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Abstract

Monaural speech separation is a fundamental problem in robust speech processing. Recently, deep 

neural network (DNN)-based speech separation methods, which predict either clean speech or an 

ideal time-frequency mask, have demonstrated remarkable performance improvement. However, a 

single DNN with a given window length does not leverage contextual information sufficiently, and 

the differences between the two optimization objectives are not well understood. In this paper, we 

propose a deep ensemble method, named multicontext networks, to address monaural speech 

separation. The first multicontext network averages the outputs of multiple DNNs whose inputs 

employ different window lengths. The second multicontext network is a stack of multiple DNNs. 

Each DNN in a module of the stack takes the concatenation of original acoustic features and 

expansion of the soft output of the lower module as its input, and predicts the ratio mask of the 

target speaker; the DNNs in the same module employ different contexts. We have conducted 

extensive experiments with three speech corpora. The results demonstrate the effectiveness of the 

proposed method. We have also compared the two optimization objectives systematically and 

found that predicting the ideal time-frequency mask is more efficient in utilizing clean training 

speech, while predicting clean speech is less sensitive to SNR variations.
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I. Introduction

Monaural speech separation aims to separate the speech signal of a target speaker from 

background noise or interfering speech from a single-microphone recording. In this paper, 

we focus on the problem of separating a target speaker from an interfering speaker. This 

problem is challenging because the target and interfering speakers have similar spectral 

shapes. A solution is important for a wide range of applications, such as speech 

communication, speech coding, speaker recognition, and speech recognition (e.g. [23], [33]). 

(xiaolei.zhang9@gmail.com; dwang@cse.ohio-state.edu). 

HHS Public Access
Author manuscript
IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2016 
December 01.

Published in final edited form as:
IEEE/ACM Trans Audio Speech Lang Process. 2016 March ; 24(5): 967–977. doi:10.1109/TASLP.
2016.2536478.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is theoretically an ill-posed problem with a single microphone, and to solve this problem, 

various assumptions have to be made. Recently, supervised (data-driven) speech separation 

has received much attention [30]. Based on the definition of the training target, supervised 

separation methods can be categorized to (i) masking-based methods and (ii) mapping-based 
methods.

Masking-based methods learn a mapping function from a mixed signal to a time-frequency 

(T-F) mask, and then use the estimated mask to separate the mixed signal. These methods 

typically predict the ideal binary mask (IBM) or ideal ratio mask (IRM). For the IBM [29], a 

T-F unit is assigned 1, if the signal-to-noise ratio (SNR) within the unit exceeds a local 

criterion, indicating target dominance. Otherwise, it is assigned 0, indicating interference 

dominance. For the IRM [24], a T-F unit is assigned some ratio of target energy and mixture 

energy. Kim et al. [20] used Gaussian mixture models (GMM) to learn the distribution of 

target and interference dominant T-F units and then built a Bayesian classifier to estimate the 

IBM. Jin and Wang [19] employed multilayer perceptron with one hidden layer, to estimate 

the IBM, and their method demonstrates promising results in reverberant conditions. Han 

and Wang [12] used support vector machines (SVM) for mask estimation and produced 

more accurate classification than GMM-based classifiers. May and Dau [22] first used 

GMM to calculate the posterior probabilities of target dominance in T-F units and then 

trained SVM with the new features for IBM estimation. Their method can generalize to a 

wide range of SNR variation.

Recently, motivated by the success of deep neural networks (DNN) with more than one 

hidden layer, Wang and Wang [32] first introduced DNN to perform binary classification for 

speech separation. Their DNN-based method significantly outperforms earlier separation 

methods. Subsequently, Wang et al. [31] examined a number of training targets and 

suggested that the IRM should be preferred over the IBM in terms of speech quality. Huang 

et al. [14], [15] used DNN and recurrent neural network (RNN) to minimize the 

reconstruction loss of the spectra of two premixed speakers by embedding the IRM into the 

loss function (later called signal approximation in [35]). The method demonstrates 

significant performance improvement over standard NMF based methods. Weninger et al. 
[35] took signal approximation (SA) as the optimization objective and introduced long short-

term memory (LSTM) structure into RNN which outperforms DNN and NMF based 

methods. Erdogan et al. [9] and Weninger et al. [34] further extended the SA to a phase-

sensitive case and used LSTM for speech denoising. Williamson et al. [36] proposed 

complex ratio masking for DNN based monaural speech separation, which learns the real 

and imaginary components of complex spectrograms jointly in the Cartesian coordinate 

system instead of learning magnitude spectrograms only in the traditional polar coordinate 

system. The method improves speech quality significantly.

Mapping-based methods learn a regression function from a mixed signal to clean speech 

directly, which differs from masking-based methods in optimization objectives. Xu et al. 
[37]–[38] trained DNN as a regression model to perform speech separation and showed a 

significant improvement over conventional speech enhancement methods. Han et al. [13], 

[11] used DNN to learn a mapping from reverberant and reverberant-noisy speech to 

anechoic speech. Their spectral mapping approach substantially improves SNR and 
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objective speech intelligibility. Du et al. [8] improved the method in [37] with global 

variance equailization, dropout training, and noise-aware training strategies. They 

demonstrated significant improvement over a GMM-based method and good generalization 

to unseen speakers in testing. Tu et al. [27] trained DNN to estimate not only the target 

speech but also the interfering speech. They showed that using dual outputs improves the 

quality of speech separation.

Speech signal is highly structured, and leveraging temporal context is important for 

improving the performance of a speech processing method. Generally, a learning machine 

uses the concatenation of neighboring frames instead of a single frame as its input for 

predicting the output. A good choice of input expansion is to select a fixed contextual 

window that performs the best among several candidate windows. For example, in [14], the 

masking-based method sets the window length to 3; in [8], the mapping-based method sets 

the window length to 7. However, different candidate windows may provide complementary 

information that can further improve the performance.

In addition, ensemble learning, which integrates multiple weak learners to create a stronger 

one, has not been systematically explored for speech separation. Ensemble learning is a 

methodology applicable to various machine learning methods. There are two key elements 

for ensemble learning to succeed: (i) weak learners are at least stronger than random guess, 

and (ii) strong diversity exists among the weak learners [7]. For the former, DNN is a good 

choice; for the latter, there are a number of ways to enlarge the diversity by manipulating 

input features, output targets, training data, and hyperparameters of base learners [7]. We 

should point out that Le Roux et al. [21] proposed to integrate the outputs of multiple base 

learners by majority voting or shallow meta learners, e.g. support vector machines, for 

speech denoising.

Motivated by the above considerations as well as the recent success of the multi-resolution 

cochleagram feature [1] and the relationship between the feature and its components [39], 

we investigate DNN-based speech separation by incorporating DNN into the framework of 

ensemble learning [7] in this paper. We propose the multi-context networks, where the term 

“context” denotes a window of neighboring frames. In addition, we analyze the differences 

between the two optimization objectives, i.e. ideal masking and spectral mapping, 

systematically. The contributions of this paper are summarized as follows:

• Multi-context networks for speech separation. Multi-context networks 

are ensembles of DNNs. Each DNN uses the IRM or SA as the training 

target. The first multi-context network is multi-context averaging (MCA), 

which simply averages the outputs of the DNNs. Each DNN in MCA takes 

the expansion of raw features in a contextual window as its input. The 

DNNs have different windows. The second multi-context network is multi-
context stacking (MCS), which is a stack of DNN ensembles. Each DNN 

in a module of the stack first concatenates original acoustic features and 

the estimated ratio masks from the lower module as a new acoustic 

feature, and then takes the expansion of the new feature in a contextual 

window as its input. The DNNs in the same module have different 
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windows. Multi-context networks improve the accuracy of DNN by 

ensembling and stacking, and enlarge the diversity between the DNNs 

with the multi-context scheme which manipulates the input features of 

DNNs.

• Comparison of masking and mapping for DNN-based speech separation. 

The methods in comparison use the same type of DNN in multi-context 

networks. Our systematic comparison leads to the following conclusions. 

(i) The masking-based approach is more effective in utilizing the clean 

training speech of a target speaker. (ii) The mapping-based method is less 

sensitive to the SNR variation of a training corpus. (iii) Given a training 

corpus with a fixed mixture SNR and plenty of clean training speech from 

the target speaker, the mapping and masking-based methods tend to 

perform equally well.

We have conducted extensive experiments on the corpora of speech separation challenge [3], 

TIMIT [10], and IEEE [17], and found that the proposed methods outperform previous 

mapping- and masking-based methods in all experiments.

This paper is organized as follows. In Section II, we present the multi-context networks. In 

Section III, we analyze the differences between mapping and masking. In Section IV and 

Section V, we present the results. Finally, we conclude in Section VI.

II. Multicontext Networks

In this section, we introduce two multi-context networks, present three optimization 

objectives, introduce the DNN model in the multi-context networks, and discuss related 

work.

A. Multicontext Averaging

MCA averages the outputs of multiple DNNs whose inputs employ different contexts. 

Specifically, in the preprocessing stage of MCA training, given a mixed signal and the 

corresponding clean signals of a target speaker and an interfering speaker, we extract the 

magnitude spectra of their short time Fourier transform (STFT) features, denoted as , 

, and , respectively, where M is the number of frames for the mixed 

signal, and subscript a denotes the target speaker and subscript b the interfering speaker. We 

further calculate the IRM of the target speaker, denoted as , from the STFT 

features (see Section II-C for the definitions of the IRM and SA).

In the training stage, suppose that MCA contains P DNNs (P > 1). The pth DNN learns a 

mapping function IRMm = fp(vm,p) where the input vm,p is an expansion of the raw feature 

ym at a half-window length Wp:

(1)
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Note that if the SA, which is the squared loss between  and its estimation, is used as the 

optimization objective, the pth DNN learns IRMm = fp(vm,p) implicitly, and the output of the 

DNN in the test stage is an estimated ratio mask.

In the test stage of MCA, given a mixed signal of two speakers in the time domain, we first 

extract  by STFT, where ym and θm represent the magnitude vector 

and phase vector of the mth frame respectively. We use the expansions of  as the 

inputs of the DNNs and get the estimated ratio masks, denoted as . We 

average the outputs of the DNNs by:

(2)

Then, we get the estimated magnitude spectra  by . 

Finally, we transform  back to the time-domain signals via the inverse 

STFT, where the operator ⊙ denotes the element-wise product. Note that we use the noisy 

phase to do resynthesis, and the Hamming window in STFT.

B. Multicontext Stacking

MCS is a stack of ensemble learning machines, as shown in Fig. 1. The learning machines in 

a module of the stack have different contextual window lengths; they take the concatenation 

of the output predictions of their lower module and the original acoustic features as their 

input. MCS can be either mapping-based, masking-based, or a combination of mapping and 

masking. In this paper, we instantiate the learning machines by DNN and use the IRM or SA 

as the optimization objective. Compared to MCA, MCS fuses the outputs of the base DNNs 

in a nonlinear way.

The preprocessing stage of MCS training is the same as that of MCA training. In the training 

stage, MCS learns a mapping function IRM = f(y) given a training corpus of mixed signals. 

Suppose MCS trains S modules, and the sth module has Ps learning machines, denoted as 

, each of which has a unique half-window length  (see Eq. (3) below). The 

pth DNN learns the mapping function  where the input  is an 

expansion of the feature  at a half-window length :

(3)
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with  defined as:

(4)

where  are the estimated IRMs of yn produced by the (s − 1)th module 

, and  is an integer. Note that we usually train only one model 

with an empirically optimal window length at the top module, as illustrated in Fig. 1.

In the test stage of MCS, we use the magnitude vectors  as the input of MCS and 

get the estimated ratio masks in each module. After getting the estimated ratio masks 

 from the top module, we first get the estimated magnitude spectra 

by  and then transform  back to the time-

domain signals via the inverse STFT.

C. Optimization Objectives

The general training objective of DNN-based speech separation methods is given as follows:

(5)

where ℓ(·) measures training loss, dm represents the desired output at frame m, and α is the 

parameter set of the speech separation algorithm f(·).

1) Direct Mapping—Mapping-based DNN methods learn a mapping function from the 

spectrum of the mixed signal to the spectrum of the clean speech of the target speaker 

directly, which can be formulated as the following minimum mean squared error problem:

(6)

where ∥ · ∥2 is the squared loss. In the test stage, mapping-based methods transform the 

prediction  back to the time-domain signal by inverse STFT.

2) Ratio Masking—Masking-based DNN methods learn a mapping function from the 

spectrum of the mixed signal to the ideal time-frequency mask of the clean utterance of the 

target speaker:
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(7)

where IRMm is the ideal mask, and the output of fα(ym) is restricted to the range [0, 1]. In 

the test stage, we first apply the estimated mask RMm to the spectrum of the mixed signal 

ym by  and then transform the estimated spectrum  back to the 

time-domain signal by inverse STFT.

The ideal ratio mask in MCS is defined as:

(8)

where  and  denote  and  at frequency k respectively, ϵ is a very small positive 

constant to prevent the denominator from being zero, and K is number of STFT frequency 

bins.

Wang et al. [31] point out that masking as a form of normalization reduces the dynamic 

range of target values, leading to different training efficiency compared to mapping.

3) Signal Approximation—SA-based DNN methods learn a mapping function from the 

spectrum of the mixed signal to the IRM, which is the same as IRM-based methods. 

However, different from common IRM-based methods which evaluate the squared training 

loss between the IRM and the estimated mask, SA-based methods evaluate the squared 

training loss between the spectrum of the target speech and the estimated spectrum, which is 

the same as the direct mapping. The SA is defined formally as follows:

(9)

The output of fα(ym) is restricted to the range [0, 1] and bounded as the IRM.

D. DNN in Multicontext Networks

A DNN model has a number of nonlinear hidden layers plus an output layer. Each layer has 

a number of model neurons (or mapping functions). The model can be described as follows:

(10)

where l = 1,…,L denotes the lth hidden layer from the bottom, hl(·) denotes nonlinear 

activation functions of the lth hidden layer, g(·) activation functions of the output layer, and 

y is the input feature vector. Common activation functions for the hidden layers include the 
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sigmoid function  tanh function, and more recently rectified linear 

function b = max(0, a) where a is the input and b the output of a neuron. Common activation 

functions in the output layer include the linear function b = a, softmax function, and sigmoid 

function. Because the rectified linear function is shown to result in faster training and better 

learning of local patterns, we use it as the activation function for the hidden layers of DNN. 

As the training target is the IRM whose value varies between [0, 1], we use the sigmoid 

function for the output layer.

Traditionally, DNN employs full connections between consecutive layers, which tends to 

overfit data and be sensitive to different hyperparameter settings. Dropout [4], which 

randomly deactivates a percentage of neurons, was proposed recently to alleviate the 

problem. It has been analyzed that dropout provides as a regularization term for DNN 

training. Due to this regularization, we are able to train much larger DNN model. Therefore, 

we use dropout for DNN training.

Although early research in deep learning uses pretraining to prevent poor local minima, 

recent experience shows that, when data sets are large enough, pretraining does not further 

improve the performance of DNN. Therefore, we do not pretrain DNN. In addition, we use 

the adaptive stochastic gradient descent algorithm [5] with a momentum term [25] to 

accelerate gradient descent and to facilitate parallel computing.

E. Related Work

The MCS described above is different from our preliminary work in [40] which used MCS 

for separating speech from non-speech noise, boosted DNN as the base weak learner, the 

ideal binary mask as the optimization objective, and multi-resolution cochleagram [1] as the 

acoustic feature.

The method in [18] fuses multiple DNNs that have different optimization objectives and 

hidden layers. This method is designed for separating speech from nonspeech signals, such 

as random noise and music. Note that our work was developed independently at about the 

same time (see [40]).

The proposed method is also different from deep convex networks [6] and tensor deep 

stacking networks [16]. Although these two methods take the raw feature and the output of 

the lower module as the input to the upper module, each module of these networks is a 

single shallow network, while each module of our method is an ensemble of deep networks 

that emphasizes the importance of contextual information. Moreover, these methods are 

mainly developed for speech recognition.

III. Mapping and Masking

Here, we report two novel differences between mapping- and masking-based methods. 

Mapping-based methods are less sensitive to the SNR variation of training data than 

masking-based methods. Specifically, the optimization objective min 

tends to recover the spectra xa that have large energy and sacrifice those that have small 

Zhang and Wang Page 8

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



energy, so that the overall loss is minimized. Fig. 2 illustrates such an example, where a 

target utterance (Fig. 2a) is mixed with an interfering utterance (Fig. 2b) at multiple SNR 

levels (Figs. 2c, 2e, and 2g). For mapping-based methods, no matter how the SNR changes, 

the reference xa (Fig. 2a) is unchanged, which means that only the energy of y affects the 

optimization. On the contrary, for masking-based methods, the energy of the ideal masks 

IRM (Figs. 2d, 2f, and 2h) becomes small with the decrease of the SNR. One can imagine 

that when the SNR is low, the estimated ratio mask tends to suffer a larger loss than the 

estimated reference  in mapping-based methods. As a result, when the SNR of a training 

corpus varies in a wide range, masking-based methods likely perform worse than mapping-

based methods at low SNR levels.

Masking-based methods can explore the mutual information between target and interfering 

speakers better than mapping-based methods. Specifically, data-driven methods, such as 

DNN, need a large number of different patterns to train a good machine. When a target 

speaker has a limited number of utterances, we usually create a large training corpus by 

mixing each utterance of the target speaker with many utterances of interfering speakers. 

Fig. 3 illustrates such a process where one utterance of a target speaker (Fig. 3a) is mixed 

with two utterances of an interfering speaker (Figs. 3b and 3c), each at 0 dB, which produces 

two spectrograms from the two mixed signals (Figs. 3d and 3e) and two ideal ratio masks 

(Figs. 3f and 3g). In the IRM illustrations of Figs. 3f and 3g, white corresponds to 1 and 

black to 0. Mapping-based methods learn a mapping function from the spectrograms in Figs. 

3d and 3e to the same output pattern in Fig. 3a. On the contrary, masking-based methods 

learn a mapping function that projects the spectrogram in Fig. 3d to the ideal ratio mask in 

Fig. 3f, and the spectrogram in Fig. 3e to the ideal ratio mask in Fig. 3g, respectively. In 

other words, training targets are different depending on interfering utterances (see also [31]). 

Therefore, masking-based methods can potentially utilize the training patterns better than 

mapping-based methods, and hence likely achieve better performance. SA-based methods 

optimize the IRM implicitly, and evaluate the training loss between the spectrograms of the 

clean speech and separated speech [14]–[15]. In a way, SA combines the aforementioned 

merits of the IRM and direct mapping.

IV. Results With Speaker-Pair Dependent Training

In this section, we evaluate multi-context networks and compare the optimization objectives 

of mapping and masking systematically when target and interfering speakers are the same in 

the training and test corpora, i.e. speaker-pair dependent training. We trained hundreds of 

DNN models and reported the average results over the 4 possible gender pairs in all 

experiments, where the first speaker of a gender pair is the target speaker and the other one 

interfering speaker. See Supplementary Material for the detailed results on each gender pair.

As analyzed in Section III, two factors affect the performance of mapping- and masking-

based methods: (i) insufficiency of the clean training utterances and (ii) the variation of SNR 

in the training set. The two factors lead to different training scenarios, analyzed in Sections 

IV-B to IV-E.
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A. Experimental Settings

1) Datasets—We used the speech separation challenge (SSC) [3] dataset as the separation 

corpus. SSC has predefined training and test corpora. The training corpus contains 34 

speakers, each of which has 500 clean utterances. Each mixed signal in the test corpus is 

also produced from a pair of speakers in the training corpus. Because each pair of speakers 

contains at most 2 test mixtures, we did not use the test corpus. Instead, we randomly picked 

2 pairs of speakers for each gender pair from the training corpus, which generated 8 

separation tasks. See Sections IV-B to IV-E for the description of the training sets of the four 

training scenarios. Each task had 7 test SNR levels ranging from {−12, −9, −6, −3, 0, 3, 6} 

dB. The test set at each SNR level contained 50 mixed signals. Each component of a mixed 

signal was a clean utterance from the last 50 utterances of the corresponding speaker.

We resampled all corpora to 8 kHz, and extracted the STFT features with the frame length 

set to 25 ms and the frame shift set to 10 ms.

2) Comparison Methods and Parameter Settings—We compared the DNN-, MCA- 

and MCS-based speech separation methods with direct mapping (Map), IRM, or SA as the 

objective. The comparison methods, which were denoted in the format of model + objective, 

were DNN+Map, DNN+IRM, MCA+IRM, MCS+IRM, DNN+SA, MCA+SA, and MCS

+SA respectively. For all comparison methods, we used DFT to extract acoustic features. For 

the MCA-based method, we trained 3 base DNNs with parameters W1, W2, W3 set to 1, 2, 

and 3 respectively. For the MCS-based method, we trained two modules (i.e. parameter S = 

2). For the bottom module of MCS, we trained 3 DNNs with parameters , , 

set to 1, 2, and 3 respectively. For the top module of MCS, we trained 1 DNN with  set 

to 1.

We searched for the optimal parameter settings of DNN using a development task, and used 

the optimal settings in all evaluation tasks. The development task was constructed from two 

male speakers of SSC. Its training set contained 1000 mixtures, and its test set contained 50 

mixtures, both of which were at −12 dB.

The selected parameter settings are as follows. DNN was optimized by the minimum mean 

square error criterion. Each DNN has 2 hidden layers, each of which consists of 2048 

rectified linear neurons. The output neurons of the DNN for the mapping-based method are 

the linear neurons. The output neurons of the DNNs for the masking-based methods were 

the sigmoid functions. The number of epoches for backpropagation training was set to 50. 

The batch size was set to 128. The scaling factor for the adaptive stochastic gradient descent 

was set to 0.0015, and the learning rate decreased linearly from 0.08 to 0.001. The 

momentum of the first 5 epoches was set to 0.5, and the momentum of other epoches was set 

to 0.9. The dropout rate of the hidden neurons was set to 0.2. The half-window length W 
(defined in Eq. (3)) was set to 3 for the mapping-based method, and set to 1 for the masking-

based methods.

We normalized data before training. For DNN+Map, we first normalized the training data 

 to zero mean and unit standard deviation in each dimension, and then used the same 
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normalization factor to normalize both the training references  and the test data. 

After getting the predictions in the test stage, we converted the predictions back to the 

original scale by the same normalization factor. For the IRM-based methods, we first 

normalized  and then used the same normalization factor to normalize the test data. 

For the SA-based methods, we did not normalize the input and output of the training data 

due to the definition of the SA.

3) Evaluation Metrics—We used the short-time objective intelligibility (STOI) [26] as the 

evaluation metric. STOI evaluates the objective speech intelligibility of time-domain signals. 

It has been shown empirically that STOI scores are well correlated with human speech 

intelligibility scores. The higher the STOI value is, the better the predicted intelligibility is. 

STOI is a standard metric for evaluating speech separation performance [31], [8], [15].

B. Comparison With Single-SNR Training and Sufficient Clean Training Data

This scenario aims to evaluate the comparison methods without the complicating factors of 

SNR variation and insufficient training data. For each test SNR level of a task, we generated 

1000 mixed signals at the same SNR level as the corresponding training set. Each 

component of a mixture in the training set was a clean utterance randomly selected from the 

first 450 utterances of the corresponding speaker.

We conducted a comparison at each SNR level of each separation task, and report the 

average results of the 8 tasks. Table I lists the comparison results. From the table, we 

observe that (i) all methods improve STOI scores over the original mixed signals 

significantly, particularly at low SNR levels; (ii) the proposed methods slightly outperform 

the DNN-based methods; (iii) MCA and MCS perform equally well; (iv) DNN+Map and 

DNN+IRM perform equally well; (v) the SA-based methods outperform the Map- and IRM-

based methods.

C. Comparison With Single-SNR Training and Insufficient Clean Training Data

This scenario aims to evaluate how insufficient clean training utterances affect the 

performance. For each test SNR level of a task, we generated 1000 mixed signals at the same 

SNR level as the training set. Different from Section IV-B, the 1000 mixed signals were 

generated from only 20 clean training utterances, in which 10 clean training utterances were 

randomly selected from the target speaker and the other 10 from the interfering speaker. 

Each mixture in the training set was constructed by first randomly selecting 2 clean 

utterances, each from the 10 utterances of a speaker, then shifting the interfering utterance 

randomly, wrapping the shifted utterance circularly, and finally mixing the two utterances 

together. Note that the random shift operation was used to synthesize a large number of 

mixtures from a small number of clean utterances.

Table II lists the average comparison results of the 8 tasks. From the table, we observe that 

(i) all methods improve the STOI scores at the low SNR levels. (ii) The IRM-based methods 

significantly outperform DNN+Map, except for MCS+IRM which is slightly inferior to 

DNN+Map at −12dB. (iii) The SA-based methods significantly outperform DNN+Map and 

IRM-based methods. (iv) The MCA-based methods outperform DNN-based methods. (v) 
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MCS+IRM is inferior to DNN+IRM. (vi) MCS+SA outperforms DNN+SA and is identical 

to MCA+SA at low SNR levels. The comparison results between DNN, MCA, and MCS 

suggest that, if we do not have sufficient clean training data, we should use MCA to 

aggregate the base DNNs.

Moreover, comparing Table I and Table II, we find that DNN+Map works well with 

sufficient clean training utterances, while the IRM- and SA-based methods work well on 

both corpora, consistent with our analysis in Section III. Not surprisingly, the STOI 

improvements are smaller when the dataset has much fewer clean training utterances for 

each speaker.

Note that, in this paper, we only used a simple pattern augmentation method—random shift 

of interfering utterances— to enlarge the noisy training set. It is worthy further exploring 

other pattern augmentation methods, such as noise rate perturbation, vocal tract length 

perturbation, and frequency perturbation [2].

D. Comparison With Multi-SNR Training and Sufficient Clean Training Data

This scenario aims to evaluate how the variation of training SNR affects the performance. 

We used the experimental settings in Section IV-A1 and made 8 speech separation tasks, 

each of which had 7 test sets. Different from Section IV-B where each task had 7 training 

sets, we had only 1 training set for each task encompassing various SNRs. Each training set 

of SSC contained 10,000 mixed signals. Each training mixture had a random SNR level 

varying between −13 dB and 10 dB with the increment of 1 dB.

For each speech separation task, we tested the model on all 7 test sets at different SNRs. 

Then, we report the average results of the 8 tasks. Table III lists the comparison results on 

the SSC corpus. From the table, we observe that (i) all methods improve the STOI scores 

over the original mixed signals significantly. (ii) The MCS-based methods perform overall 

the best across all SNR levels, while the performance of the MCA-based methods is close to 

that of the MCS-based methods. (iii) DNN+IRM underperforms DNN+Map at low SNR 

levels, while the SA-based methods outperform DNN+Map and the IRM-based methods, 

consistent with our analysis in Section III.

E. Comparison With Multi-SNR Training and Insufficient Clean Training Data

We followed the same construction method of the training sets as in Section IV-D and made 

8 speech separation tasks, each of which had 1 training set and 7 test sets. Each training set 

had 10,000 mixed signals, each of which was generated in the same way and from the same 

20 randomly selected utterances as in Section IV-C and had a random SNR level as in 

Section IV-D. We trained and evaluated the models in the same way as in Section IV-D.

Table IV lists the comparison results. From the table, we observe a similar performance 

profile and that the insufficiency of clean training data has a larger effect on the performance 

than the variation of the training SNR, albeit STOI improvements are lower compared to the 

results with the full SSC corpus.
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Moreover, comparing Table III with Table I, we find that, when a training set is generated 

from a large number of clean utterances (each speaker has 450 clean utterances), enlarging 

the size of the training set from 1000 mixed signals in Table I to 10,000 mixed signals in 

Table III significantly elevates the performance. On the other hand, we find that, when a 

training set is constructed from limited clean utterances (each speaker has only 10 

utterances), enlarging the size of the training set from 1000 mixed signals in Table II to 

10,000 mixed signals in Table IV does not elevate the performance. This can be seen from 

the fact that the results at low SNR levels in Table IV are worse than those in Table II.

V. Results With Target Dependent Training

In this section, we evaluate the generalization ability of the MCA- and MCS-based methods 

when interfering speakers in the test set are different from those in the training set, but the 

target speakers of the training and test corpora are the same. Also, SNR levels of the test 

corpus are different from those of the training corpus.

A. Experimental Settings

1) Datasets—We used the IEEE corpus as the source of target speakers [17] and TIMIT 

[10] as the source of interfering speakers. We call this the IEEE-TIMIT corpus. The IEEE 

corpus has one male speaker and one female speaker. Each speaker utters 720 clean 

utterances. TIMIT contains 630 speakers, each of which has 10 clean utterances. We 

constructed two tasks, each of which took a speaker in the IEEE corpus as the target speaker 

and took the speakers in the TIMIT corpus as the interfering speakers.

Each task had one training set. The training set had 6000 mixed signals with the SNR in dB 

varying in the range of [−13, −11, −10, −8, −7, −5, −4, −2, −1, 1, 2, 4, 5, 7, 8, 9, 10]. The 

utterance of a target speaker in a mixed signal was randomly selected from the first 640 

utterances of the speaker. The utterance of an interfering speaker in a mixed signal was 

randomly selected from the first 8 utterances of the randomly selected 620 speakers (out of 

630 speakers) of TIMIT (4960 utterances in total).

Each task had 7 test sets with the SNR levels ranging at −12, −9, −6, −3, 0, 3, and 6 dB. 

Each test set had 80 mixed signals. The target component of a mixture was a clean utterance 

selected from the last 80 clean utterances of a speaker in the IEEE corpus. The interfering 

utterance of a mixture was selected from the first 8 utterances of the remaining 10 speakers 

of TIMIT which include 6 male and 4 female speakers.

Note that because the SSC corpus does not have sufficient speakers for training target-

dependent models, we used the TIMIT corpus as the source of interfering speakers. Since 

TIMIT utterances have durations close to those of IEEE and are much longer than those of 

SSC, we used the IEEE corpus as the source of target speakers.

2) Comparison Methods—Besides the 7 comparison methods in Section IV, we further 

evaluated the proposed methods with a concatenation of the estimations of both the IRM and 

SA. Specifically, we trained 3 IRM-based DNNs and 3 SA-based DNNs in the bottom 

module of MCA or MCS as in Section IV. For MCA, we averaged the outputs of the 6 
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DNNs; the method was denoted as MCA+IRM+SA. For MCS, we concatenated the outputs 

of the 6 DNNs as part of the input of the upper module, and used the SA as the optimization 

objective of the DNN in the upper module; the method was denoted as MCS+IRM+SA. The 

parameter settings of all DNN models followed those described in Section IV-A2.

3) Evaluation Metrics—Besides STOI, we used the source to distortion ratio (SDR) [28], 

a metric similar to SNR for evaluating the quality of separation.

B. Main Results

Tables V and VI list the comparison results on the IEEE-TIMIT corpus in terms of STOI and 

SDR respectively. From the tables, we observe the following results. (i) All methods 

improve the STOI and SDR scores over the original mixed signals significantly. (ii) The 

MCA- and MCS-based methods out-perform the DNN-based methods at all SNR levels. (iii) 

MCS outperforms MCA at all SNR levels, particularly when the IRM is used as the 

optimization objective. (iv) DNN+IRM outperforms DNN+Map between −6 dB and 6 dB, 

whereas DNN+Map outperforms DNN+IRM at −12 dB and −9 dB. The SA-based methods 

outperform DNN+Map and the IRM-based methods. The relative performance of DNN

+Map and DNN+IRM is consistent with our analysis in Section III. Note also that the 

relative performance profiles are similar in STOI and SDR.

Comparing Table V with Tables I and III, we find that even if the interfering speakers are 

unseen during training, target dependent training can still reach similar performance to that 

of speaker-pair dependent training. This demonstrates the strong generalization of the DNN-

based speech separation methods.

C. MCS Variants

We investigate several MCS variants below. To simplify the discussion, we take the IRM as 

the optimization objective.

1) Effects of Number of Modules of MCS—The reported results so far are produced 

with only two modules of MCS. In this subsection, we investigate MCS with three modules, 

where the parameter setting of the DNN in the top module (i.e. module 3) is the same as that 

in the middle module (i.e. module 2) and the bottom module (i.e. module 1). STOI results 

are presented in Table VII. From the table, we observe that stacking the third module 

improves the performance.

2) Effects of Number of Training Utterances of Target Speaker—We have 

observed that when the clean utterances of the target speaker are limited, the performance 

improvement of all DNN-based methods is limited. In this subsection, we examine how this 

factor affects the separation performance.

We constructed 5 training sets for each target speaker in the same way as described above, 

except for the only difference that the 6,000 mixed signals of each training set were 

generated from 5, 20, 50, 100, and 640 clean utterances of the target speaker. Fig. 4 shows 

the average STOI results on the two separation tasks at various SNR levels. From the 

figures, we observe that (i) the MCS-based method outperforms the DNN-based methods, 
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particularly at the low SNR levels; (ii) when the SNR is lower than −3 dB, DNN+Map and 

DNN+IRM perform about the same; (iii) when the SNR is higher than −3 dB, DNN+IRM 

performs slightly better than DNN+Map; (iv) consistent with our analysis, DNN+IRM 

performs better than DNN+Map with fewer target training utterances; (v) the effects of the 

number of target training utterances weaken with the decrease of the SNR.

3) Effects of Raw Feature in MCS—We investigate the effects of the raw feature in the 

upper modules of MCS by comparing the proposed MCS with an MCS method that does not 

take the raw feature as the input of the upper modules. The hyperparameter settings of the 

two comparison methods were the same. The data set was the same as in Section V-A1. The 

comparison result given in Table VIII shows that taking the raw feature as part of the input 

of the upper modules is important.

4) MCS Versus Best Single DNN—In this subsection, we investigate whether the 

effectiveness of MCS over a single DNN is simply due to more model parameters in MCS. 

The parameter setting of the single DNN was as follows. The number of hidden layers was 

set to 2. The number of units per hidden layer was selected from {512, 1024, 2048, 4096, 

8192}. All other parameters were the same as in Section IV-A2. The parameter setting of 

MCS was as follows. The number of modules was set to 2. As shown in experimental 

results, setting the number of units per hidden layer of the DNNs in the first module to 4096 

is sufficient in terms of performance. So we set the number of hidden units of the three 

DNNs in the bottom module of MCS to 4096 (per layer), while the number of units in each 

hidden layer of the DNN in the top module was selected from {512, 1024, 2048, 4096, 

8192}.

We reduced the training set of IEEE-TIMIT to 1000 mixed signals in this comparison. The 

STOI results are summarized in Fig. 5. From the figure, we observe that the MCS with 512 

hidden units per layer in the top module outperforms the best single DNN (with the half-

window length W = 1) even when its number of units in each hidden layer is 8192, 

particularly at lower input SNRs. Specifically, the DNN model with 8192 units per hidden 

layer has 75,514,112 parameters, while the MCS with 512 units per hidden layer in Module 

2 has 70, 149, 632 parameters (20, 979, 968 + 23, 077, 120 + 25, 174, 272 parameters for 

the three DNNs in Module 1, and 918, 272 parameters for the DNN model in Module 2). 

That is to say, the smallest MCS outperforms the best single large DNN model with more 

parameters. The experimental results indicate that it is the structure of MCS, not simply 

more parameters, that contributes to the performance improvement of MCS over DNN.

Note that the comparison methods do not overfit data, as we can see from Fig. 5 that the 

performance of each comparison method does not drop with respect to the increase of the 

number of parameters.

5) MCS Versus Best Single-Context Stacking—We investigate the effect of the multi-

context scheme by comparing MCS with the best single-context stacking (SCS), which is a 

deep ensemble method that concatenates the raw feature and the output of the best single 

DNN model in the bottom module as the input of the upper module. We used the same data 
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set as in Section V-A1. The comparison result in Table IX shows that the multi-context 

scheme provides some improvements at low SNR levels.

VI. Concluding Remarks

In this paper, we have proposed a deep ensemble learning method—multi-context networks

—for speech separation. The first multi-context network, named multi-context averaging, 

averages the outputs of an ensemble of DNNs that exploits different contextual information 

by using different window lengths. The second one, named multi-context stacking, is a stack 

of DNN ensembles. Each DNN model in a module of the stack takes the concatenation of 

original acoustic features and the estimated masks from its lower module as the input. The 

DNN models in the same module explore different contexts. The key idea for exploring 

different contexts is to enlarge the diversity between the based DNNs.

Moreover, we have compared the two commonly adopted training objectives for DNN-based 

speech separation— masking and mapping—systematically, where the objectives of the 

masking-based methods include the IRM and SA. We have found that (i) masking is more 

effective than mapping in utilizing clean training utterances of a target speaker, and therefore 

masking-based methods are more likely to achieve better performance when a target speaker 

has a limited number of training utterances. (ii) Masking is more sensitive to the SNR 

variation of a training corpus than mapping, and hence, masking-based methods are more 

likely to perform worse at low SNRs in the test stage when the SNR of the training corpus 

varies in a wide range. (iii) Signal approximation appears to combine the benefits of both 

masking and mapping.

To evaluate the proposed multi-context networks and the differences between mapping and 

masking, we trained the DNN-, MCA-, and MCS-based methods with the three optimization 

objectives. After testing hundreds of models with speaker-pair dependent training or target 

dependent training, we have observed that the multi-context networks outperform the DNN-

based methods uniformly, which implies that exploiting deep ensemble learning methods is 

a simple and effective way for further improving the performance of DNN-based methods. 

We have also observed that the relative performances between the mapping- and masking-

based methods are consistent with our analysis.
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Fig. 1. 
Diagram of multi-context stacking. The symbols in the figure are defined in Section II. 

Trapezoid modules represent contextual windows or DNNs. Rectangle modules represent 

features.
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Fig. 2. 
Comparison of mapping and masking when the SNR of the mixed signal varies in a wide 

range. (a) The spectrogram of an utterance of a target speaker. (b) The spectrogram of an 

utterance of an interfering speaker. (c) The spectrogram of the mixed signal with SNR = −12 

dB. (d) The IRM of the target speaker with SNR = −12 dB. (e) The spectrogram of the 

mixed signal with SNR = 0 dB. (f) The IRM of the target speaker with SNR = 0 dB. (g) The 

spectrogram of the mixed signal with SNR = 6 dB. (h) The IRM of the target speaker with 

SNR = 6 dB.
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Fig. 3. 
Comparison of mapping and masking when the number of the utterances of the target 

speaker is limited. (a) The spectrogram of the utterance of the target speaker. (b) The 

spectrogram of the first utterance of the interfering speaker. (c) The spectrogram of the 

second utterance of the interfering speaker. (d) The spectrogram of the mixed signal 

produced from the target utterance (i.e. Fig. 3a) and the first interfering utterance (i.e. Fig. 

3b). (e) The spectrogram of the mixed signal produced from the target utterance and the 

second interfering utterance (i.e. Fig. 3c). (f) The IRM of the target utterance given the first 

interfering utterance. (g) The IRM of the target utterance given the second interfering 

utterance.
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Fig. 4. 
STOI comparison of DNN+Map, DNN+IRM, and MCS+IRM with respect to the number of 

the utterances of the target speaker in training.
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Fig. 5. 
STOI comparison of DNN-, and MCS-based methods with respect to the number of units 

per hidden layer of DNN.
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TABLE I

STOI (IN PERCENT) COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH SINGLE-SNR SPEAKER-PAIR 

DEPENDENT TRAINING ON SSC CORPUS. THE RESULTS ARE AVERAGED OVER 8 SPEAKER PAIRS

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy 46.4 52.2 58.8 65.8 72.7 79.2 84.8

DNN+Map 71.4 76.7 81.0 84.9 88.3 91.2 93.5

DNN+IRM 72.1 76.5 80.5 84.5 87.8 90.9 93.2

MCA+IRM 73.9 78.3 82.2 86.0 89.1 91.7 93.9

MCS+IRM 73.7 78.5 82.4 86.3 89.4 92.1 94.2

DNN+SA 76.9 81.0 84.7 88.0 90.8 93.3 95.3

MCA+SA 77.8 82.2 85.8 88.9 91.6 93.8 95.6

MCS+SA 78.4 82.2 86.1 88.9 91.8 93.9 95.7

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2016 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Wang Page 26

TABLE II

STOI COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH SINGLE-SNR SPEAKER-PAIR DEPENDENT TRAINING 

ON SSC CORPUS WITH INSUFFICIENT CLEAN TRAINING DATA

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy 46.4 52.2 58.8 65.8 72.7 79.2 84.8

DNN+Map 57.1 62.4 67.8 72.6 76.7 80.3 83.1

DNN+IRM 58.8 65.1 71.1 76.8 81.1 84.4 86.9

MCA+IRM 58.7 65.2 71.5 77.2 81.7 84.9 87.2

MCS+IRM 56.8 63.5 70.2 76.1 80.6 83.0 84.4

DNN+SA 66.0 71.6 77.0 81.4 85.2 88.2 90.5

MCA+SA 66.7 72.3 77.7 82.1 85.7 88.5 90.6

MCS+SA 66.7 72.3 77.7 82.0 85.4 88.1 90.1
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TABLE III

STOI COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH MULTI-SNR SPEAKER-PAIR DEPENDENT TRAINING 

ON SSC CORPUS

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy 46.4 52.2 58.8 65.8 72.7 79.2 84.8

DNN+Map 74.9 80.4 84.6 87.8 90.3 92.3 93.7

DNN+IRM 72.0 77.8 82.7 86.6 89.7 92.1 94.0

MCA+IRM 74.2 79.7 84.3 87.9 90.8 93.0 94.6

MCS+IRM 75.1 81.0 85.6 89.1 91.8 93.7 95.1

DNN+SA 78.9 83.5 86.9 89.6 91.8 93.6 95.0

MCA+SA 80.8 84.9 88.1 90.6 92.5 94.2 95.5

MCS+SA 81.4 85.7 88.9 91.2 93.1 94.6 95.9
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TABLE IV

STOI COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH MULTI-SNR SPEAKER-PAIR DEPENDENT TRAINING 

ON SSC CORPUS WITH INSUFFICIENT CLEAN TRAINING DATA

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy 46.4 52.2 58.8 65.8 72.7 79.2 84.8

DNN+Map 56.0 62.6 68.4 73.1 76.6 79.1 80.8

DNN+IRM 57.0 64.4 71.3 77.2 81.9 85.2 87.5

MCA+IRM 57.6 65.1 72.0 77.9 82.5 85.7 87.8

MCS+IRM 56.7 64.6 71.7 77.6 82.0 84.9 86.7

DNN+SA 63.9 70.8 76.7 81.5 85.3 88.1 90.1

MCA+SA 65.5 72.1 77.8 82.4 85.9 88.4 90.2

MCS+SA 65.8 72.3 77.8 82.2 85.5 87.9 89.6
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TABLE V

STOI COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH TARGET DEPENDENT TRAINING ON IEEE-TIMIT 

CORPUS

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy 48.9 54.9 61.4 68.0 74.5 80.4 85.5

DNN+Map 72.6 77.0 80.9 84.5 87.7 90.4 92.5

DNN+IRM 71.2 76.6 81.2 85.2 88.6 91.5 93.7

MCA+IRM 73.4 78.3 82.6 86.3 89.6 92.2 94.2

MCS+IRM 75.1 80.2 84.4 87.9 90.8 93.1 94.8

DNN+SA 75.0 79.4 83.0 86.3 89.1 91.5 93.5

MCA+SA 76.5 80.8 84.3 87.4 90.0 92.3 94.0

MCS+SA 76.9 81.4 85.1 88.1 90.7 92.9 94.6

MCA+IRM+SA 76.9 81.1 84.7 87.8 90.6 92.9 94.6

MCS+IRM+SA 77.4 81.9 85.5 88.5 91.1 93.3 95.0
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TABLE VI

SDR COMPARISON BETWEEN SPEECH SEPARATION METHODS WITH TARGET DEPENDENT TRAINING ON IEEE-TIMIT 

CORPUS

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Noisy −10.86 −8.32 −5.59 −2.74 0.18 3.14 6.12

DNN+Map 2.61 4.09 5.49 6.97 8.61 10.32 12.05

DNN+IRM 2.48 4.21 5.89 7.61 9.45 11.32 13.16

MCA+IRM 2.92 4.61 6.27 7.97 9.77 11.61 13.41

MCS+IRM 3.71 5.53 7.24 8.92 10.67 12.44 14.12

DNN+SA 4.20 5.47 6.98 8.47 10.14 11.92 13.71

MCA+SA 4.54 5.80 7.33 8.84 10.49 12.24 14.01

MCS+SA 4.75 6.09 7.49 9.05 10.74 12.53 14.32

MCA+IRM+SA 4.31 5.71 7.16 8.73 10.43 12.21 13.98

MCS+IRM+SA 4.79 6.13 7.54 9.10 10.80 12.61 14.43
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TABLE VII

STOI COMPARISON BETWEEN DIFFERENT MODULES IN MCS

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

Module 1 71.2 76.6 81.2 85.2 88.6 91.5 93.7

Module 2 75.1 80.2 84.4 87.9 90.8 93.1 94.8

Module 3 75.9 80.8 84.8 88.1 91.0 93.2 95.0
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TABLE VIII

STOI COMPARISON BETWEEN THE PROPOSED MCS WITH AND THE MCS WITHOUT THE RAW FEATURE AS THE INPUTS 

OF UPPER MODULES

−12 dB −9 dB −6 dB −3 dB O dB 3 dB 6 dB

MCS without raw feature 73.1 78.4 82.8 86.6 89.9 92.5 94.5

MCS with raw feature 75.1 80.2 84.4 87.9 90.8 93.1 94.8
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TABLE IX

STOI COMPARISON (IN PERCENT) BETWEEN MCS AND SCS

−12 dB −9 dB −6 dB −3 dB 0 dB 3 dB 6 dB

SCS 74.5 79.6 83.8 87.5 90.5 93.0 94.8

MCS 75.1 80.2 84.4 87.9 90.8 93.1 94.8
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