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The significant gap between quantitative and qualitative
understanding of cytoskeletal function is a pressing prob-
lem; microscopy and labeling techniques have improved
qualitative investigations of localized cytoskeleton behav-
ior, whereas quantitative analyses of whole cell cytoskele-
ton networks remain challenging. Here we present a
method that accurately quantifies cytoskeleton dynamics.
Our approach digitally subdivides cytoskeleton images
using interrogation windows, within which box-counting
is used to infer a fractal dimension (Df ) to characterize spa-
tial arrangement, and gray value intensity (GVI) to deter-
mine actin density. A partitioning algorithm further
obtains cytoskeleton characteristics from the perinuclear,
cytosolic, and periphery cellular regions. We validated our
measurement approach on Cytochalasin-treated cells using
transgenically modified dermal fibroblast cells expressing
fluorescent actin cytoskeletons. This method differentiates
between normal and chemically disrupted actin networks,
and quantifies rates of cytoskeletal degradation. Further-
more, GVI distributions were found to be inversely pro-
portional to Df, having several biophysical implications
for cytoskeleton formation/degradation. We additionally
demonstrated detection sensitivity of differences in Df and
GVI for cells seeded on substrates with varying degrees of
stiffness, and coated with different attachment proteins.
This general approach can be further implemented to gain
insights on dynamic growth, disruption, and structure of

the cytoskeleton (and other complex biological morphol-
ogy) due to biological, chemical, or physical stimuli. VC 2016
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Introduction

The cytoskeleton is the supporting structure which inte-
grates outward nucleus intracellular signaling and the

inward transmission of extracellular mechanobiological cues
from the cell’s immediate microenvironment [Campbell and
Hope, 2003; Huang et al., 2004; Mofrad, 2009; Fletcher
and Mullins, 2010; Stricker et al., 2010; Anitei and Hoflack,
2011]. Temporally, the cell’s cytoskeleton evolves as a func-
tion of many processes, at differing spatial and temporal
scales, all of which define the physiological state of the cell.
For example, mechanisms of mitosis, cellular proliferation,
shape change, motility, and responsiveness to the extracellu-
lar environment are all cytoskeleton dependent processes
[Pollard and Cooper, 2009; Bezanilla et al., 2015]. Tradi-
tionally, cytoskeletal analysis utilizes end-point fixation and
staining of cells, with the advancement of live-imaging
microscopy technology [McKayed and Simpson, 2013;
Waters, 2013] combined with molecular chemistry [Riedl
et al., 2008; Wang et al., 2008]. Real time studies of cytos-
keletal dynamics and subsequent cellular physiology, have
gained momentum throughout the last decade. The use of
live-imaging technology plays a fundamental role in further-
ing our understanding of the cytoskeleton, yielding large
amounts of data; however, the lack of analytical tools for fur-
ther quantifying temporal changes remains a bottleneck.

Previous studies of time-dependent cytoskeleton changes were
confined to specific subcellular space with studies spanning from
the peripheral actin-rich lamellipodium for cell–cell connection
formation [Jamora and Fuchs, 2002; Mège et al., 2006; Baum
and Georgiou, 2011; Hoelzle and Svitkina, 2012] and migration
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of various cell types [Yamaguchi and Condeelis, 2007; Bergert
et al., 2012; Suraneni et al., 2012] to the perinuclear region, and
its involvement in intracellular [Campbell and Hope, 2003;
Tian et al., 2010] and extracellular signal transduction [Huang
et al., 2004; Li et al., 2014]. At the subcellular scale, intensity
values, orientation, structural count, density changes, and
actin length changes are a subset of the dynamic parameters
used to quantify cytoskeleton changes [Muralidhar et al.,
2008]. The field of cell biology lacks computational tools that
enable the study of intricate patterns and whole-cell kinematic
rearrangement of the cytoskeleton itself. Studies which utilize
image-based methods for the quantification of whole-cell
cytoskeletal arrangement do exist: (1) Image coherency meas-
ures both the quality and quantity of clear structures within
an image [Weichsel et al., 2010]; while it has been shown to
be successful in detecting the global change in the actin net-
work, the exact location where the changes occur within the
cell cannot be determined. (2) Quantification of image inten-
sity gradients can provide a co-alignment ratio and angular
deviation to assess cell orientation distribution as well as
cytoskeletal filament organization [Karlon et al., 1999].

We use fractal analysis to quantify cytoskeletal changes tem-
porally, as it is capable of describing complex and irregular pat-
terns [Haidekker, 2013]. This method measures a fractal
dimension (Df ), a real number that represents pattern com-
plexity, and inner self-similarity as calculated on different spa-
tial scales [Napolitano et al., 2012; Qian et al., 2012; Al-
Mamun et al., 2014]. Biomedically, Df has also been used as a
numerical measure of retinal vascular branching [Liew et al.,
2008; Cheung et al., 2014], neuronal branching and extension
[Milo�sević et al., 2007; Shigetomi et al., 2013] and mammary

epithelial ducting networks [Fuseler et al., 2014]. Other inves-
tigators have also used it to measure cytoskeleton disruptions
resulting from drug treatments [Lockett et al., 2014] or exter-
nal forces[Qian et al., 2012],but is fractal analysis sufficiently
sensitive to detect subtle physiological changes? Another
approach for cytoskeletal analyses, the coherence method, was
unable to differentiate the cytoskeletal arrangement in control
cells and cells infected with a virus, but showed significant
changes only when cells were treated with anti-cytoskeletal
drugs such as Cytochalasin [Weichsel et al., 2010].

Unlike previous work using Df as a measurement of cyto-
skeleton complexity [Lockett et al., 2014], our study is not
limited to differentiating cytoskeletal arrangements of cells
exposed to agents capable of major cytoskeletal disruption.
Rather, this study focuses on transgenically-modified
human dermal fibroblasts (HDF, LifeAct.mCherry) cul-
tured on (1) polyacrylamide (PA) gels of different stiffness
and (2) PA gels coated with Collagen I (Col) or Fibronectin
(Fn) to confirm that fractal analysis is sensitive enough to
detect minor differences that are more physiologically rele-
vant. We establish a fully automated method that accurately
quantifies the characteristics of the dynamic cytoskeleton
from temporal live-imaging datasets, and is capable of par-
titioning the cell into perinuclear, cytosolic, and peripheral
regions, to extract subcellular space information. The
method was validated and proven to be sensitive, while
robust enough to accommodate noisy images.

Reagents and Instruments

Reagents/Instrument Abbreviation Company
Cat. or Product

number

Axiovert 200, Z1, with motorized stage ZEISS Microscopy, GmbH, Germany 3834004900

Cytochalasin D CytoD TOCRIS Bioscience,
Bristol, United Kingdom

1233

Dulbecco’s Modified Eagle Medium,
high glucose

DMEM HG Gibco, Invitrogen Corp.,
Carlsbad, CA

41965-039

Dulbecco’s Phosphate Buffered Saline 103 PBS Sigma Aldrich D1283

Fetal Bovine Serum FBS Gibco 12483-020

Homo sapiens Embryonic Kidney HEK293T ATCC, Manassas, VA ATCCVR CRL-3216TM

Human Collagen Type I Col Advanced Biomatrix,
San Diego, CA

5007

Human Fibronectin Fn Advanced Biomatrix 5080

Human histone H2B H2B-GFP Addgene, Cambridge, MA 11680

Leibovitz’s L-15 Media L-15 Gibco 11415-049

L-Glutamine L-glut Gibco 25030-081

Mcherry-Lifeact-7 Mcherry-Lifeact Addgene 54491

Normal Human Dermal Fibroblast HDF ATCC PCS-201-010

Penicillin Streptomycin PenStrep Gibco 15070063

Trypsin 0.05% Trypsin Gibco 25300-096

Type I bovine collagen Collagen Type I Advanced Biomatrix 5133-A

Softwell hydrogel plates Matrigen Life Technologies, CA 96GHTS
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Methods

Cell Culture

Normal human dermal fibroblasts (HDF, ATCC), were cul-
tured in DMEM high glucose, supplemented with 10%
FBS, 2% L-glutamine and 1% PenStrep (All Gibco) under
standard tissue culture conditions. Cells were detached at
80% confluence using 0.05% Trypsin (Gibco). Two days
prior to imaging, the media for cell culture was changed to
L-15 media (Gibco), supplemented with 1% PenStrep
(Gibco) and 2% L-glutamine (Gibco) and incubated in low
CO2 conditions. Cells were imaged using L-15 media to
minimize the effects of fluctuating pH levels.

Transfection for Cytoskeleton Visualization

Cells were stably transfected using second-generation lenti-
viral particles. Briefly, LifeAct.mCherry (Addgene) and
H2B.GFP (Addgene) were cloned in separate lentiviral
expression systems and the viral particles were produced in
HEK293T (ATCC) cells using standard protocols (Didier
Trono lab, http://tronolab.epfl.ch/). LifeAct was chosen at
it has been well characterized and does not alter actin poly-
merization and depolymerization dynamics [Riedl et al.,
2008]. Following concentration of the viral particles, we
utilized 5 lL of concentrated supernatant to transfect
100,000 HDF plated in a well of a six-well plate. Cells ini-
tiated expression within 2 days following transfection and
continued expressing the transgenes.

Adhering Cells to Biomimetic Substrates

Glass bottom multiwell plates (Matrigen) overlaid with
polyacrylamide (PA) gels of varying stiffnesses (12.5, 25,
and 50 kPa) and glass substrate itself were coated with cell
attachment proteins (Advanced biomatrix) human Collagen
Type I (Col, 100 lg/mL) or Fibronectin (Fn, 100 lg/mL)
and allowed to incubate at 48C overnight. To facilitate the
capture of single cells, a density of 75 cells per well was
placed into each of the multiwells. Prior to seeding, plates
were washed twice with 13 PBS. Cells were allowed to
recover overnight before imaging experiments.

Time-Lapse Live-Imaging Dataset Acquisition

An Axiovert 200 inverted fluorescence microscope with a
motorized translation stage (Zeiss Microscopy GmbH) fit-
ted with an enclosed incubation system (Incubation System
S, PeCon GmbH) to maintain physiological ambient (tem-
perature: 378C and CO2: 5%) conditions was used to
acquire time-lapse fluorescence images of both the cytoskel-
eton and nucleus using a 403 objective to optimize the
resolution and capture the whole cell. The resultant image
resolution was 0.48 lm per pixel. Cells were imaged every
10 min for> 21 h (minimum stack size of 125 images) and
a beam splitter was used to simultaneously acquire separate
images of the nucleus (GFP: Exposure: 30 ms, excitation:

493 nm, emission: 517 nm) and the cytoskeleton
(mCherry: Exposure: 350 ms, excitation: 580 nm, emis-
sion: 618 nm). In total we obtained n> 6 cells (each with-
> 130 temporal time points or dataset stack size) per
condition. To observe the Cytochalasin D (1 lM, CytoD)
disruption of the cytoskeleton during live-imaging acquisi-
tion, imaging intervals were reduced to 2 min and the num-
ber of cells imaged was, therefore, limited (n 5 14). CytoD
was added to each well 30 min after the start of the
experiment.

Automated Actin Cytoskeleton Pattern and
Expression Analyses

Using MATLAB with Image Processing Toolbox (The
MathWorks, Natick, MA), we customized the program to
automatically parse through paired nuclei and cytoskeleton
images, which are then subjected to a series of image proc-
essing steps, including image conversion to grayscale, con-
trast equalization, thresholding for binarization, and filling
of voids to generate a mask (Fig. 1A). By selecting the larg-
est binarized area, we eliminate portions of neighboring
cells that stray into the image (see Supporting Information
SVideo 1) to restrict the analyses to a single cell (see Sup-
porting Information SVideo 2). Next, the program identi-
fies two sets of coordinate points that encompass the mask
of the entire cell and the nucleus. The located boundaries
are then redefined through an outward offset by a predeter-
mined distance (P). We predefined P as 5 pixels as this pro-
vides us coverage of 2.4 lm from the cell edges; typically,
investigators interested in the peripheral actin cytoskeleton
image approximately 1–5 lm from the edge of the cell
[Belin et al., 2015; Johnson et al., 2015]. We further estab-
lish that varying P from 3 to 10 did not significantly change
the resultant Df significantly (Supporting Information SFig.
1). To clean and smooth the measured regions, repeated
pixels within the new boundaries are removed, and a binary
mask is generated to extract subcellular regions of interest,
namely, the perinuclear, cytosolic, and peripheral regions
(Fig. 1C). Concurrently, the contrast adjusted image of the
cytoskeleton goes through a “Canny” edge detection process
(through MATLAB edge function with default parameters)
which uses a multi-stage algorithm to detect a wide range
of edges in the images [Canny, 1986], resulting in a binar-
ized image with a mix of white fragments and lines of vary-
ing lengths, bifurcations and loops: the actin cytoskeleton.
The image is subsequently divided into sub-regions using
squares of user defined pixel lengths we term as interroga-
tion windows (Fig. 1B). These interrogation windows do
not overlap and within each window the cytoskeleton
arrangement is assigned a fractal dimension (Df ) and the
mean of the original gray value. For each pair of nuclei and
cytoskeleton images, the final program outputs are two-
dimensional (2D) arrays of Df values and corresponding
mean gray value intensities (GVI), giving temporal
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information regarding the pattern of the cytoskeleton and
the amount of actin (Fig. 1C, see Supporting Information
SVideos 1–8). Employing 2D interpolation to redefine the

2D Df array back into the original image resolution, the
binary masks obtained can then be used to assess the Df

and GVI information for each of the subcellular regions of

Fig. 1. Automated partitioning and analysis of whole cell images for sub cellular quantification of cytoskeleton structure. A
custom algorithm automatically partitions cytoskeletal images into the relevant biological regions (perinuclear, cytosolic, and periph-
eral actin cytoskeleton), from which a mask is generated and data extracted can be specific to these regions. (A) Initially, images of
the nuclei and cytoskeleton are imported for processing, which includes a series of segmentation procedures to outline the shape of
the cell and nucleus. (B) Each cytoskeleton image is then scanned using non-overlapping interrogation windows, within each, fractal
analysis is performed through a box counting method, quantifying the actin arrangement as defined by an edge detection filter. The
regional mask is then used to differentiate perinuclear, cytosolic, and peripheral actin quantity and actin arrangement information
from the raw cytoskeleton image and resultant 2D array of fractal dimension values, respectively. (C) A user-defined set distance is
then used to redefine these boundaries, and pixels between the new and original boundaries form the masks required. This is repeated
for each paired nuclei cytoskeleton image for the entire live imaging dataset. MATLAB commands used for the entire process are
noted under the title of each step and custom codes are further denoted with a “.m”. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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interest. This described algorithm was computationally
placed in a loop for automated image processing; sub cellu-
lar region segmentation and analysis of each set of time-
lapse datasets result in fast, efficient and temporally depend-
ent cytoskeleton quantification. To measure Df for the
cytoskeletal arrangement in each interrogation window, the
procedure is as follows [Costa et al., 2011][Costa et al.,
2011]: (step 1) The window is padded with zeros such that
dimensions are equal and of power 2 (Supporting Informa-
tion SFig. 2); (step 2) Starting with the largest allowable
sized box (square of side length r), a padded interrogation
window is chosen; Then (step 3) n(r) is computed, which
corresponds to the number of boxes (of size r) containing at
least one non-zero pixel; (step 4) If n> 1 then a new r is
calculated and rnew 5 rold/2, and the process (steps 3–4) is
repeated until no non-zero pixel is detected; Finally (step
5), least squares fitting of a line (with slope Df ) to the
points log (n(r)) versus log (r) returns a single fractal
dimension to each sub-scanned region (Fig. 2). Windows
with no features are assigned NaN values, and not included
in further analyses. At the edges of the cytoskeleton, where
fragments and excessive empty spaces dominate, we did not
set quality criteria for an acceptable fit. Even a small value
(i.e., 0.1<R2< 0.5) indicates partial box covering of pres-
ent cytoskeletal objects.

Statistical Analysis

Data presented are in the form: mean 6 standard deviation.
The significance cutoff used for all statistical analyses was
alpha< 0.05. Comparison between two conditions was
analyzed using Mann-Whitney T-test and multiple compar-
isons were analyzed using Kruskal-Wallis one-way ANOVA
with Dunn’s multiple comparison post-hoc test (GraphPad

Prism, San Diego, CA). Kernel distribution fitting was
done in MATLAB with Machine Learning and Statistics
Toolbox using the fitdist function with the default parame-
ters, a “normal” kernel smoother type.

Results

Selection of Interrogation Window Size Using
Sensitivity Analysis

From the acquired time-lapse datasets, we randomly
selected actin cytoskeleton images that were clearly defined
(n 5 22) to facilitate the selection of an appropriate inter-
rogation window size. These images were first partitioned
using square interrogation windows of edge lengths (or
sizes) of 5, 10, 20, 40, and 80 pixels, and the mean Df val-
ues of the resultant 2D array were obtained and compared.
It is observed that mean Df for each of the images increased
with interrogation window size and plateaued at 40 pixels
(Supporting Information SFig. 3), indicating that too large
of a window size results in overaveraging of the fractal
dimension within. Fractal analysis was then performed on
the same images but as a whole, without partitioning with
interrogation windows. On average, the Df obtained was
1.45, lying in between the Df values of a single line (Df 5 1)
and a filled 2D space (Df 5 2). The gradients between box
sizes of 4 to 8, 8 to 16, and 16 to 32 pixels are fairly con-
sistent and lie close to the linear least square fitted line that
determined the Df value (Supporting Information SFig. 4),
implying that interrogation windows of 5, 10, or 20 pixels
could be used. Thus an interrogation window size of 10
pixels is used, a size large enough to provide three levels of
refinement during the box counting process, and small

Fig. 2. Example of 2D array of Df values from interrogation windows. After edge detection, binarized images that depict the
arrangement of the cytoskeleton are partitioned using fixed interrogation window sizes that do not overlap. Subsequently a box count-
ing method is used to obtain Df values for each window and the resultant output is a 2D array of Df. Shown here are some of the
Df values obtained for randomly chosen interrogation windows that partitioned an image of the cytoskeleton of a cell and their corre-
sponding least squares linear fits. Empty spaces are assigned a NaN value and not taken into consideration for further analyses.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 3. Mean Df is significantly affected by poor resolution but not by noisy images. Using 22 acquired cytoskeleton images of
different cells as our baseline (0% noise and resolution of 0.48 lm/pixel), we artificially (A) introduced varying amounts of Gaussian
white noise (10%, 20%, and 40% where % is the standard deviation of the noise) and (B) differences in measured Df increased
above 5% only when added noise was larger than 30%. We also (C) deteriorated image resolution through resampling of the images
(by factors of 2, 4, 8, 16) and conclude that (D) poor image resolution is highly detrimental; a coarsen image resolution of 1.93
lm/pixel resulted in a 10.52% change in measured Df values. (E) Image noise has a lesser effect on Df than resolution. With respect
to baseline images, (B) image quality measures of mean squared error (MSE)< 10.67, structural similarity index (SSIM)> 0.29, and
peak signal to noise ratio (PSNR)>210 cannot be tolerated as Df measurements deviate by more than 5%.

Fig. 4. Dynamic detection of change in cytoskeletal rearrangement due to Cytochalasin D. We acquired and analyzed 14 cells
subjected to a treatment of 1 lM Cytochalasin D, a drug that blocks actin assembly and disassembly. Cells were imaged for 30 min
and then Cytochalasin D was added. (A) Immediately, measured Df significantly declined (p< 0.001), indicating not only a change
in cytoskeletal arrangement but a reduction in lengthy actin filaments. (B) Raw images and corresponding Df values from two repre-
sentative cells are shown before drug administration (top row) and after drug administration (bottom row), when there is visible dis-
ruption of the actin cytoskeleton. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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enough to provide sufficient resolution to the resultant Df

array (Supporting Information SFig. 4).

Fractal Analysis of the Cytoskeleton Is Robust
for Image Noise but Not Resolution

We artificially introduced Gaussian white noise (10, 20,
30, 40%, representing the standard deviation of the
Gaussian distribution) of increasing severity (Fig. 3A)
to images of the cytoskeleton (n 5 22), an experimen-
tally common phenomenon when fluorescence probes

are used during live-imaging. Resultant mean Df was
only significantly different with the addition of 40%
noise (> 5% difference, Fig. 3E) and we measured the
relative difference in image quality, using mean squared
error (MSE), structural similarity index measurement
(SSIM), and peak signal to noise ratio (PSNR), to give
an appreciation of the change in image quality. (Fig.
3B). We also deteriorated the image through resampling
by factors of 2, 4, 8, and 16 (Fig. 3C). Fractal analysis
was then performed and the mean Df values compared
against the original base images. A resolution poorer

Fig. 5. Distribution of measured actin cytoskeleton complexity (fractal dimension, Df ) and actin amounts (gray scale intensity,
GVI) for dermal fibroblast on substrates of different stiffnesses. Measured Df (left column) and GVI (right column), for all times
and cells. Distribution indicates that the dermal fibroblasts are affected by different substrate stiffness. Qualitatively there is also an
inverse relationship between Df and GVI. As the shapes of histograms were unique, we made no attempt in assuming a distribution
but used kernel fitting to obtain means for statistical comparisons.
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than 1.93 lm/pixels significantly changed the mean Df

measured and the average difference was greater than
10% from original baseline images (Fig. 3E).

Dynamic Decline in Fractal Dimension of
Cytochalasin D Treated Cells

To be able to capture the effects of cytoskeletal drugs on
fibroblast cytoskeleton, we imaged cells treated with CytoD
at a shorter time interval (2 min) and this reduced the num-
ber of cells we were able to study (n 5 14). The time-lapse
images obtained revealed that the disruption of the cyto-
skeleton occurs as early as 5 min after the administration of
1 lM of the drug. Using our custom code to perform frac-
tal analysis, we obtained the temporal mean Df values
before and after the addition of CytoD (Fig. 4). Between 2
and 30 min Df 5 0.987 6 0.004 and between 32 and 80
min Df 5 0.939 6 0.015. Not only is the difference signifi-
cant, but also we were able to detect the temporal decline in
Df values between 32 and 40 min.

Differences in Cell Cytoskeleton Response to
Substrate Type and Substrate Stiffness Can Be
Measured Using Fractal Analysis

Fibroblasts were plated on PA gels overlaid on glass, and
imaged at a time interval of 10 min for 21 h. PA gels with
varying stiffness (12.5, 25, and 50 kPa), were coated with
cell attachment proteins (Col or Fn), and gel-less coated
glass (stiffness � GPa) served as a control. To avoid statisti-
cal assumptions, extracted data were fit to a kernel distribu-
tion (Fig. 5) and means were obtained from temporal
whole cell, cytosolic, perinuclear, and peripheral Df and
GVI values. While Df gives the spatiotemporal patterning
of the actin cytoskeleton (Fig. 6), the corresponding GVI
determines the amount of actin protein. For comparative

analyses, we first pooled results from cells on different cell
attachment ligands and compared the effects of substrate
stiffness (Figs. 7A and 7B); we then pooled results from
cells on different substrate (stiffness) and compared the
effects of cell attachment ligands (Figs. 7C and 7D). Whole
cell Df evaluation showed significant and higher differences
between glass and PA substrates of 50 kPa (PA50kPA) and
marginally with PA25kPA. Inversely and when compared to
glass, the amount of actin protein as measured using GVI,
was significantly lower in cells cultured on PA25kPA and
PA12.5kPA. The same trend was seen within the cytosolic
region: low differences in actin cytoskeleton complexity is
countered by more actin proteins. However, at the perinu-
clear region, the relatively low amounts of actin proteins
correspond to simpler actin cytoskeleton arrangements, and
a trend also exists: the less stiff the substrate, the lower the
actin cytoskeletal complexity. Df values at the periphery did
not differ significantly, but GVI values differ greatly when
compared to those of cells cultured on glass substrates.
Whether whole cell, or within each subcellular region, our
algorithm picked up significant differences in Df values
between cells seeded on collagen or fibronectin, but the dif-
ferences were insignificant for GVI values.

Discussion

The cytoskeleton, with its direct involvement in all cellular
processes, with well-understood roles in maintaining cell
shape or migration to the more subtle functions in intracel-
lular signaling, has been dynamically investigated by end-
point assays and live imaging. Live imaging is used for
understanding critical biological events missed with end-
point assays, but the massive data output intensifies the
need for computational tools for accurate quantification.

Fig. 6. Examples of raw cytoskeleton images and their corresponding Df maps. Representative images of the cytoskeleton (top
row) and results form our presented technique which yields a corresponding 2D fractal dimension array (bottom row) on glass sub-
strate (first two columns) and polyacrylamide substrate of 25 kPa (last two columns). The actin cytoskeletons at the cytosolic and
perinuclear regions are well represented by the fractal values obtained through the technique presented here. Scale bar shown repre-
sents 25 lm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Measurements of the dynamic cytoskeletal rearrangements
have been limited to subcellular regions of interest, and
deduced using semi-automated evaluation on polymeriza-
tion and depolymerization speeds, extension, and recovery
of cytoskeletal components. With many scientists accepting
the indirect association of the cell’s cytoskeleton with its
physiological state [Wirtz, 2009; Di Carlo, 2012], it is sur-
prising that whole cell cytoskeleton pattern measurements
have been marginalized, presumably from the lack of a
robust yet sensitive analytical approach that is biologically
relevant. Through studying Lifeact expressing HDF cul-
tured on collagen substrates of varying stiffness, we vali-
dated the sensitivity of fractal analysis to provide temporal
changes in the structure of the whole-cell actin cytoskeleton
network (fractal number, Df ) under cytoskeletal drug
administration (see Supporting Information SVideos 9 and
10). We further demonstrated an approach to isolate sub-
cellular regional results of Df and gray scale intensity values
(GVI) to facilitate actin cytoskeleton structure (Df ) and
actin density (GVI).

The use of fractal analysis is robust for up to 30% noise,
relative to the quality of images acquired from our experi-
ments. The excessive addition of noise or large pixel dimen-
sions will both artificially inflate Df as they increase the

space filling of the interrogation window and thus require
more boxes to cover the cytoskeleton structures found
within. We reported several measures of relative image qual-
ity, as each parameter provides different forms of measure;
MSE is a global measure, PSNR a local error measurement,
and SSIM compares structure and not solely based on gray
intensity values disparity.

Following others, we first validated our temporal actin
cytoskeleton quantification method through the application
of cytoskeletal drug, Cytochalasin D (CytoD, 1 lM): a
known potent disruptor of actin filament function. Instead
of taking “snap-shots” of the cytoskeletal arrangement fol-
lowing drug administration, our measurement of Df before,
during, and after treatment not only presented the expected
result of reduced actin arrangement, but also further
pointed out the rate of actin disruption. It is noteworthy
that CytoD causes an increase in relative uncertainty and a
corresponding decrease in Df. This suggests that significant
changes in the relative uncertainties could be a signature of
stimuli that are causing cytoskeletal response. As can be
seen in Supporting Information Fig. 5 when cytosolic Df

dropped significantly, actin Df increased in the perinuclear
region marginally and the periphery significantly. Together
this explains the resultant slight decrease in Df when cell

Fig. 7. Substrate ligand type and substrate stiffness affects fibroblast actin cytoskeleton. Temporal mean fractal dimension (Df )
of fibroblast attached on polyacrylamide (PA) substrates of (i) different stiffness and (ii) coated with attachment ligands Collagen I
(Col) or Fibronectin (Fn) were compared to demonstrate sensitivity of the method presented. As measured by our method, (A) Com-
paring fibroblasts on substrates of different stiffness, differences in both cytosolic Df and perinuclear Df can be detected between glass
and PA substrates. (B) Gray value intensity (GVI), signifying the amount of actin, was significantly different between glass and PA
substrates at all intracellular regions. (C) The cytoskeleton arrangement (Df ) at each subcellular region of interest was significantly
different for cells attached on Col versus Fn, (D) but did not differ in terms of the amount of actin. Df< 1 is due to the partial fill-
ing of small, principally empty, interrogation windows.
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cytoskeleton is treated with CytoD. Although CytoD acts
globally, it is observed that the disruption first occurs in the
cytosol, causing cell-spanning actin filaments to break,
releasing tension, and retracting towards anchor points: the
nuclei and the periphery of the cell. This causes an increase
in actin complexity, and results in larger Df at the perinu-
clear and peripheral regions of the cell. As CytoD prevents
depolymerization/polymerization, the initiation of disrup-
tions at the cytosolic region is presumably where actin turn-
over is greatest.

The actin cytoskeleton is not solely defined by the intri-
cate patterns; we also measured GVI values which signal the
amount (or mass) of polymerized actin. Interestingly, the
GVI and Df trends in an inverse proportional manner, sig-
nifying that the actin cytoskeletons is either in a state of
high complexity or in an immensely polymerized phase.
We rationalize this observation by noting that cells try to
reduce energy expenditure; protein production by a cell
should be minimized [Flamholz et al., 2013] and if rear-
rangements of the cytoskeleton increase in complexity, the
mass of polymerized actin should decrease, thereby obeying
mass conservation principles. Outside the perinuclear
region, our results corroborate this theory, on all substrates;
both glass and PA showed lower mean Df, higher mean
GVI, and vice versa. Moreover, the distributions of these
dynamic parameters are not normally distributed and
reporting mean values may mask vital information, further
advocating the need for quantitative tools that analyze tem-
poral patterns of the cytoskeleton.

On fixed cells, Prager-Khoutorsky et al. previously dem-
onstrated that when cultured on stiff substrates, fibroblasts
displayed long stress fibers traversing across the entire cell,
which contrasts the haphazard cytoskeletal patterns on soft
substrates [Prager-Khoutorsky et al., 2011]. For comparison
purposes, at the cytosolic region mean Df was between 1.02
and 1.10 for cells on all substrates, and at the periphery
region mean Df was between 0.77 and 0.86. A trend exists
at the perinuclear region, where HDF actin cytoskeleton
had higher complexity when cultured on hard glass (mean
Df 5 0.82 6 0.30), which declines with PA stiffness
(PA50kPA, Df 5 0.45 6 0.30; PA25kPA, Df 5 0.32 6 0.10;
PA12.5kPA, Df 5 0.33 6 0.30). The mathematical implica-
tion of Df< 1 is a Cantor Set, defined by partial space fill-
ing of a line. The biophysical implication of Df< 1 is either
1) fragments of actin cytoskeleton or 2) ends of filaments
penetrating across (over) the nucleus. In the cases where Df

� 1, Df 5 0.3, for example, there is no actin crossing over
the nucleus, and the low values are due to partial space-
filling from filament ends in the perinuclear region. A tem-
poral change when Df< 1, assuming fixed interrogation
window and box size, should signal either assembly/growth
(dDf/dt is positive) or disassembly/shortening (dDf/dt is
negative) of the fibers. Indeed when we add CytoD, we see
a decrease in Df, implying kinetic cytoskeletal disassembly.

Monitoring changes in Df below 1 should reveal informa-
tion on actin polymerization/depolymerization kinetics.

A recent study concentrating on the actin distribution
adjacent to the nucleus (perinuclear), showed that on high
stiffness substrates stress fibers (long aligned actin) are visi-
ble [Vishavkarma et al., 2014]. On low stiffness substrates,
an actin mesh (short interwoven actin) is apparent, coincid-
ing with our findings. Intuitively, being in direct contact,
peripheral and cytosolic actin, should have different cytos-
keletal structures when cultured on substrates of different
stiffness. The interconnectivity of the entire actin cytoskele-
ton involves a mechanical connection with the nuclei. This
link allows the cell to direct its behavior, fate and response
to the biomechanical cues through mechanotransduction
[Wang et al., 2009]. In addition, regardless of stiffness of
substrate, mean Df of HDF actin cytoskeleton at the cyto-
solic region and periphery of cells on Col was significantly
lower than when cultured on Fn, but higher at the perinu-
clear region. Both findings highlight the sensitivity of our
technique in measuring subtle Df changes.

Measured Df values were relatively lower than the fractal
dimension range proposed by Fuseler et al. for cells respond-
ing to substrate stretching or migration [Fuseler et al., 2007;
Fuseler and Valarmathi, 2012]. Our approach partitions the
cytoskeletons into smaller parts using the interrogation win-
dows and within each window are varying degrees of actin
polymerization and/or branching. We also obtain Df of 1 if
an actin filament spans the window, and a Df of 2 if an entire
window is filled with actin (Supporting Information SFig.
6). There are situations whereby interrogation windows cal-
culate Df values based on poor fits. These low R2 regions are
principally located at the perimeter of the cell. Here, there
are artificially low Df regions because the interrogation win-
dows covers unfilled space beyond the cytoskeleton network.
Currently, we include the low measures of fractal dimension
from the cell edges, which decreases the mean values of Df

across the whole cell. If an experimentalist is more interested
in questions related to the intracellular fractal structure, they
can exclude the perimeter region, which artificially lowers
Df. Our method provides analytical flexibility to experimen-
talists and a wider range of cell biology topics to investigate.
The judgment calls of what regions to be included should be
driven by the specific biological question(s) the experimen-
talists are pursuing.

Conclusions

In this work, we demonstrated a method for the quantifica-
tion of spatiotemporal cytoskeletal patterns. This approach
is not limited to whole cell analysis; it is able to focus on
and distinguish between subcellular regions of interest. In
future work we will discuss the biological implications of
our obtained Df and GVI; here we emphasized the sensitiv-
ity of the presented method towards detecting differences in
actin cytoskeletons for cells cultured on substrates with

� 230 Alhussein et al. CYTOSKELETON



different stiffnesses. Our analytical approach (fractal analy-
sis and partitioning) is neither computationally intensive in
time nor resource (a 512 3 512 image typically
requires< 5 s for Df and GVI analysis), and could become
a mainstream technique for high throughput screening of
kinematic cytoskeletal rearrangement.
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