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Abstract

Background

Obesity is associated with severe co-morbidities such as type 2 diabetes and nonalcoholic

steatohepatitis. However, studies have shown that 10–25 percent of the severely obese

individuals are metabolically healthy. To date, the identification of genetic factors underlying

the metabolically healthy obese (MHO) state is limited. Systems genetics approaches have

led to the identification of genes and pathways in complex diseases. Here, we have used

such approaches across tissues to detect genes and pathways involved in obesity-induced

disease development.

Methods

Expression data of 60 severely obese individuals was accessible, of which 28 individuals

were MHO and 32 were metabolically unhealthy obese (MUO). A whole genome expression

profile of four tissues was available: liver, muscle, subcutaneous adipose tissue and visceral

adipose tissue. Using insulin-related genes, we used the weighted gene co-expression net-

work analysis (WGCNA) method to build within- and inter-tissue gene networks. We identi-

fied genes that were differentially connected between MHO and MUO individuals, which

were further investigated by homing in on the modules they were active in. To identify poten-

tially causal genes, we integrated genomic and transcriptomic data using an eQTL mapping

approach.

Results

Both IL-6 and IL1B were identified as highly differentially co-expressed genes across tissues

between MHO and MUO individuals, showing their potential role in obesity-induced disease
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development. WGCNA showed that those genes were clustering together within tissues,

and further analysis showed different co-expression patterns between MHO and MUO sub-

networks. A potential causal role for metabolic differences under similar obesity state was

detected for PTPRE, IL-6R and SLC6A5.

Conclusions

We used a novel integrative approach by integration of co-expression networks across tis-

sues to elucidate genetic factors related to obesity-induced metabolic disease development.

The identified genes and their interactions give more insight into the genetic architecture of

obesity and the association with co-morbidities.

Introduction

Obesity, characterized by an excessive accumulation of adipose tissue in the body, has major

consequences for human health, like type 2 diabetes (T2D) and nonalcoholic steatohepatitis

(NASH). However, it has now been acknowledged that (extremely) obese individuals may also

be metabolically and cardiorespiratory fit, so called metabolic healthy obese (MHO) [1, 2]. It is

estimated that 10 − 25 percent of the obese individuals are MHO [1]. The excessive accumula-

tion of adipose tissue in case of obesity disturbs the endocrine balance. Already in 1968, it was

indicated that the functioning of insulin metabolism is dependent upon adipose cell size and

that adaptive functioning of adipose cells is linked to the metabolic condition of individuals

[3]. The expandability of the adipose tissue to be able to store large amounts of fat may be an

important factor determining obesity-induced metabolic disturbances [4]. However, expand-

ability is not an unlimited process; in fact, adipose tissue storage capacity may become satu-

rated, resulting in excess of fat “overspilled” to non-adipose tissues and subsequent lipotoxicity

which can lead to metabolic syndrome [5]. In such cases, obesity results in elevated levels of

free fatty acids (FFA) affecting the pancreatic beta cells, and in the secretion of a group of adi-

pose tissue derived cytokines, the adipokines. The direct effect of FFA is thought to be the

result of activation of multiple intracellular signals in the beta cell, eventually leading to apo-

ptosis and reduced insulin secretion [6]. To date, involved genetic factors and pathways are

largely unknown.

Here, we aim to find genetic and molecular mechanisms important for human obesity-

induced disease development by comparing inter-tissue gene co-expression of MHO and met-

abolically unhealthy obese (MUO) individuals. A study in mice showed important dynamic

inter-tissue crosstalk in obesity development, with a key role for inflammatory pathways [7].

Also, the inter-tissue crosstalk of adipose tissue and skeletal tissue has shown its importance

in obesity [8] and insulin resistance [9]. Weighted Gene Co-expression Network Analysis

(WGCNA) [10] clusters genes based on gene-gene interactions and is used to unravel genetic

mechanisms of complex diseases, including obesity [11–14]. We here use this approach to cre-

ate an inter-tissue network, giving the potential of studying the inter-tissue gene co-expression

and hereby gaining insight into the genetic architecture across tissues and pathogenesis of obe-

sity and comorbidities. This approach has previously led to the successful identification of key

drivers of coronary artery disease [15]. In this study, we investigate the co-expression patterns

of insulin-related genes in severely obese individuals, some of whom are MHO. The expression

profiles of four tissues (liver, muscle, subcutaneous adipose tissue, and visceral adipose tissue)

are investigated using a novel integrative inter-tissue approach. We furthermore look for
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potential causal genetic variants for metabolic differences under similar obesity state, by inte-

grating, modeling, and analyzing genomic and transcriptomic data by an eQTL approach.

Materials and Methods

Genomic and transcriptomic data from the study population

Subjects. In this study, 60 severely obese individuals (42 males, 18 females) who under-

went elective bariatric surgery were included. All individuals were free from acute or chronic

inflammatory or degenerative diseases, and did not consume a high amount of alcohol (>10 g/

day) or anti-inflammatory drugs. This study was approved by the Medical Ethical Board of

Maastricht University Medical Centre, in line with the guidelines of the 1975 Declaration of

Helsinki. Informed consent in writing was obtained from each subject personally. All subjects

were deeply phenotyped for a number of metabolic measures, e.g. systemic glucose, choles-

terol, and C-reactive protein concentrations.

Expression profiling. During elective bariatric surgery samples were taken from the liver,

muscle (musculus rectus abdominis), subcutaneous adipose tissue (SAT; abdominal), and vis-

ceral adipose tissue (VAT; omentum majus). RNA was hybridized to Illumina HumanHT12

BeadChips and scanned on the Illumina BeadArray Reader. Raw intensity data were extracted

using Illumina’s BeadStudio Gene expression module v3.2. The samples were not pooled. All

raw data are publicly available at Gene Expression Omnibus (GSE22070). Raw expression data

were normalized by performing a quantile normalization and log2 transformation.

Genotyping. After eight hours of fasting on the morning of elective bariatric surgery,

venous blood samples were obtained. DNA was extracted and genotyped using HumanOmni-

BeadChips (Illumina) and imputed using the GIANT release from the 1000 Genomes project

(5,763,069 unique SNPs).

More information about the study population, expression profiling, and genotyping can be

found in previous publications [16–19].

Filtering of insulin-related genes for inter-tissue network construction

Insulin-related genes were filtered from the expression dataset. First, GO-terms related to

insulin were found using AmiGO 2 (http://geneontology.org), by using the search term “insu-

lin”, resulting in the detection of 92 GO-terms. We then used Biomart [20] to detect genes that

have been associated with those GO-terms, resulting in 648 unique genes corresponding to

885 transcripts.

Inter-tissue behavior of individual genes

Potential biologically important inter-tissue genes are expected to show altered inter-tissue co-

expressions, and were therefore identified by the difference of the inter-tissue co-expression

between the MHO and MUO subnetworks. To identify those important inter-tissue genes, we

calculated the correlation between tissues for each insulin-related gene in two subnetworks

(MHO and MUO). This resulted in a correlation between each tissue-pair (liver-muscle, liver-

SAT, liver-VAT, muscle-SAT, muscle-VAT, SAT-VAT) for each insulin-related gene in both

the MHO and MUO subnetwork. Following this, between each tissue-pair the absolute differ-

ence between MHO and MUO subnetworks was calculated for each gene. Then, the sum of tis-

sue-pair differences (inter-tissue co-expression) in both networks was calculated.
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Inter-tissue co-expression network analysis

To gain insight in gene-gene interactions we constructed weighted gene co-expression net-

works, using the Weighted Gene Co-expression Network Analysis (WGCNA) R-package [10].

The networks were constructed across tissues for both MHO and MUO individuals by calcu-

lating Pearson’s correlation coefficients between each gene-pair across all tissues. We created

the adjacency matrix with diagonal blocks representing within-tissue correlations (tissue-spe-

cific) and the off-diagonal blocks representing inter-tissue co-expression (Fig 1). The inter-tis-

sue co-expression was computed by taking the ith gene in the tth tissue and correlated with all

other Gi genes in a Tt different tissue and repeated for all genes in G and all tissues in T. Here,

T is a vector with the number of tissues and G a vector with the number of genes in a given tis-

sue. The mean and standard deviation of each block showed no significant difference between

the within-tissue and inter-tissue blocks, showing no biasing difference in connection strength

between within-tissue blocks and inter-tissue blocks. Modules were detected by first calculat-

ing the dissimilarity Topological Overlap Measure (TOM), which was used for clustering.

Modules were defined as branches of the cluster dendrogram, which were detected using the

Dynamic Tree Cut library for R [21], with a minimum module size of 50 genes.

eQTL mapping

The eQTL mapping was performed using the eQTL-mapping-pipeline (v.1.2.4) developed by

the Department of Genetics, University Medical Centre Groningen, The Netherlands, which

can be found at http://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-

pipeline [22]. We used previously normalized expression data of the selected insulin-genes, as

described above. The SNPs were filtered based on call rate (> 0.95), Hardy-Weinberg equilib-

rium (P> 1E-4), and minor allele frequency (MAF> 0.05). We performed the cis-eQTL analy-

sis, whereby the distance between SNP and probe was set on 1 Mb on either side of the probe.

Detected p-values were corrected for multiple-testing by permutation testing (n = 10), and

eQTLs were considered to be significant with a FDR< 0.05. The eQTL mapping was per-

formed with the expression data of each tissue.

Functional annotation and visualization

Genes in detected modules were retained for gene set enrichment analysis (GSEA) based on

their Module Membership (MM; correlation of gene with module eigengene). GSEA was per-

formed using HumanMine (http://humanmine.org), detecting overrepresented GO-terms and

KEGG pathways. Visualization of modules was performed in Cytoscape [23].

Results and Discussion

All individuals in this study were severely obese (BMI> 35) and underwent bariatric surgery.

Deep metabolic phenotyping resulted in an overview of the metabolic state of the individuals,

showing that nearly half were MHO (defined as having neither T2D nor NASH). Among the

MUO individuals, 18 individuals suffered from T2D (7 males, 11 females), 27 suffered from

NASH (8 males, 19 females) and of them, 13 individuals had both T2D and NASH (4 males, 9

females). Descriptive statistics of the metabolic phenotypes showed a significant difference

(P< 0.05) between MHO and MUO individuals for glucose, glycated hemoglobin (HbA1c),

FFA, and aspartate transaminase (ASAT) (Table 1). Those metabolic phenotypes did not show

a significant difference between males and females (P>0.05), though we did find a significant

difference for BMI, waist-hip ratio (WH-ratio), insulin, total cholesterol and low-density lipo-

protein (LDL) levels (P<0.05). A significant difference in age was found: the MHO individuals
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were younger than the MUO individuals, which is in agreement with a study that found a

decreasing prevalence of metabolic healthy obesity with age [24].

Inter-tissue co-expression focussing on individual genes

Dobrin et al. [25] showed that investigating inter-tissue co-expression can lead to the detection

of genes that are related to tissue-specific changes in diseases and that this is representing

cross-tissue communication. Therefore, we identified genes that are altered in inter-tissue co-

expression between MHO and MUO individuals, as they might pinpoint to genes involved in

the crosstalk of tissues with respect to obesity-induced comorbidities. We detected two altered

Fig 1. The adjacency matrix to construct the within- and inter-tissue gene network. The matrix presents the adjacency for L = Liver,

M = Muscle, S = Subcutaneous Adipose Tissue, V = Vat, for i till n genes. In red the within-tissue blocks, in black the inter-tissue blocks.

doi:10.1371/journal.pone.0167519.g001

Table 1. Descriptive statistics with mean and standard deviation of the individuals.

All MHO MUO P-value

Number 60 28 32 -

Male/Female 42/18 21/7 21/11 0.44

Age (years) 44.85 ± 10.38 41.71 ± 9.34 47.59 ± 10.59 0.03

BMI (kg/cm2) 45.74 ± 8.17 43.73 ± 7.62 47.44 ± 8.34 0.08

WH-ratio 1.01 ± 0.15 0.98 ± 0.14 1.05 ± 0.15 0.10

Glucose (mmol/l) 6.40 ± 1.87 5.57 ± 0.67 7.13 ± 2.24 <0.001

Insulin (mU/l) 18.24 ± 10.39 15.83 ± 7.07 20.56 ± 12.51 0.09

HbA1c 6.56 ± 1.31 6.19 ± 0.92 6.93 ± 1.54 0.04

Total cholesterol (mmol/l) 4.96 ± 0.98 4.80 ± 0.98 5.10 ± 0.98 0.27

HDL (mmol/l) 0.96 ± 0.36 0.99 ± 0.29 0.94 ± 0.43 0.59

LDL (mmol/l) 3.11 ± 0.84 2.99 ± 0.92 3.21 ± 0.76 0.35

TG (mmol/l) 2.08 ± 1.25 1.87 ± 0.97 2.28 ± 1.47 0.23

FFA (g/l) 0.62 ± 0.30 0.53 ± 0.27 0.70 ± 0.31 0.04

ALAT (U/l) 27.16 ± 16.92 24.79 ± 10.45 29.44 ± 21.36 0.30

ASAT (U/l) 23.28 ± 12.07 19.79 ± 9.86 26.66 ± 13.18 0.03

CRP (mg/l) 9.29 ± 6.22 9.91 ± 6.49 8.68 ± 6.00 0.46

MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; BMI, body mass index; WH-ratio, Waist-hip ratio; HbA1c, glycated hemoglobin;

HDL, high-density lipoprotein; LDL, low-density lipoprotein; TG, triglyceride; FFA, free fatty acids; ALAT, alanine transaminase; ASAT, aspartate

transaminase; CRP, c-reactive protein.

doi:10.1371/journal.pone.0167519.t001
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genes between the MHO and MUO subnetwork: IL1B and IL-6. Both genes showed, most of

them significant, stronger inter-tissue co-expression in the MUO subnetwork than in the

MHO subnetwork.

Interleukin 1-β (IL1B) is an important cytokine mainly produced by activated macro-

phages. IL1B showed a strong correlation between liver and adipose tissues in the MUO sub-

network, with lower correlations among the other tissues and in the MHO subnetwork

(Table 2). As obesity leads to an increase of macrophage activation in liver and adipose tissue

[26], IL1B mRNA levels will consequently increase. Studies have shown the importance of

IL1B in the development of obesity-induced insulin resistance [27, 28], and a central role for

IL1B has been suggested in macrophage-adipocyte crosstalk-related blocking of insulin action

in adipose tissue [29]. Moreover, the function of IL1B in the liver-adipose tissue crosstalk has

been studied in mice [30]. Recent studies showed that there was no difference in systemic IL1B

levels between MHO and MUO individuals [31, 32]. Here, we do not find differences in

mRNA IL1B levels, but the stronger inter-tissue correlations in the MUO subnetwork indicates

a potential role for IL1B in obesity-induced metabolic diseases.

A similar pattern across tissues was found for Interleukin-6 (IL-6) with strong correlations

between liver and adipose tissues (Table 3). IL-6 is a cytokine and a myokine, meaning it is

also secreted by skeletal muscle during contraction [33]. The many functions of IL-6 include

roles in immunological responses and glucose metabolism [34, 35]. IL-6 has been proposed as

independent predictor of T2D [36] and the same study also showed a significant interaction

Table 2. Correlation of IL1B mRNA expression between liver and adipose tissues in different groups of subjects, with p-values representing the

significance of across-tissue correlation.

Tissues MHO MUO Only T2D Only NASH T2D & NASH

Liver—SAT -0.20 0.59*** 0.81* 0.68** -0.14

Liver—VAT 0.07 0.59*** 0.63 0.70** 0.07

SAT—VAT 0.02 0.56*** 0.80 0.59** 0.39

MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; T2D, type 2 diabetes; NASH, non-alcoholic steatohepatitis

***P-value<0.001,

**P-value<0.05,

*P-value<0.1

doi:10.1371/journal.pone.0167519.t002

Table 3. Correlation of IL-6 mRNA expression between liver and adipose tissues in different groups of subjects, with p-values representing the

significance of across-tissue correlation.

Tissues Healthy Unhealthy Only T2D Only NASH T2D & NASH

Muscle—Liver -0.12 0.12 0.06 0.27 -0.11

Muscle—SAT 0.02 0.35** 0.35 0.47* 0.26

Muscle—VAT 0.18 0.35** 0.28 0.44 0.53*

Liver—SAT 0.12 0.46** 0.66 0.47* 0.42

Liver—VAT -0.07 0.31* -0.47 0.62** 0.04

SAT—VAT 0.25 0.44 0.32 0.48* 0.58**

MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; T2D, type 2 diabetes; NASH, non-alcoholic steatohepatitis

***P-value<0.001,

**P-value<0.05,

*P-value<0.1

doi:10.1371/journal.pone.0167519.t003
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between IL1B and IL-6. In contrast to IL1B, significantly decreased IL-6 mRNA levels were

shown in MHO vs. MUO individuals [32]. Surprisingly, our data show no significant differ-

ence in IL-6 mRNA levels between MHO and MUO individuals.

Inter-tissue network analysis with a focus on IL1B and IL-6

We constructed two large gene co-expression networks using insulin-related genes in four tis-

sues, resulting in a network for the MHO and for the MUO individuals. Clustering within

those networks resultantly can lead to tissue-specific clusters or clusters with genes across tis-

sues. Clustering of the genes in the MHO and MUO network is visualized using a gene den-

drogram (S1 Fig). We focussed on the network characteristics of the identified genes (IL1B
and IL-6) as these are potentially important in disease development. IL1B and IL-6, expressed

in each of the four tissues, did not cluster together across tissues or within the MHO subnet-

work. However, they did cluster together in the MUO network, within each tissue. We further

investigated those modules and genes, focussing on altered correlations between MHO and

MUO subnetworks, to get more insight into the mechanisms involved in disease development.

We confirmed that those modules were not age and/or gender dependent, as the module

eigengenes of the modules were not significantly correlated with age or gender. While we

focused on overall co-expression patterns across tissues in MHO ad MUO individuals, it could

be expected that co-expression patterns may differ among patients suffering from either

NASH or T2D, however, due to the limited sample size we were not able to home in on them.

The Greenyellow module in the MUO network, containing both the IL1B and IL-6 gene,

clustered the expression profiles of 29 genes (MM > 0.6) of which 27 are coming from the

liver. Two genes in this module (PKM and SLC6A5) are coming from SAT and VAT, respec-

tively. GSEA revealed the NOD-like receptor (NLR) signalling pathway as most significant

KEGG pathway (P = 0.002) and GO-terms were associated with signal transduction (e.g. nega-

tive regulation of signal transduction, P = 3.55E-5) and cytokine receptor binding (P = 6.59E-

4). Those findings are in concordance with the fact that excessive amounts of adipose tissue

result in an increased release of cytokines, e.g IL-6, IL1B, and CCL2, causing inflammation

through, for example, the NLR signalling pathway [37].

Pearson’s correlation coefficients of genes in the Greenyellow module were visualized in

Cytoscape for both sub-networks (Fig 2A). Visualization shows that genes in the Greenyellow

module are strongly correlated with each other in the MUO subnetwork, while the same genes

are less strongly correlated in the MHO subnetwork. As expected, strong co-expression is

detected between IL1B and IL-6, with a slight increase in strength between MHO and MUO

individuals (0.50 vs. 0.71, respectively). In this module, IL1B does not show large alterations in

co-expression with other genes between MHO and MUO individuals. However, IL-6 shows

and altered correlation with the cytokine suppressor genes SOCS2 (r = 0.01 vs. r = 0.74) and

SOCS3 (r = 0.47 vs. r = 0.75), and furthermore, the correlation between SOCS2 and SOCS3 is

slightly altered (r = 0.44 vs. r = 0.69). Previous studies have shown that obesity impairs JAK-

STAT3 signalling as a result of elevated IL-6 levels, leading to elevated expression of for exam-

ple SOCS3 in white adipose tissue, liver, and muscle [38]. By binding to insulin receptor sub-

strates, SOCS3 impairs insulin action and elevated SOCS3 levels are associated with insulin

resistance [39]. The importance of the association between SOCS3 and IL-6 has been shown

before, as the absence of SOCS3 leads to altered effects of IL-6 resulting in a strong inhibiting

effect on macrophages and dendritic cells, resembling an inflammatory response [40]. Also the

PTPN1 gene, encoding PTP1B, is associated with insulin resistance by negatively regulating

insulin signalling [41]. Due to its effects on both insulin and leptin, it has been suggested as

drug target for obesity and diabetes [42]. This gene showed a highly altered co-expression with

Inter-Tissue Gene Networks in Obesity
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IL-6 in the module between MHO and MUO subnetworks: no correlation was found between

PTP1B and IL-6 in the MHO subnetwork, while they were moderately correlated in the MUO

subnetwork (r = 0.53).

Detection of potential causal genetic variants using an eQTL mapping approach led to the

detection of a noteworthy eQTL in this module: the SLC6A5 gene, expressed in VAT. SLC6A5
shows generally low correlation coefficients with other genes in the MHO subnetwork, but

several strongly correlated genes in the MUO subnetwork. Correlations with IL1B and IL-6 are

only moderate in MUO (0.28 and 0.41, respectively) and low in MHO (-0.13 and -0.05, respec-

tively) subnetworks. The strongest correlations of SLC6A5 within the MUO subnetwork are

found with ANXA1 (r = 0.66), CCL2 (r = 0.63), MARCKS (r = 0.61), and SOCS3 (r = 0.61); all

of which are not correlated in the MHO subnetwork. SLC6A5 is encoding the neuronal glycine

transporter 2 (GlyT2) and its action involves protein kinase C (PKC) pathways [35]. Even

though SLC6A5 itself has not been associated with obesity, its regulating properties via PKC

pathways might affect the metabolic state of obese individuals. For example, ANXA1

Fig 2. Network visualization of inter-tissue network modules. Visualization of the genes in the (A) Greenyellow

module (from MUO subnetwork) in the MHO and MUO individuals, and (B) Turquoise module (from MUO subnetwork)

in the MHO and MUO individuals. Genes coming from liver are coloured yellow, from muscle orange, from VAT blue

and from SAT green. IL1B and IL-6 are bordered red. Edges are coloured based on their correlation on a red-green

scale representing a negative-positive correlation.

doi:10.1371/journal.pone.0167519.g002
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(associated with adiposity [43]) is an important mediator in the neuroendocrine system and

PKC-dependent mechanisms are essential for its activity [44]. Likewise, the previously dis-

cussed SOCS3has been linked to involvement in PKC pathways [45]. We therefore suggest a

potential causal role for SLC6A5 in regulatory processes related to obesity-induced metabolic

diseases. This is supported by the fact that a mutation in this gene causes, among others, a

decreased body weight in mice [46].

The Turquoise module in the MUO subnetwork (Fig 2B) clustered the expression profiles

of 26 unique genes (MM > 0.9), all coming from the muscle. Both IL1B and IL-6 were filtered

out due to the strict threshold on the MM, but were included in comparison of correlation

strengths between the MHO and MUO subnetworks. The correlations among them were

altered between the MHO and MUO subnetwork (r = 0.25 vs r = 0.75, resp.). One well-known

obesity-genes is Leptin (LEP), encoding leptin, which is also called the “satiety hormone”. In

skeletal muscle, it promotes energy dissipation and prevents fatty acid accumulation [47]. LEP
shows strong positive and negative correlations with all other Turquoise module-genes (abso-

lute correlation > 0.8) in the MUO subnetwork, while being low with many of the genes in the

MHO subnetwork (absolute correlation < 0.4). The largest differential correlation for LEP was

found between LEP and PTPRE (0.22 vs. 0.91 in MHO vs. MUO). PTPRE (Protein Tyrosine

Phosphatase, Receptor Type, E) negatively regulates insulin signaling in skeletal muscle and

has been suggested to play a role as negative feedback regulator of leptin signaling via JAK2

[8]. Furthermore, strong alterations were found for the correlation between LEP and IL1B
(r = -0.15 vs. r = 0.81 in MHO vs. MUO). It has been shown that IL1B is necessary for induc-

tion of leptin during inflammation [12]. Our data suggest that this induction is not occurring

in MHO individuals. Another interesting gene is Adiponectin (ADIPOQ), encoding the hor-

mone adiponectin that enhances skeletal muscle insulin sensitivity and has been suggested as a

drug target for obesity and T2D [13]. The correlation between ADIPOQ and IL1B differed to a

large extent between MHO and MUO (r = -0.19 vs r = 0.68 in MHO vs. MUO). In adipocytes,

but not in skeletal muscle, it has been shown that IL1B reduces adiponectin production,

thereby negatively affecting insulin sensitivity [24, 29]. No eQTLs were detected in this

module.

The Black module in the MUO subnetwork (Fig 3A) clustered the expression profiles of 30

genes (MM < 0.60), all coming from SAT, except for two that were coming from VAT:

PRKAG2 (also co-expressed in SAT) and PIK3R1. The correlation between IL1B and IL-6, and

their correlation with cytokine suppressor genes, was similar between MHO and MUO sub-

networks in SAT. The two genes that are expressed in VAT, PRKAG2 and PIK3R1, are showing

altered co-expression with IL-6 and IL1B. The co-expression of PIK3R1 with IL1B and IL-6 in

the MHO subnetwork is very low (-0.16 and -0.20, respectively), but strongly negative in the

MUO subnetwork (both -0.67). PIK3R1 encodes part of the phosphatidylinositol 3-kinase

(PI3K) enzyme, and PI3K signaling plays an important role in insulin signaling. PIK3R1 is

involved in the mediation of insulin sensitivity and the inflammatory response in adipose tis-

sue [31]. The altered co-expression between the insulin genes and PIK3R1 indicates an impor-

tant role in disease development that has been identified by others as well [48]. The correlation

of PRKAG2 with IL1B and IL-6 is around zero in the MHO, but moderately positive in the

MUO subnetwork (0.53 and 0.54, respectively). PRKAG2 is part of the AMP-activated protein

kinase (AMPK) pathway, which is important in energy regulation, e.g. glucose homeostasis

and insulin sensitivity [49]. Due to its properties, it is a drug target for metabolic syndrome.

In this module we found one eQTL: the IL-6 receptor (IL-6R). Many of the correlations

between IL-6R and other genes were not altered between MHO and MUO subnetworks. How-

ever, the correlation with SOCS3was elevated (0.29 vs 0.67, respectively) and with PIK3R1 (in

VAT) was decreased (0.01 vs -0.58, respectively). Surprisingly, the correlations of IL-6 with
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those genes were unaltered, implicating an important role for the receptor of IL-6, also based

on previous discussion of results for the JAK-STAT pathway, in obesity-induced disease devel-

opment. Several altered phenotypes have been detected in mutations in the IL-6 receptor in

mice, e.g. insulin resistance and inflated inflammatory action [50]. However, in a large human

survey, a significant correlation with BMI and weight loss within morbidly obese individuals

could only be found with IL-6R expression levels in liver, and not in omental adipose, subcuta-

neous adipose and stomach tissue [51].

The Salmon Module in the MUO subnetwork (Fig 3B) clustered the expression profiles of

33 genes (MM < 0.6). These genes were all coming from VAT, except for one gene (Syntaxin

4, STX4) that was coming from both SAT and VAT. Several genes from previously discussed

modules were also present in this module. The co-expression of IL1B and IL-6 with SOCS2 and

SOCS3 is similar to the co-expression found in SAT (Black module), meaning that their corre-

lation is only altered in the liver. Also the co-expression between IL1B and IL-6 is unaltered in

Fig 3. Network visualization of the inter-tissue network modules. Visualization of the genes in the (A) Black

module (from MUO subnetwork) in the MHO and MUO individuals, and (B) Salmon module (from MUO subnetwork) in

the MHO and MUO individuals. Genes coming from liver are coloured yellow, from muscle orange, from VAT blue and

from SAT green. IL1B and IL-6 are bordered red. Edges are coloured based on their correlation on a red-green scale

representing a negative-positive correlation.

doi:10.1371/journal.pone.0167519.g003
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SAT. The co-expression between STX4 in SAT and VAT is stronger in the MUO than in the

MHO subnetwork (0.28 vs 0.58, respectively). The co-expression of STX4 in SAT is altered

with IL1B, the IL1B receptor antagonist (IL1RN), IL6, and the IL-6 receptor (IL6R). In all four

cases, the co-expression is moderate to strongly positive in the MUO subnetwork and low neg-

ative co-expressed in the MHO subnetwork. However, the co-expression of STX4 in VAT with

the four genes that were expressed in VAT is similar between MHO and MUO subnetworks,

suggesting a role in disease development for STX4 only in SAT.

In this module we found one eQTL: PTPRE, expressed in VAT. PTPRE is a negative regula-

tor of insulin signalling in muscle [47]. In a study with obese individuals, it was shown that

PTPRE was differentially expressed and methylated before and after bariatric surgery, and that

NASH phenotype was negatively correlated with the bariatric reconstruction [52]. Besides the

detection of PTPRE as eQTL, the PTPRE gene is present in all four modules that were further

investigated due to presence of IL1B and IL-6. Homing in on the cross-tissue talk of this gene,

the main change is found between the correlation in liver and VAT (0.05 vs 0.55 in MHO vs.

MUO). In the Salmon module PTPRE shows altered co-expression with the previously dis-

cussed ISL1 gene (0.07 vs -0.60 in MHO vs MUO), encoding the insulin gene enhancer protein

ISL-1. Many of the correlations of ISL1 with other genes in this module are altered, with strong

negative correlations in the MUO subnetwork. Previously, it has been shown that ISL1 is

expressed in VAT and negatively correlated with BMI and abdominal fat [34]. They also

showed that expression was reduced in obese mice but reduced in lean insulin sensitive mice.

In the Greenyellow module, with mostly liver genes, alterations between MHO and MUO

individuals are found within the correlations of the expression of PTPRE in liver with e.g.

SLC6A5 (VAT), SLC6A13 (liver) and PKM (SAT). It is remarkable that the module consists of

mostly genes co-expressed in the liver, but that PTRPE shows altered co-expression with the

two genes that are coming from SAT and VAT, suggesting an important function for PTPRE
as a link between tissues in disease development resulting from obesity. To date, no studies

have linked PTPRE with any of those genes.

In summary, we have shown the integration of gene co-expression networks across tissues

in MHO and MUO individuals to identify genes and pathways related to obesity-induced dis-

ease development. The results provide important insights into genomics of adipose tissue

expandability, lipotoxicity, and eventual comorbidities such as T2D and NASH. In a co-

expression network setting, we detected IL-6 and IL1B as key genes for inter-tissue gene co-

expression differences related to metabolic state. By investigating the modules in which IL-6
and IL1B were co-expressed, we detected many altered co-expressed genes and pathways that

might be important in obesity-induced inflammation and comorbidity development. Even

though IL-6 and IL1B mRNA levels were not altered between MHO and MUO individuals in

our study, their co-expression with other genes indicates a potentially important role in obe-

sity-induced development of metabolic disturbances. The chosen approach gave us insight

into co-expression between genes in a network setting, but could not give information about

directions in the network. However, an eQTL mapping approach was chosen to detect genes

that affect mRNA levels and thereby affecting health status. This led to the identification of sev-

eral genes (PTPRE, IL-6R, and SLC6A5) which might have an important role in insulin-related

pathways of obese individuals. Functional validation of those genes is needed to identify their

potential role in the development of obesity-induced comorbidities.

Supporting Information

S1 Fig. Clustering of the insulin-related genes. Clustering is based on the dissimilarity Topo-

logical Overlap Measure (TOM) within the A) metabolically healthy obese (MHO) and B)
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metabolically unhealthy obese (MUO) network. Modules are detected using the Dynamic Tree

Cut algorithm and presented by the color-coded bar under the dendrogram.
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36. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory Cytokines

and the Risk to Develop Type 2 Diabetes: Results of the Prospective Population-Based European Pro-

spective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003; 52(3):812–7.

PMID: 12606524

37. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using

DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44–57. doi: 10.1038/nprot.2008.211 PMID:

19131956

38. Wunderlich CM, Hovelmeyer N, Wunderlich FT. Mechanisms of chronic JAK-STAT3-SOCS3 signaling

in obesity. Jak-stat. 2013; 2(2):e23878. doi: 10.4161/jkst.23878 PMID: 24058813

39. Olson AL. Insulin resistance: cross-talk between adipose tissue and skeletal muscle, through free fatty

acids, liver X receptor, and peroxisome proliferator-activated receptor-alpha signaling. Hormone molec-

ular biology and clinical investigation. 2013; 15(3):115–21. doi: 10.1515/hmbci-2013-0019 PMID:

25436738

40. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015; 16

(5):448–57. doi: 10.1038/ni.3153 PMID: 25898198

41. Bluher M. The distinction of metabolically ’healthy’ from ’unhealthy’ obese individuals. Current opinion in

lipidology. 2010; 21(1):38–43. doi: 10.1097/MOL.0b013e3283346ccc PMID: 19915462

42. Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, Petri A, Barrett A, et al. Coexpression Network Analy-

sis in Abdominal and Gluteal Adipose Tissue Reveals Regulatory Genetic Loci for Metabolic Syndrome

and Related Phenotypes. PLoS Genet. 2012; 8(2):e1002505. doi: 10.1371/journal.pgen.1002505

PMID: 22383892

43. Kosicka A, Cunliffe AD, Mackenzie R, Zariwala MG, Perretti M, Flower RJ, et al. Attenuation of plasma

annexin A1 in human obesity. FASEB journal: official publication of the Federation of American Socie-

ties for Experimental Biology. 2013; 27(1):368–78.

44. John C, Cover P, Solito E, Morris J, Christian H, Flower R, et al. Annexin 1-dependent actions of gluco-

corticoids in the anterior pituitary gland: roles of the N-terminal domain and protein kinase C. Endocri-

nology. 2002; 143(8):3060–70. doi: 10.1210/endo.143.8.8965 PMID: 12130572

45. Wallerstedt E, Smith U, Andersson CX. Protein kinase C-delta is involved in the inflammatory effect of

IL-6 in mouse adipose cells. Diabetologia. 2010; 53(5):946–54. doi: 10.1007/s00125-010-1668-1 PMID:

20151299

46. Bogdanik LP, Chapman HD, Miers KE, Serreze DV, Burgess RW. A MusD Retrotransposon Insertion in

the Mouse Slc6a5 Gene Causes Alterations in Neuromuscular Junction Maturation and Behavioral Phe-

notypes. PLoS ONE. 2012; 7(1):e30217. doi: 10.1371/journal.pone.0030217 PMID: 22272310

Inter-Tissue Gene Networks in Obesity

PLOS ONE | DOI:10.1371/journal.pone.0167519 December 1, 2016 14 / 15

http://dx.doi.org/10.1210/en.2006-0692
http://www.ncbi.nlm.nih.gov/pubmed/17038556
http://dx.doi.org/10.4161/21623945.2014.979661
http://www.ncbi.nlm.nih.gov/pubmed/26167419
http://dx.doi.org/10.1371/journal.pone.0053626
http://www.ncbi.nlm.nih.gov/pubmed/23341960
http://dx.doi.org/10.1210/jc.2015-2765
http://www.ncbi.nlm.nih.gov/pubmed/26401592
http://dx.doi.org/10.1038/ejcn.2011.170
http://www.ncbi.nlm.nih.gov/pubmed/21952696
http://www.ncbi.nlm.nih.gov/pubmed/14521945
http://dx.doi.org/10.1042/BJ20071018
http://www.ncbi.nlm.nih.gov/pubmed/18341477
http://www.ncbi.nlm.nih.gov/pubmed/12606524
http://dx.doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://dx.doi.org/10.4161/jkst.23878
http://www.ncbi.nlm.nih.gov/pubmed/24058813
http://dx.doi.org/10.1515/hmbci-2013-0019
http://www.ncbi.nlm.nih.gov/pubmed/25436738
http://dx.doi.org/10.1038/ni.3153
http://www.ncbi.nlm.nih.gov/pubmed/25898198
http://dx.doi.org/10.1097/MOL.0b013e3283346ccc
http://www.ncbi.nlm.nih.gov/pubmed/19915462
http://dx.doi.org/10.1371/journal.pgen.1002505
http://www.ncbi.nlm.nih.gov/pubmed/22383892
http://dx.doi.org/10.1210/endo.143.8.8965
http://www.ncbi.nlm.nih.gov/pubmed/12130572
http://dx.doi.org/10.1007/s00125-010-1668-1
http://www.ncbi.nlm.nih.gov/pubmed/20151299
http://dx.doi.org/10.1371/journal.pone.0030217
http://www.ncbi.nlm.nih.gov/pubmed/22272310


47. Aga-Mizrachi S, Brutman-Barazani T, Jacob AI, Bak A, Elson A, Sampson SR. Cytosolic protein tyro-

sine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology.

2008; 149(2):605–14. doi: 10.1210/en.2007-0908 PMID: 18006633

48. Beretta M, Bauer M, Hirsch E. PI3K signaling in the pathogenesis of obesity: The cause and the cure.

Advances in biological regulation. 2015; 58:1–15. doi: 10.1016/j.jbior.2014.11.004 PMID: 25512233

49. Schultze SM, Hemmings BA, Niessen M, Tschopp O. PI3K/AKT, MAPK and AMPK signalling: protein

kinases in glucose homeostasis. Expert reviews in molecular medicine. 2012; 14:e1. doi: 10.1017/

S1462399411002109 PMID: 22233681
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