main memory.

Centrifuge’s index is based on the space-efficient Burrows-
Wheeler transform, and as a result, it requires only 69 GB for the
nt database, less than the raw sequence itself. BLAST and
MegaBLAST are currently the only alternative methods that can
classify sequences against the entire nt database; thus, we com-
pared Centrifuge with MegaBLAST using our simulated read data,
described above. MegaBLAST uses a larger index, requiring 155
GB on disk, but it does not load the entire index into memory
and requires only 16 GB of RAM, while Centrifuge requires 69
GB. However, Centrifuge classified reads at a far higher speed: In
our experiments on the Mason simulation data, it processed

∼372,000 reads/min, over 3500 times faster than MegaBLAST,
which processed only 105 reads/min. Using themuch larger nt da-
tabase instead of the prokaryotic database on theMason simulated
reads (Table 2) does not decrease the classification precision and
sensitivity of both programs at the genus level, with Centrifuge’s
sensitivity only marginally decreasing by 3.2%.

As the prokaryotic and nt databases continue to rapidly ex-
pand and provide more comprehensive coverage, further difficul-
ties arise in analyzing sequencing data. For example, two major
challenges remain to be addressed in the statistical estimation of
abundance (Lu et al. 2016). First, the RefSeq database includes
many genomes nearly identical to one another, whichmakes it ex-
tremely difficult to distinguish those genomes present in the sam-
ple from those that are not. For example, many strains of
Chlamydia trachomatis are almost identical (>99.99%) to one an-
other (e.g., Chlamydia trachomatis D/UW-3/CX and Chlamydia tra-
chomatis strain Ia/CS190/96). Second, the microbial taxonomy is
sometimes not based on genomic sequence similarity and con-
tains taxonomically misnamed or misplaced species (Federhen
2015). Incorrectly positioned species (or strains) can contribute
to inaccurate ancestor assignment (e.g., genus or family) in abun-
dance estimations. For example, a genome initially identified as
Anabaena variabilis ATCC 29413 was reassigned to the genus
Nostoc, not Anabaena (Thiel et al. 2014).

In conclusion, Centrifuge is a rapid and sensitive classifier for
microbial sequences with low memory requirements and a speed
comparable to the fastest systems. Centrifuge classifies 10 million
reads against a database of all complete prokaryotic and viral ge-
nomes within 20 min using one CPU core and requiring <8 GB
of RAM. Furthermore, Centrifuge can also build an index for
NCBI’s entire nt database of nonredundant sequences from both
prokaryotes and eukaryotes. The search requires a computer sys-
tem with 128 GB of RAM but runs over 3500 times faster than
MegaBLAST.

Data access

Centrifuge is available as free, open-source software from https://
github.com/infphilo/centrifuge/archive/centrifuge-genome-
research.zip and provided in Supplemental Data S1. The fruit-
shake sequencing data from this study have been submitted
to the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA343503.

Acknowledgments

We thankWinston Timp andRachaelWorkman for generating the
fruitshake data from the MinION sequencing platform. This work
was supported in part by the National Institutes of Health (NIH)
under grants R01-HG006677 and R01-GM083873, by the US
Army Research Office under grant W911NF-1410490, and by the
National Science Foundation (NSF) under grant ABI-1356078.

Author contributions: D.K., L.S., F.P.B., and S.L.S. performed
the analysis and discussed the results of Centrifuge. D.K., L.S.,
and F.P.B. implemented Centrifuge. D.K., F.P.B., L.S., and S.L.S.
wrote the manuscript. All authors read and approved the final
manuscript.

References

Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and
in situ detection of individual microbial cells without cultivation.
Microbiol Rev 59: 143–169.

Table 3. Classification of the fruitshake sample using Centrifuge’s nt
database

Scientific name
Common
name

Number of uniquely
classified reads

Triticum aestivum Wheat 2889
Solanum lycopersicum Tomato 207
Lactuca sativa Lettuce 134
Ovis canadensis

canadensis
Sheep 26

Vitis vinifera Grape 16
Aegilops tauschii Wheat 13
Triticum urartu Wheat 12
Solanum pennellii Tomato 12
Triticum turgidum subsp.

durum
Wheat 8

Triticum monococcum Wheat 8
Bos taurus Cow 8
Hordeum vulgare subsp.

vulgare
Barley 6

Malus domestica Apple 5
Pyrus x bretschneideri Pear 5

The table shows 14 genomes to which at least five reads sequenced
from the fruitshake sample were uniquely assigned. Common names in
bold represent species known to be present in the mixture.

Kim et al.

1728 Genome Research
www.genome.org

https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
https://github.com/infphilo/centrifuge/archive/centrifuge-genome-research.zip
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210641.116/-/DC1
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/


Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N,
Soropogui B, Sow MS, Keita S, De Clerck H, et al. 2014. Emergence of
Zaire Ebola virus disease in Guinea. N Engl J Med 371: 1418–1425.

Brady A, Salzberg SL. 2009. Phymm and PhymmBL: metagenomic phyloge-
netic classification with interpolated Markov models. Nat Methods 6:
673–676.

Brady A, Salzberg S. 2011. PhymmBL expanded: confidence scores, custom
databases, parallelization and more. Nat Methods 8: 367.

Burrows M, Wheeler DJ. 1994. A block-sorting lossless data compression algo-
rithm. Technical Report 124. Digital Equipment Corporation, Palo
Alto, CA.

Federhen S. 2015. Type material in the NCBI taxonomy database. Nucleic
Acids Res 43: D1086–D1098.

Ferragina P, Manzini G. 2000. Opportunistic data structures with applica-
tions. In Proceedings of the 41st IEEE symposium on foundations of
computer science, Redondo Beach, CA.

Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L, Jalloh S,
Momoh M, Fullah M, Dudas G, et al. 2014. Genomic surveillance eluci-
dates Ebola virus origin and transmission during the 2014 outbreak.
Science 345: 1369–1372.

Human Microbiome Project Consortium. 2012. A framework for human
microbiome research. Nature 486: 215–221.

Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. 2015. Improved
data analysis for the MinION nanopore sequencer. Nat Methods 12:
351–356.

Keller M, Zengler K. 2004. Tapping into microbial diversity. Nat Rev
Microbiol 2: 141–150.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. 2004. Versatile and open software for comparing large ge-
nomes. Genome Biol 5: R12.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2.
Nat Methods 9: 357–359.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 10: R25.

Lauck M, Bailey AL, Andersen KG, Goldberg TL, Sabeti PC, O’Connor DH.
2015. GB virus C coinfections in West African Ebola patients. J Virol
89: 2425–2429.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25: 1754–1760.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics 26: 589–595.

Lindgreen S, Adair KL, Gardner PP. 2016. An evaluation of the accuracy and
speed of metagenome analysis tools. Sci Rep 6: 19233.

Lu J, Breitwieser FP, Thielen P, Salzberg SL. 2016. Bracken: estimating species
abundance in metagenomics data. bioRxiv doi: 10.1101/051813.

Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G. 2005. MASON: amul-
tiagent simulation environment. Simulation 81: 517–527.

Marcais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 27: 764–770.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods
5: 621–628.

Park DJ, Dudas G, Wohl S, Goba A, Whitmer SL, Andersen KG, Sealfon RS,
Ladner JT, Kugelman JR, Matranga CB, et al. 2015. Ebola virus epidemi-
ology, transmission, and evolution during seven months in Sierra
Leone. Cell 161: 1516–1526.

Patro R, Mount SM, Kingsford C. 2014. Sailfish enables alignment-free iso-
form quantification from RNA-seq reads using lightweight algorithms.
Nat Biotechnol 32: 462–464.

Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva
O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, et al. 2014. RefSeq:
an update on mammalian reference sequences. Nucleic Acids Res 42:
D756–D763.

Rosen G, Garbarine E, Caseiro D, Polikar R, Sokhansanj B. 2008.
Metagenome fragment classification using N-mer frequency profiles.
Adv Bioinformatics 2008: 205969.

Schloss PD, Handelsman J. 2004. Status of the microbial census. Microbiol
Mol Biol Rev 68: 686–691.

Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A, Lucas S, Han C, Pitluck
S, Land ML, Kyrpides NC, et al. 2014. Complete genome sequence of
Anabaena variabilis ATCC 29413. Stand Genomic Sci 9: 562–573.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quanti-
fication by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat Biotechnol 28: 511–515.

Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol 15: R46.

Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for
aligning DNA sequences. J Comput Biol 7: 203–214.

Received May 28, 2016; accepted in revised form October 13, 2016.

Centrifuge: classifier for metagenomic sequences

Genome Research 1729
www.genome.org


