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Abstract

Objective—Reproducibility is the cornerstone of the scientific method. However, currently, many 

systems biology models cannot easily be reproduced. This paper presents methods that address 

this problem.

Methods—We analyzed the recent Mycoplasma genitalium whole-cell (WC) model to determine 

the requirements for reproducible modeling.

Results—We determined that reproducible modeling requires both repeatable model building 

and repeatable simulation.

Conclusion—New standards and simulation software tools are needed to enhance and verify the 

reproducibility of modeling. New standards are needed to explicitly document every data source 

and assumption, and new deterministic parallel simulation tools are needed to quickly simulate 

large, complex models.

Significance—We anticipate that these new standards and software will enable researchers to 

reproducibly build and simulate more complex models, including WC models.

Index Terms

Systems biology; whole-cell; computational modeling; reproducibility; repeatability; standards; 
provenance

I. Introduction

Reproducibility is one of the central tenets of the scientific method. We define 

reproducibility as the ability to confirm a result via a completely independent test, including 
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different investigators, experimental methods, and experimental machinery. In the context of 

systems biology, a simulation result is reproducible if the model which generated the result 

can be recreated from our collective scientific knowledge, including manuscripts, databases, 

code repositories, and supplementary materials, and the simulation result can be regenerated 

from descriptions of the model and the simulation experiment. This rigorous standard 

eliminates conclusions that are based on incorrect methods, machinery, or experiments, and 

ensures that scientific results are only accepted as facts once multiple scientists have 

thoroughly dismissed other potential explanations.

We define repeatability as the ability to regenerate a result given the same experimental 

machinery and conditions. In the context of systems biology, a simulation result is 

repeatable if the numerical result can be regenerated from descriptions of the model and the 

simulation experiment. Repeatability is a more lenient standard than reproducibility because 

it does not require regeneration of the model itself. Consequently, testing repeatability only 

eliminates scientific conclusions that are based on erroneous experiments, and cannot 

eliminate conclusions that are based on faulty models.

To illustrate the distinction between reproducibility and repeatability, consider the following 

example: A modeler Alice wants to investigate a discrepant simulation result published by 

Bob. Bob’s model predicts that knocking out regulator Y causes cancer, whereas Alice’s 

model indicates that cancer requires at least two knockouts. Fortunately, Alice can 

investigate Bob’s results because Bob published his model and simulation experiments in 

standard formats. Alice uses Bob’s model and simulation experiment files to repeat Bob’s 

simulation results, compares the two models, and finds that Bob’s model generates different 

predictions because it uses a different rate law to describe the effect of regulator Y. 

However, because Bob’s model file does not describe all of the experimental data and 

assumptions underlying his model, Alice cannot reproduce Bob’s rate laws and thus cannot 

fully resolve why their models generate different predictions.

The systems biology community, spearheaded by the Computational Modeling in Biology 

Network [1], has developed several standard formats to exchange models and repeat 

simulations [2]. Examples of these standards include CellML [3], the COMBINE archive 

[4], the Systems Biology Markup Language (SBML) [5], the Simulation Experiment 

Description Markup Language (SED-ML) [6], and the Systems Biology Graphical Notation 

(SBGN) [7]. These standards support several types of models including ordinary differential 

equation (ODE), flux balance analysis (FBA) [8], and logical models. Numerous software 

programs support these standards [9]. Furthermore, several model repositories, including 

BioModels [10] and the CellML Model Repository [11], share models that are encoded in 

these standards. In addition, the bioinformatics and computer science communities have 

developed several methods and tools, including Galaxy [12], Taverna [13], and VisTrails 

[14], to track the provenance of computational analyses, including recording all of the data 

sources and assumptions used to conduct analyses.

These standards and modeling software tools help researchers repeat most systems biology 

simulation experiments and reuse, modify, expand, and combine most systems biology 

models. However, these standards and software provide limited support for regenerating 
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models because they do not record all design choices, such as experimental data sources and 

assumptions, that are used to build models,

Furthermore, researchers have begun to develop more complex models which cannot be 

represented by the existing standards or simulated by the existing standards-compliant 

software. For example, several aspects of the recent whole-cell (WC) model of Mycoplasma 
genitalium [15] cannot currently be represented by SBML [16]. In particular, SBML cannot 

represent the multi-algorithmic nature of the model. In addition, no SBML-compatible 

simulation software program supports all of the SBML packages needed to simulate WC 

models, including the Arrays [17], Distributions [18], Flux Balance Constraints [19], 

Hierarchical Model Composition [20], and Multistate and Multicomponent Species [21] 

packages.

Here, we present a path toward fully reproducible systems biology modeling, including WC 

modeling. First, we propose several requirements for reproducible modeling. Second, we 

outline several gaps in the existing standards and software for reproducible modeling and 

describe several new standards and software tools that are needed to achieve reproducible 

modeling. Third, we describe several methods for verifying repeatability. Achieving this 

vision will require significant research on standards and software development.

II. The Requirements for Reproducible Modeling

There are three requirements for fully reproducible systems biology modeling (Fig. 1). (1) 

Researchers should be able to regenerate models, including every species and reaction from 

the literature. Consequently, researchers should record the provenance of every data source 

and assumption used to build models, as well as save a copy of each data source to guarantee 

future access to every source. (2) Researchers should be able to regenerate statistically 

identical simulation results. Consequently, researchers should record every parameter value, 

algorithm, and simulation software option used to simulate models. (3) Researchers should 

ensure that multiple simulation software tools generate statistically identical results. This is 

particularly helpful for identifying errors in complex simulation software programs. This 

requires standard model description formats that support all systems biology models, 

including WC models. This would enable researchers to use different software programs to 

generate the same results.

III. Towards a Platform for Reproducible Modeling

Currently, each individual modeler is responsible for reproducibly conducting their own 

research. This places a substantial burden on individual researchers to make every step of 

their research reproducible. To ease this burden, we recommend that the systems biology 

community develops several software tools, databases, and standards to enable researchers 

to conveniently conduct reproducible research.

(1) More comprehensive experimental databases should be developed to provide the data 

needed to build systems models. For example, Karr et al. developed the WholeCellKB 

database [22] to organize the over 1,400 quantitative measurements used to build the M. 
genitalium WC model. These databases should be machine-readable so that they can be 
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automatically queried and used to build models. These databases should also use data 

models similar to that of systems biology models to clarify the connection between models 

and their underlying data. (2) New model design tools and Systems Biology Ontology 

(SBO) [23] terms are needed to record how models are built, including every design choice, 

assumption, and data source. Currently, researchers can use SBML annotations and SBO 

terms to record several common assumptions, such as the rapid equilibrium between free 

enzymes and enzyme-substrate complexes in Michaelis-Menten kinetics. However, many 

researchers do not utilize these annotations and the SBO does not represent all possible 

assumptions. Thus, researchers should develop model design tools which automatically 

record assumptions and data sources by adopting provenance tracking techniques [12–14]. 

The SBO should also be expanded to represent more assumptions. (3) Where possible, 

researchers should use standard formats such as SBML and SED-ML rather than proprietary 

codes to describe models and simulation experiments. This should include annotation of the 

units of every parameter. (4) The existing standard model description formats should be 

expanded to represent all types of systems biology models, including WC models. For 

example, to describe WC models in a standard format, SBML could be expanded to support 

genomic sequence data and sequence-based reaction patterns or SBML could be linked with 

the Synthetic Biology Open Language (SBOL) [24], which is already capable of 

representing sequence data. (5) The existing standards-compliant simulation software 

programs should be expanded to support a wider variety of models. In particular, simulation 

software programs should be expanded to support the Arrays, Distributions, Flux Balance 

Constraints, Hierarchical Model Composition, and Multistate and Multicomponent Species 

SBML packages. Several simulation software programs, including BioUML [25] and 

iBioSim [26], have already begun to support these packages. Unfortunately, most simulation 

software developers have insufficient funding to implement every package. (6) Modeling 

workflows should be expanded to systematically verify the statistical repeatability of 

simulation results. (7) New model verification tools should be developed to automatically 

identify errors in models. We developed a suite of tests to systematically error-check our M. 
genitalium WC model1. These tests checked for simple problems such as undefined species, 

reaction mass and charge imbalance, and inconsistent reaction rates among submodels. 

Nevertheless, we found this test suite invaluable for debugging our model. These tests 

should be generalized and new software tools should be developed to help researchers 

systematically evaluate such tests. (8) Every model, simulation experiment, simulation 

result, and simulation software program should be reusable, extensible, documented, and 

published open-source [27]. (9) Journals should require and help authors permanently 

archive every reported data source and model.

A. Special Considerations for Stochastic Simulation

Stochastic simulations typically use pseudo-random number generators (PRNGs) which 

deterministically produce the same numbers when seeded with the same initial state. 

Therefore, we recommend that stochastic simulation software developers provide ways to set 

and record PRNG seeds so that modelers can repeat stochastic simulation results. This 

would enable researchers to repeat not only statistical distributions, but exact trajectories, 

which is invaluable for identifying and debugging errors in complex models and simulation 

algorithms.
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Furthermore, different implementations of the same PRNG often differ in subtle ways. For 

example, the seed methods of the Boost C++ Library [28] and Python Standard Library 

implementations of the Mersenne-Twister algorithm differentially initialize the PRNGs’ 

internal states. Thus, we recommend the creation of standard PRNGs, including 

documentation of their algorithms, parameterizations, and initial states, and a test suite to 

help software developers verify their implementations.

B. Special Considerations for Multi-algorithm WC Models

Multi-algorithm WC models strive to represent every gene and cell function by combining 

multiple submodels of individual cellular pathways, each represented using different 

mathematics and each trained using different experimental data [29–31]. For example, the 

M. genitalium WC was composed of 28 submodels, including an FBA submodel which 

describes its metabolism, stochastic submodels which describe its transcription and 

translation, and an ODE submodel which describes its division. This multi-algorithm 

methodology is motivated by the desire to model biological systems as completely as 

possible, given our current knowledge, by simultaneously using fine-grained representations 

and coarse-grained representations to represent well- and poorly-characterized pathways, 

respectively.

Multi-algorithm modeling is a new methodology which still lacks a rigorous theoretical 

foundation. Consequently, significant work is needed to develop tools for building, 

simulating, and reproducing WC models. (1) The Hierarchical Model Composition SBML 

package should be extended to use the KiSAO ontology [32] to represent each submodel’s 

simulation algorithm. (2) Researchers should determine how to concurrently integrate 

submodels that share state. Researchers are currently exploring several potential methods to 

concurrently integrate submodels, including shared memory and parallel discrete event 

simulation [33]. (3) Researchers should develop a high-performance, reusable multi-

algorithm simulator. (4) Additional tools should be developed to help researchers build and 

analyze WC models. (5) These programs should be implemented as separate tools and 

integrated into a comprehensive WC modeling platform so that software developers can 

contribute to individual tools and so that modelers can easily use alternative components. We 

anticipate that this platform will enable more researchers to engage in WC modeling and 

accelerate the WC modeling field.

C. Special Considerations for Parallel Simulation Software Programs

Multi-threaded and distributed computing are two important methods for accelerating the 

simulation of computationally expensive models such as WC models. Parallel programs use 

multiple threads and/or cores to simultaneously execute different parts of a simulation. The 

order in which these threads and/or cores complete computations depends on the operating 

environment, and the order in which computations complete can affect subsequent 

computations and, in turn, simulation results. Other sources of non-determinism in parallel 

computing include memory layout, delays caused by devices and processes, and user input. 

Thus, parallel programs can generate non-deterministic simulation results due to variable 

operating environments.
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For example, if two WC submodels which are executed in parallel attempt to bind proteins 

to the same site on the chromosome, the submodel which completes its computations first 

will bind the protein to the chromosome. However, when the simulation is re-run under a 

different load on the computer, the other submodel may complete its computations first, 

resulting in the binding of a different protein the site. This small difference can lead to 

further differences between later time steps, resulting in different simulation results solely 

due to different operating environments.

Consequently, special care must be taken to create deterministic parallel simulation 

programs. Therefore, we briefly examine methods from computer science which have been 

developed to create deterministic parallel programs.

Several libraries have been developed to eliminate nondeterminism from multi-threaded 

programs. These include COREDET [35] and DTHREADS [36]. COREDET is a library for 

compiling C/C++ programs such that they behave deterministically. DTHREADS is a 

replacement for the standard UNIX Pthreads library. Both systems create deterministic 

programs by preventing information sharing between threads during parallel phases, and 

deterministically allowing sharing during serial phases. These systems also eliminate 

nondeterminism due to variable memory layout. DTHREADS achieves this by 

implementing a special deterministic memory allocator. COREDET deterministically 

allocates memory by compiling memory allocators with the COREDET library to generate 

deterministic memory allocators. COREDET and DTHREADS have both been shown to 

impose minimal overhead [36]. We recommend that simulation software developers 

implement options for deterministic, repeatable simulations, and we offer COREDET and 

DTHREADS as examples of how this can be achieved for multi-threaded simulation 

programs.

Computer scientists have also developed several practices to create deterministic distributed 

programs. (1) Inter-process communication messages should be deterministically executed 

to avoid race conditions [37]. Messages can be deterministically scheduled by using first-in-

first-out message queues between each pair of communicating processes and blocking 

message receive operations [38]. Time-driven simulations can also deterministically 

schedule messages by ordering messages based on their simulation times [39]. Parallel 

shared-memory time step simulations can be made deterministic by synchronizing the end of 

time steps with barriers [40], such as implemented in OpenMP [41], and employing 

deterministic approaches to share time step state updates among threads. (2) Each individual 

process in a distributed simulation program should be deterministic. This can be achieved by 

following the recommendations in this manuscript. We recommend that simulation software 

developers adopt these practices to create deterministic distributed simulation programs.

Lastly, we recognize that it is challenging and time-consuming to implement deterministic 

parallel software. Thus, we recommend that each software developer evaluate the costs and 

benefits of implementing deterministic programs. However, we hope that more developers 

will choose to implement deterministic software, particularly as complex hybrid models, 

which need deterministic simulations for debugging and verification, become more popular.
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IV. Methods for Verifying Repeatability

After adopting the methods outlined above to repeatably simulate models, we recommend 

that systems biology modelers and software developers verify repeatability by testing the 

equivalence of simulation results generated by multiple simulation software programs for the 

same model, and then correcting any discrepancies identified by this analysis. Bergmann and 

Sauro [42] and Evans et al. [43] have used this approach to assess the repeatability of models 

across several simulators, identifying errors in several simulation programs.

Model checking and unit testing are two formalisms that can be used to verify repeatability. 

Simulation-based model checkers, such as SPIN [44], are extensively used in electrical 

engineering to verify the behavior of models. Simulation-based checkers execute multiple 

simulations and then verify that the results are consistent with the user-supplied specification 

of the model’s behavior [45]. Model verification systems should be adopted to verify the 

repeatability of systems biology models. Unit testing is a powerful strategy for verifying the 

behavior of software. Unit testing could also be used to verify the repeatability of systems 

biology models and simulation programs by (1) using multiple simulators to execute 

multiple simulations and (2) verifying that their predictions are statistically identical.

A. Special Considerations for Stochastic Models

The repeatability of stochastic models can be assessed by verifying the statistical 

equivalence of simulation results across multiple simulators. Statistical equivalence should 

be tested using multivariate Kolmogorov-Smirnov tests [46]. Tests which only check the 

predicted mean and variance are insufficient because most model predictions cannot be fully 

specified by their mean and variance. For example, the bistable system illustrated in Fig. 2 

cannot be specified by its mean and variance.

However, it is often challenging to statistically verify the repeatability of complex 

algorithms and models across multiple simulators because large numbers of simulations are 

needed to statistically verify repeatability with high confidence, especially for models with 

rare events [47]. Instead, we recommend that researchers who are developing novel 

simulation algorithms and large scale models (1) utilize the methods described in the 

previous section to simulate models deterministically and (2) verify that each simulation 

software program can exactly regenerate its own numerical results. Although this approach 

does not ensure repeatability across simulators, it does facilitate the debugging of complex 

simulation algorithms.

B. Special Considerations for Hierarchical Models

The repeatability of hierarchical models, such as WC models, can be efficiently verified by 

taking advantage of their hierarchical structure. (1) Modelers should verify the repeatability 

of each submodel. This also facilitates debugging by beginning with small, easily testable 

units. (2) Modelers should verify the repeatability of the combined model.
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C. Special Considerations for Multi-algorithm WC Models

As introduced above, multi-algorithm modeling is a new methodology which still requires 

significant fundamental research. Thus, multi-algorithm simulation algorithms will need to 

be extensively tested to verify their repeatability, as well as to understand their fundamental 

properties.

D. Special Considerations for Chaotic Models

Chaotic systems pose special challenges for repeatability and reproducibility. One criterion 

for judging whether a model is chaotic is the Lyapunov exponent, which measures the 

divergence between two trajectories starting at infinitesimally close initial conditions. A 

positive value indicates that the distance between the trajectories increases exponentially 

with time and implies that the model is chaotic. An extensive analysis of the reproducibility 

of chaotic systems is beyond the scope of this article. However, we suggest three guidelines 

for repeating simulations of chaotic systems. First, Lyapunov exponents should be used to 

gauge whether a model is chaotic. Second, statistical tests of the type discussed in Section 

IV should not be used to evaluate the reproducibility of chaotic models. Third, simulation 

software developers should use high precision to encode initial conditions and parameters so 

that chaotic model simulation results can be repeated.

V. Conclusion

Substantial work is needed to address the numerous challenges to enhancing the 

reproducibility of systems biology modeling, including developing new standards and 

simulation software tools. These standards and software tools should enable researchers to 

regenerate models from our scientific knowledge by recording the provenance of every 

model design decision, assumption, data source, parameter, and software option. These 

software tools should also enable researchers to regenerate simulation results by using 

pseudo-random number generators and deterministic multi-threading libraries. This requires 

expanded standards and software tools which support all systems biology models, including 

WC models. These simulation software tools should also be extensively tested to verify that 

they produce consistent simulation results. In turn, this requires a strong commitment among 

the scientific community to high-quality, open-source software development, including more 

emphasis on the publication of software programs in academic journals.
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Fig. 1. 
Three requirements for reproducible systems biology modeling. (1) The provenance of every 

data source and assumption should be recorded so that models can be regenerated, including 

every species, reaction, and rate law. (2) Every simulation parameter value should be 

recorded so that numerical simulation results can be regenerated. (3) Multiple simulation 

software tools should generate statistically identical numerical results. Reproducibility is a 

stricter standard than repeatability. Models are considered repeatable, but not reproducible, if 

they satisfy just the second and third criteria.
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Fig. 2. 
Mean and variance testing should not be used to verify the repeatability of stochastic models 

because most simulation results cannot be uniquely specified by these statistical metrics. For 

example, the bistable stochastic model described in (a) and illustrated in (b) cannot be 

specified by its mean and variance. Statistical equivalence should be tested using 

multivariate Kolmogorov-Smirnov tests. The bistable stochastic model described in (a) 

includes two reactions. Reaction (1) represents the production of species x and reaction (2) 

represents the degradation of x. Supplementary Material S1 contains Python and Antimony 

[34] code for this example.
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