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Abstract

The epidermis serves as a critical protective barrier between the internal and external envi-

ronment of the human body. Its remarkable barrier function is established through the kerati-

nocyte (KC) terminal differentiation program. The transcription factors specifically regulating

terminal differentiation remain largely unknown. Using a RNA-sequencing (RNA-seq) profil-

ing approach, we found that forkhead box c 1 (FOXC1) was significantly up-regulated in

human normal primary KC during the course of differentiation. This observation was vali-

dated in human normal primary KC from several different donors and human skin biopsies.

Silencing FOXC1 in human normal primary KC undergoing differentiation led to significant

down-regulation of late terminal differentiation genes markers including epidermal differenti-

ation complex genes, keratinization genes, sphingolipid/ceramide metabolic process genes

and epidermal specific cell-cell adhesion genes. We further demonstrated that FOXC1

works down-stream of ZNF750 and KLF4, and upstream of GRHL3. Thus, this study defines

FOXC1 as a regulator specific for KC terminal differentiation and establishes its potential

position in the genetic regulatory network.

Introduction

Epidermal keratinocyte (KC) terminal differentiation is essential for the acquisition of the nor-

mal skin barrier function and homeostasis [1]. Aberrant barrier function is associated with

various skin diseases, including atopic dermatitis, psoriasis, ichthyosis vulgaris, etc [2,3]. Sev-

eral transcription factors have been identified to regulate the late differentiation and barrier

formation, including KLF4, ZNF750, GATA3, GRHL3, and PRDM1 (Blimp-1)[4–8]. Recently,

two additional transcription factors, MAF and MAFB, were identified as important KC termi-

nal differentiation regulators [9]. MAF and MAFB working together to regulate KLF4,

ZNF750, GRHL3 and PRDM1. These studies suggest there is a regulatory network of
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transcription factors involved in KC terminal differentiation. Due to the high complexity of

this regulatory program, it is likely that additional important regulators in this process remain

to be identified.

Through an exploratory gene profiling analyses of human normal primary KC during the

progression of calcium-induced differentiation, we found that Forkhead box C1 (FOXC1) is

significantly up-regulated in differentiated KC (GSE 73305). FOXC1 is a member of the fork-

head box transcription factors. These proteins are distinguished by a characteristic 100-amino

acid DNA-binding motif that is highly homologous to Drosophila forkhead genes. FOX pro-

teins are critical regulators in the development of tissue differentiation, embryogenesis and

tumorigenesis [10]. Here, in this study, we first validate the discovery from our gene profiling

analyses that FOXC1 is induced in differentiated KC in cultured human primary KC and

human skin biopsies. We further demonstrate that FOXC1 is necessary for human KC termi-

nal differentiation through inhibiting FOXC1 gene expression and FOXC1 over-expression

experiments. In the KC terminal differentiation regulatory network, FOXC1 is a target gene of

ZNF750 and KLF4, and works up-stream of GRHL3.

Results

FOXC1 is up-regulated in differentiated human primary KC

To discover novel effectors for human KC differentiation, we profiled gene expression of

undifferentiated human KC and differentiated KC under Ca2+ -induced differentiation over a

5-day time course (S1 Appendix). The gene profile data have been deposited in the NCBI

Gene Expression Omnibus (access number: GSE 73305). We searched for previously unchar-

acterized transcription factors that were significantly up-regulated during the course of KC dif-

ferentiation. This effort led us to find that FOXC1 is significantly up-regulated during the

progression of KC differentiation (S1 Table).

We first validated the results by real-time PCR and western blots using human primary ker-

atinocytes from different human donors. The cells were differentiated by elevation of calcium

concentration in culture media up to 5 days. As shown in Fig 1A, the mRNA of FOXC1 was

significantly up-regulated during the course of KC differentiation, and its protein expression

was also gradually increased in differentiated KC (Fig 1B). A recent paper reported that

FOXC1 is expressed in mouse hair follicles but absent in mouse epidermis [11]. In our study,

however, we find that FOXC1 is expressed not only in human hair follicles, but also in the dif-

ferentiated KC of inner hair root sheath that surrounds the hair shaft and the epidermis upper

layers of KC (Fig 1C). These data provide in vivo evidence that FOXC1 is associated with KC

differentiation in humans.

Up-regulation of FOXC1 is necessary for KC terminal differentiation

To test for a potential functional role for FOXC1 in KC terminal differentiation, FOXC1

siRNA (FOXC1i) and scrambled siRNA (Controli) duplexes were transfected into undifferen-

tiated KC. The cells were then allowed to undergo Ca2+ -induced differentiation. Although

the early differentiation markers keratin 1 and 10 were unaffected (data not shown), silencing

FOXC1 resulted in reduced induction of late differentiation genes, including filaggrin (FLG),

involucrin (IVL), and loricrin (LOR) in both mRNA and protein levels (Fig 2A & 2B). How-

ever, loss of FOXC1did not change the protein expression of desmocollin 1 (DSC1), a desmo-

some cell-cell adhesion protein (Fig 2B). Inhibition of FOXC1gene expression did not change

cyclin D protein levels as compared to the control cells in Ca2+-driven differentiated KC. We

also examined and compared the cell cycle parameters of undifferentiated KC transfected with

scrambled siRNA and FOXC1 siRNA, and found no difference between normal cells and
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FOXC1 deficient KC (S1 Fig). These data suggest that FOXC1 doesn’t change the cell cycle of

undifferentiated and differentiated KC. We also over-expressed FOXC1 in proliferative undif-

ferentiated KC. In contrast to loss of expression, over-expression of FOXC1 led to increased

mRNA levels of FLG, LOR and IVL in the absence of Ca2+ induction (Fig 3). Due to technical

difficulty of growing primary human KC on glass cover slides for immunostaining, we

couldn’t test the protein expression of FLG, LOR and IVL in the same cells with FOXC1 over-

expression. Nevertheless, these data along with FOXC1 positive staining in human epidermis

upper layer KC demonstrate that FOXC1 plays a role in KC terminal differentiation.

Transcriptome Analysis of FOXC1-regulated Genes

To identify the specific FOXC1 targeting genes among the global gene sets identified in KC dif-

ferentiation, we profiled FOXC1 silenced KC versus control using a RNA-seq approach. We

plotted the transcriptional data in three-dimensional space using principal component analysis

(PCA) as implemented by Partek Genomics Suite using a standard correlation method,

observing clear separation of FOXC1 silenced KC and control KC after differentiation (Fig

4A). In contrast, loss of FOXC1 expression in undifferentiated KC did not separate signifi-

cantly from control cells.

Down-regulated genes in FOXC1 siRNA treated cells represent targets that are positively

regulated by FOXC1. Among the top 50 most significantly differentially expressed genes across

the four experimental groups (False discovery rate<0.01), 42 genes were down-regulated in

FOXC1 silenced differentiated KC (Fig 4B), including KC terminal differentiation markers of

Fig 1. FOXC1 is induced in differentiated keratinocytes. A) mRNA levels of FOXC1 is increasing during the

course of KC differentiation. Data presented as mean ±SEB. “undiff” is the abbreviation of undifferentiated KC. *
p<0.05; ** p<0.01; *** p<0.001. The data are representative of four independent experiments. B) FOXC1 protein

is increasing along with KC differentiation degree. The data represent one of the three independent experiments. C)

Immunohistochemistry staining of FOXC1 protein expression in human epidermis, hair follicle and the differentiated

inner hair root sheath. FOXC1 positive staining is presented as brown color in cell nuclear (Scale bar, 50 μm). The

arrows point to examples of typical positive staining.

doi:10.1371/journal.pone.0167392.g001
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periplakin (PPL)[12], keratinocyte proline-rich protein (KPRP)[13] and Epsin 3 (EPN3)[14],

lipids synthesis genes of serine palmitoyltransferase (SPTSSB) and sphingomyelin phosphodi-

esterase 3 (SMPD3) and FLG maturation related protease gene caspase 14 (CASP14)[15–17].

Additionally, the majority of genes located at epidermal differentiation complex (EDC) of

1p21 [18]were decreased in differentiated KC upon FOXC1 silencing (Table 1). Aside from

the EDC genes, kallikrein genes, that are important proteases functioning in desquamation

and skin barrier homeostasis [19,20], are targets positively regulated by FOXC1 (Table 1).

Fig 2. Silencing FOXC1 leads to deceased gene expression of KC differentiation markers. A) mRNA

expression of FLG, IVL and LOR in FOXC1 silenced differentiated KC and control cells evaluated by real-time PCR.

Data represented as mean ±SEB. The data are representative of four independent experiments. B) Protein

expression of FLG, IVL, LOR, DSC1 and Cyclin D in FOXC1 silenced differentiated KC and control cells evaluated

by western -blot. The data represent one of the three independent experiments.

doi:10.1371/journal.pone.0167392.g002

Fig 3. Over-expression of FOXC1 leads to increased gene expression of KC differentiation markers. mRNA

expression of FLG, IVL and LOR in FOXC1 over-expressed KC and control cells evaluated by real-time PCR. Data

represented as mean ±SEB. The data are representative of three independent experiments.

doi:10.1371/journal.pone.0167392.g003
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Fig 4. Transcription profiles of FOXC1 silenced KC are significantly different from control cells upon

differentiation. A) A principle component assay shows separation of differentiated FOXC1 silenced KC from

control cells. B) Heatmap shows the top 50 most differentially expressed genes in FOXC1 silenced undifferentiated

and differentiated KC as compared to scrambled siRNA silenced undifferentiated and differentiated KC

(FDR<0.01).

doi:10.1371/journal.pone.0167392.g004

Table 1. Down-regulated Keratinocytes differentiation markers in FOXC1 silenced KC.

LCE family SPRR family S100 fuse genes KLK family Lipid synthesis and

transport and other gene

Gene-

Symbol

Log2 Ratio* Gene-Symbol Log2 Ratio* Gene-Symbol Log2 Ratio* Gene-Symbol Log2 Ratio* Gene-Symbol Log2 Ratio*

LCE1A -2.21 SPRR2G -1.25 FLG -3.43 KLK10 -1.09 ABCA12 -1.25

LCE1B -2.94 SPRR3 -1.70 FLG2 -4.70 KLK12 -0.72 ACER1 -1.33

LCE1C -2.52 SPRR4 -2.93 TCHH -0.86 KLK13 -1.30 ACER2 -1.73

LCE1D -2.35 TCHHL1 -2.84 KLK14 -1.07 SMPD3 -2.28

LCE1E -2.41 RPTN -2.74 KLK4 -1.32 SPTSSB -2.50

LCE1F -2.35 CRNN -4.76 KLK5 -0.95

LCE2A -1.58 HRNR -1.47 KLK6 -1.80

LCE2B -2.05 KLK7 -0.90

LCE2C -1.57 KLK9 -3.80

LCE2D -2.04

LCE3C -3.65

LCE3D -1.70

LCE3E -2.10

LCE5A -2.27

LCE6A -2.60

*Gene expression ratio in FOXC1 silenced differentiated KC versus in Scrambled siRNA silenced differentiated KC.

doi:10.1371/journal.pone.0167392.t001
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ABCA12, a gene with function in keratinocyte lamellar body lipid transportation and its loss-

of-function mutations are associated with harlequin ichthyosis [21–23], was also significantly

reduced in FOXC1-silenced KC (Table 1). The identity of FOXC1-regulated genes is consis-

tent with a crucial role for FOXC1 in promoting KC differentiation.

The hierarchy role of FOXC1 in KC regulatory network

ZNF750 and KLF4 are target genes of P63 and MAF/MAFB, and they are also essential regula-

tors of epidermal differentiation [5,9]. To determine the hierarchy cascade of ZNF750, KLF4

and FOXC1, we knocked-down ZNF750 and KLF4 in KC progenitor cells that were then

induced to differentiation. As shown in Fig 5A, FOXC1, KLF4 and ZNF750 were significantly

inhibited by siRNA silencing. As compared to control cells, FOXC1 gene expression was sig-

nificantly down-regulated in ZNF750 and KLF4 silenced KC (Fig 5B). In contrast, gene expres-

sion of ZNF750 and KLF4 were not affected by FOXC1 knockdown (Fig 5C & 5D). We found

that ZNF750 silencing led to reduced gene expression of KLF4, reciprocally, KLF4 silencing

resulted in reduced gene expression of ZNF750 ((Fig 5C & 5D). Additionally, the gene expres-

sion of GRHL3 was down-regulated in ZNF750, KLF4 and FOXC1-silenced KC (Fig 5E).

These results demonstrated that FOXC1 acts down-stream of ZNF750 and KLF4, up-stream of

GRHL3, and ZNF750 and KLF4 reciprocally regulate each other.

To further validate whether FOXC1 is regulated by ZNF750 and KLF4 in keratinocytes, we

used chromatin immune-precipitation (ChIP) to determine whether ZNF750 and KLF4 pro-

tein interact with FOXC1 promoter. We found that both ZNF750 and KLF4 bind to the pro-

moter region of FOXC1: KLF 4 binds to two regions of -873bp to -643 bp and -663bp to -493

bp upstream of the start codon; whereas ZNF750 only binds to the -663bp to -493bp region

up-stream of the FOXC1 start codon (Fig 6).

Discussion

In our current study, we defined a previously unidentified role for the transcription factor

FOXC1 in regulating the differentiation gene program in KC. Through siRNA knockdown

experiments and transcriptome analysis as well as over-expression experiments, plus real-time

PCR and western-blot validation, we demonstrated that FOXC1 activates an array of genes

Fig 5. FOXC1 acts down-stream of ZNF750 and KLF4, and up-stream of GRHL3. A) FOXC1 expression

in ZNF750 and KLF4 silenced KC. B) ZNF750 expression in FOXC1 and KLF4 silenced KC. C) KLF4

expression in ZNF750 and FOXC1 silenced KC. D) GRHL3 expression in ZNF750, KLF4 and FOXC1

silenced KC. Gene expression was evaluated by real time PCR. Data represented as mean ±SEB. The data

are representative of three independent experiments.

doi:10.1371/journal.pone.0167392.g005
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representing the terminal differentiation stage of human epidermal KC. Although a previous

large scale multi-technique study of KC terminal differentiation mentioned the increased

mRNA expression of FOXC1 in the granular layer of KC in human epidermis [24], our study

is the first to demonstrate the regulatory function of FOXC1 in human somatic epidermal KC

differentiation. FOXC1 knockout mice die prenatally with hydrocephalus, eye defects, and

multiple skeletal abnormalities, demonstrating its critical role in the development of these tis-

sues and organs [25]. Its function, however, in epidermal differentiation after birth has never

been studied. Although FOXC1 mutations were found in human Axenfeld-Rieger syndrome

which has no skin barrier disorder, the Axenfeld-Rieger syndrome is resulted from FOXC1

haploinsufficiency, which may not functionally damage enough to cause epidermal symptoms.

Recently, while we were revising our submission, Cui et al published elegant work on the Jour-

nal of Investigative Dermatology reporting that specifically disrupted FOXC1 gene expression

Fig 6. ZNF750 and KLF4 bind to the promoter region of FOXC1 gene. A) ChIP assays were performed using

Ca2+ -driven differentiated keratinocytes. 9 pairs of primers covering 2 kilobase region of the upstream of FOXC1

start codon. Increased binding activity was found in the regions of -873bp to -643bp and -663bp to -493bp up-

stream of the start codon. Data represented as mean ±SEB. B) The Schematic diagram of FOXC1 promoter region.

KLF4 and ZNF750 binding sites are indicated.

doi:10.1371/journal.pone.0167392.g006

FOXC1 Regulates Keratinocytes Differentiation

PLOS ONE | DOI:10.1371/journal.pone.0167392 December 1, 2016 7 / 13



in mouse sweat gland epithelium led to symptoms of hypohidrosis; loss of FOXC1 in mouse

sweat gland epithelium led to enhanced gene expression of Sprr2a/b and KRT8 which formed

a plug to block sweat gland secretion ducts[26]. However, similar to Lay et al’ s report[11], this

article by Cui et al did not show FOXC1 gene expression in mouse epidermis. Comparing our

data generated from human primary KC and human skin biopsies with data from Lay et al and

Cui et al using murine models, we think FOXC1 may function differently in human epidermis

from mouse epidermis.

Although FOXC1 over-expression is found in some types of breast cancer cells, liver cancer

cells, acute myeloid leukemia, and increased FOXC1 in these cancer cells is associated with

proliferation [27–29], there is no study reported FOXC1 over-expression in keratinocyte-

derived cancer. A previous study found that cervical cancer derived cell line, Hela cells, lost

FOXC1 gene expression due to gene mutation. When reintroduction of FOXC1 into Hela cells

restores the cell growth inhibition [30]. The contradictory results obtained from different can-

cer cells and primary normal human KC suggest that FOXC1 has pleiotropic functions.

We show here the hierarchy position of FOXC1 in the transcription factor network regulat-

ing epidermal differentiation. Recently, a few studies began to study the transcriptional regula-

tory network for KC terminal differentiation. Transcription factor p63 is a master regulator

that is required both for the development and homeostasis of stratified epithelial tissues[31].

ZNF750 is a p63 target gene. It is induced during the progression of KC differentiation, and

binds to another KC terminal differentiation transcription factor KLF4. The research results

from Sen et al suggested that ZNF750 worked up-stream of KLF4 [5]. They therefore con-

cluded that ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differ-

entiation. A more recent study found that KLF4, ZNF750 and GRHL3 are not the only targets

of p63, but also down-stream of MAF and MAFB [9]. In our study, through multiple siRNA

silencing experiments, we found that KLF4 and ZNF750 are regulating their expression recip-

rocally. FOXC1 is the target gene for both KLF4 and ZNF750. To validate our data, we used

ChIP assay to analyze whether ZNF750 and KLF4 directly bind to the promoter region of

FOXC1. Our results confirmed that ZNF750 and KLF4 indeed bind to -873bp to -643 bp and

-663bp to -493 bp upstream of the start codon of FOXC1 (Fig 6). Furthermore, we define that

GRHL3 is the target gene of FOXC1, therefore silencing any one of ZNF750, KLF4 and

FOXC1 resulted the reduced gene expression of GRHL3. Indeed, the sets of target genes of

ZNF750, KLF4, FOXC1 and GRHL3 are overlapped, supporting the assumption that these

genes organize as a hierarchy network.

In summary, our work supports a previously unappreciated role for FOXC1 in promoting

the human epidermal KC terminal differentiation program; it acts down-stream of ZNF750

and KLF4 and up-stream of GRHL3.

Materials and Methods

Human normal KC culture and differentiation

Primary human neonatal foreskin KC from 6 different donors were purchased from Thermo

Fisher Scientific and maintained in EpiLife Medium containing 0.06 mM CaCl2 and S7 supple-

mental reagent under standard tissue culture conditions. The cells were seeded in 24 well-

dishes at 2x105/well to form a confluent monolayer. The following day, the cells were subjected

to differentiation by increasing CaCl2 to 1.3mM in the culture media. The cells were harvested

for RNA extraction before differentiation, differentiation for 24 hours (D1), 48 hours (D2), 72

hours (D3), 96 hours (D4) and 120 hours (D5). Then RNA and protein were prepared from

the cells.

FOXC1 Regulates Keratinocytes Differentiation
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siRNA knockdown gene expression

FOXC1 siRNA duplexes, ZNF750 siRNA duplexes, KLF4 siRNA and control non-targeting

scrambled siRNA duplexes were purchased from Life Technologies. The sequence for KLF4

siRNA are: sense: UGACCAGGCACUACCGUAAtt; antisense: UUACGGUAGUGCCUG

GUCAtt. The sequence for ZNF750 siRNA are: sense: CCUCAAUGUUGUGAACGGAtt;

antisense: UCCGUUCACAACAUUGAGGct. The sequence for FOXC1 siRNA are: sense 1:

GAAAGUCGCUUUCUUUUUAtt; antisense: UAAAAAGAAAGCGACUUUCat. Sense 2:

ACUCUCCAGUGAACGGGAAtt, antisense: UUCCCGUUCACUGGAGAGUtg; Sense 3:

AGAGGAUCGGCUUGAACAAtt; anti-sense: UUGUUCAAGCCGAUCCUCUgt. KCs were

plated in 24 well plates at 1x105 per well the day before transfection. Cells were transfected

with siRNA duplexes at final concentration of 10 nM using lipofectamine 2000 according to

the manufacturer’s instructions (Invitrogen, Carlsbad, CA). After 24 hours incubation, the

cells were replaced with EpiLife supplemented either with 0.06mM or 1.3 mM calcium for up

to 120 hours. Then the cells were used for total RNA and protein extraction.

Total RNA extraction and real-time PCR

Total RNA was extracted using RNeasy mini kit according to the manufacture’s guideline

(QIAGEN, MD). RNA was then reverse transcribed into cDNA using superScript1 III reverse

transcriptase from Invitrogen (Portland, OR) and analyzed by real time RT-PCR using an ABI

Prism 7000 sequence detector (Applied Biosystems, Foster City, CA) as previously described

(Nomura et al, 2003). Primers and probes for human FOXC1 (Hs00559473_s1), FLG
(Hs00856927_g1), IVL (Hs00846307_s1), LOR (Hs01894962_s1), ZNF750 (Hs01563263_g1),

KLF4 (Hs00358836_m1), GRHL3 (Hs00297962_m1) and 18S (Hs99999901_s1) were pur-

chased from Applied Biosystems (Foster City, CA). Quantities of all target genes in test sam-

ples were normalized to the corresponding 18S levels.

Western-blot protein expression

Cells were lysed in protein lysis buffer (20mM Tris-HCl pH7.4, 150 mM NaCl, 1mM EDTA,

1% Triton-X100) supplemented with protease inhibitors. After collecting the aqueous soluble

protein, the un-soluble portion were solubilized in 6M urea supplemented with proteinase

inhibitors. The proteins were then used for western-blot assay following the standard proce-

dure. The antibodies against human FOXC1, IVL, LOR, FLG, DSC1 and cyclin D were pur-

chased from Abcam (Cambridge, MA). The mouse monoclonal antibody against human β-

actin was purchased from Sigma Aldrich (St. Louis, MO).

Immunohistochemistry staining of normal human skin

Normal human skin were obtained as discarded materials from plastic surgeries after approval

of the human research committee of the first affiliated hospital of Jinan University at Guang-

zhou, China. Written informed consents were obtained from participating human subjects.

Rabbit polyclonal anti-FOXC1 antibodies (recognize the region of amino acids 250–300 of

FOXC1 protein) were purchased from Abcam (Catalog number ab115201, Cambridge, MA).

After sequential steps of deparafinization, antigen retrieval, and inactivation of endogenous

peroxidase, normal human skin sections (5 um) were blocked with 5% BSA, then incubated

with primary antibody at 40C overnight. The following day, skin sections were washed by

1xPBS, incubated with secondary antibody conjugated HRP for 30 minutes, and then devel-

oped with 3, 3’-Diaminobenzidine. Hematoxylin solution was used to stain the cell nucleus.

Pictures were acquired using a Leica DM6000 microscope system.

FOXC1 Regulates Keratinocytes Differentiation
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Overexpression of FOXC1 in undifferentiated primary KC

pLenti-C-RFP and pCMV6-entry-FOXC1(RC215629) plasmids were purchased from Origene

Technologies (Rockville, MD). Full-length cDNA of FOXC1 was cut by Sgf I and Mlu I from

pCMV6-entry-FOXC1 plasmid and then inserted into pLenti-C-RFP backbone to construct

pLenti-C-RFP-FOXC1. The lentiviral particles of pLenti-C-RFP and pLenti-C-RFP-FOXC1

were generated in 293FT cells by co-transfection with packaging plasmids using Lenti-vpak

packing kit (Origene Technologies, Rockville, MD). The viral supernatants were harvested and

infected undifferentiated primary KC. 5 days after infection, the cells were harvested for RNA

extraction and real-PCR.

RNA-Sequencing of transcriptome profiling

Total RNA were extracted KC transfected with scrambled siRNA and FOXC1 siRNA duplexes

under undifferentiated conditions and differentiated for 5 days using RNeasy mini kit (QIA-

GEN, MD). RNA purity and concentration was measured on an Agilent Bioanalyzer (Agilent

Technol., Palo Alto, CA). A total of 1 μg total RNA was used to prepare the Illumina HiSeq

libraries according to manufacturer’s instructions of the TruSeq RNA kit. Library preparation

and HiSeq sequencing was performed at BGI technologies in China (Shenzhen, China).

Transcript levels were quantified in reads per kilobase of exon per million mapped reads

(RPKM). The RPKM reflects the molar concentration of a transcript in the starting sample by

normalizing for gene length and for the total read number in the measurement. This allows

comparison of transcript levels both within and between experiments. The sequencing reads

were analyzed using the computational pipeline of Bowtie, Tophat, and Cufflinks [32]. The

mapped and aligned files of this study, along with processed data of RPKM for all detected

transcripts have been deposited in the NCBI Gene Expression Omnibus (Access number:

GSE76647).

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed using Pierce Agarose ChIP kit (Thermo Scientific, prod#26156)

Following the manufacture’s protocol. Briefly, human primary KC were differentiated by

elevated the calcium to 1.3mM and cultured for 3 days. The cells were then incubated with 1%

formaldehyde for 10 minutes at 37˚C, followed by incubation with 1x Glycine solution for 5

minutes in room temperature. The cells were then collected, lysed and digested by MNase.

Protein-chromatin complexes were immunoprecipitated with antibodies against KLF4,

ZNF750, or rabbit IgG (negative control). Anti-KLF4, ZNF750 and rabbit IgG were purchased

from Abcam (Cambridge, MA). Complexes were separated by incubation with ChIP grade

proteinA/G agarose. Chromatin DNA fragments were then eluted and purified for quantitative

real-time PCR. The primers used for amplification of specific regions of FOXC1 promoter

were described in supplemental materials.

Statistical and Bioinformatic Analysis

Partek Genomics Suite (www.partek.com) was used to calculate the normalized gene expres-

sion levels and run the statistical analysis on the RNA-seq data. Partek’s transcript algorithm is

similar to the one in Xing et al [33] except Partek quantifies expression across the whole

genome at the same time rather than each gene separately, and accounts for the fragmentation

step in RNA-seq by normalizing by transcript length (http://www.partek.com/Tutorials/

microarray/User_Guides/RNASEQ.pdf). A two-way ANOVA model was applied to the exper-

imental groups and corrected for multiple testing at FDR<0.01. The statistical analysis of real-
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time qPCR data was conducted using Graph Pad prism, version 5.03 (San Diego, CA). Com-

parisons of expression levels were performed using ANOVA techniques and independent sam-

ple t tests as appropriate. Differences were considered significant at P<0.05.

Supporting Information

S1 Appendix. Supplemental materials and methods.

(DOCX)

S1 Fig. Cell cycle analysis of KC transfected with scrambled siRNA and FOXC1 siRNA

duplexes.

(PDF)

S1 Table. The top 10 most up-regulated TFs during the course of KC differentiation.

(DOCX)

Acknowledgments

Lianghua Bin is the advisory board member of Astellas Pharma Inc. The authors wish to thank

the Edelstein Family Foundation for their generous support of this work.

Author Contributions

Conceptualization: LB.

Formal analysis: ME.

Funding acquisition: LB DYML.

Investigation: LB LZ XW BR.

Methodology: LB.

Project administration: LB.

Resources: LD HY.

Supervision: LB DYML.

Validation: LB.

Visualization: LB.

Writing – original draft: LB.

Writing – review & editing: LB DYML.

References
1. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev

Mol Cell Biol 6: 328–340. doi: 10.1038/nrm1619 PMID: 15803139

2. Czarnowicki T, Krueger JG, Guttman-Yassky E (2014) Skin barrier and immune dysregulation in atopic

dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol Pract 2: 371–

379; quiz 380–371. doi: 10.1016/j.jaip.2014.03.006 PMID: 25017523

3. Stawczyk-Macieja M, Szczerkowska-Dobosz A, Rebala K, Purzycka-Bohdan D (2015) Genetic back-

ground of skin barrier dysfunction in the pathogenesis of psoriasis vulgaris. Postepy Dermatol Alergol

32: 123–126. doi: 10.5114/pdia.2014.44003 PMID: 26015782

4. Segre JA, Bauer C, Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier

function of the skin. Nat Genet 22: 356–360. doi: 10.1038/11926 PMID: 10431239

FOXC1 Regulates Keratinocytes Differentiation

PLOS ONE | DOI:10.1371/journal.pone.0167392 December 1, 2016 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167392.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167392.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167392.s003
http://dx.doi.org/10.1038/nrm1619
http://www.ncbi.nlm.nih.gov/pubmed/15803139
http://dx.doi.org/10.1016/j.jaip.2014.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25017523
http://dx.doi.org/10.5114/pdia.2014.44003
http://www.ncbi.nlm.nih.gov/pubmed/26015782
http://dx.doi.org/10.1038/11926
http://www.ncbi.nlm.nih.gov/pubmed/10431239


5. Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ, et al. (2012) ZNF750 is a p63 target

gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 22: 669–677. doi: 10.1016/

j.devcel.2011.12.001 PMID: 22364861

6. de Guzman Strong C, Wertz PW, Wang C, Yang F, Meltzer PS, Andl T, et al. (2006) Lipid defect under-

lies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J Cell Biol 175: 661–

670. doi: 10.1083/jcb.200605057 PMID: 17116754

7. Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N, et al. (2006) The Grainyhead-like epithelial trans-

activator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4.

Dev Biol 299: 122–136. doi: 10.1016/j.ydbio.2006.07.015 PMID: 16949565

8. Magnusdottir E, Kalachikov S, Mizukoshi K, Savitsky D, Ishida-Yamamoto A, Panteleyev AA, et al.

(2007) Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc

Natl Acad Sci U S A 104: 14988–14993. doi: 10.1073/pnas.0707323104 PMID: 17846422

9. Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, et al. (2015) A LncRNA-MAF:

MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32: 693–706. doi: 10.

1016/j.devcel.2015.01.028 PMID: 25805135

10. Kaufmann E, Knochel W (1996) Five years on the wings of fork head. Mech Dev 57: 3–20. PMID:

8817449

11. Lay K, Kume T, Fuchs E (2016) FOXC1 maintains the hair follicle stem cell niche and governs stem cell

quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci U S A 113: E1506–

1515. doi: 10.1073/pnas.1601569113 PMID: 26912458

12. Kalinin AE, Idler WW, Marekov LN, McPhie P, Bowers B, Steinert PM, et al. (2004) Co-assembly of

envoplakin and periplakin into oligomers and Ca(2+)-dependent vesicle binding: implications for corni-

fied cell envelope formation in stratified squamous epithelia. J Biol Chem 279: 22773–22780. doi: 10.

1074/jbc.M313660200 PMID: 15033990

13. Lee WH, Jang S, Lee JS, Lee Y, Seo EY, You KH, et al. (2005) Molecular cloning and expression of

human keratinocyte proline-rich protein (hKPRP), an epidermal marker isolated from calcium-induced

differentiating keratinocytes. J Invest Dermatol 125: 995–1000. doi: 10.1111/j.0022-202X.2005.23887.

x PMID: 16297201

14. Spradling KD, McDaniel AE, Lohi J, Pilcher BK (2001) Epsin 3 is a novel extracellular matrix-induced

transcript specific to wounded epithelia. J Biol Chem 276: 29257–29267. doi: 10.1074/jbc.M101663200

PMID: 11359770

15. Zhao L, Spassieva S, Gable K, Gupta SD, Shi LY, Wang J, et al. (2015) Elevation of 20-carbon long

chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegenera-

tion. Proc Natl Acad Sci U S A 112: 12962–12967. doi: 10.1073/pnas.1516733112 PMID: 26438849

16. Marchesini N, Luberto C, Hannun YA (2003) Biochemical properties of mammalian neutral sphingo-

myelinase 2 and its role in sphingolipid metabolism. J Biol Chem 278: 13775–13783. doi: 10.1074/jbc.

M212262200 PMID: 12566438

17. Jung M, Choi J, Lee SA, Kim H, Hwang J, Choi EH (2014) Pyrrolidone carboxylic acid levels or cas-

pase-14 expression in the corneocytes of lesional skin correlates with clinical severity, skin barrier func-

tion and lesional inflammation in atopic dermatitis. J Dermatol Sci 76: 231–239. doi: 10.1016/j.jdermsci.

2014.09.004 PMID: 25315296

18. Kypriotou M, Huber M, Hohl D (2012) The human epidermal differentiation complex: cornified envelope

precursors, S100 proteins and the ’fused genes’ family. Exp Dermatol 21: 643–649. doi: 10.1111/j.

1600-0625.2012.01472.x PMID: 22507538

19. Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, et al. (2004) Degradation of corneo-

desmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/

KLK7/hK7. J Invest Dermatol 122: 1235–1244. doi: 10.1111/j.0022-202X.2004.22512.x PMID:

15140227

20. Furio L, Pampalakis G, Michael IP, Nagy A, Sotiropoulou G, Hovnanian A (2015) KLK5 Inactivation

Reverses Cutaneous Hallmarks of Netherton Syndrome. PLoS Genet 11: e1005389. doi: 10.1371/

journal.pgen.1005389 PMID: 26390218

21. Kelsell DP, Norgett EE, Unsworth H, Teh MT, Cullup T, Mein CA, et al. (2005) Mutations in ABCA12

underlie the severe congenital skin disease harlequin ichthyosis. Am J Hum Genet 76: 794–803. doi:

10.1086/429844 PMID: 15756637

22. Akiyama M (2014) The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentia-

tion. Biochim Biophys Acta 1841: 435–440. doi: 10.1016/j.bbalip.2013.08.009 PMID: 23954554

23. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, et al. (2005) Mutations in lipid

transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin

Invest 115: 1777–1784. doi: 10.1172/JCI24834 PMID: 16007253

FOXC1 Regulates Keratinocytes Differentiation

PLOS ONE | DOI:10.1371/journal.pone.0167392 December 1, 2016 12 / 13

http://dx.doi.org/10.1016/j.devcel.2011.12.001
http://dx.doi.org/10.1016/j.devcel.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22364861
http://dx.doi.org/10.1083/jcb.200605057
http://www.ncbi.nlm.nih.gov/pubmed/17116754
http://dx.doi.org/10.1016/j.ydbio.2006.07.015
http://www.ncbi.nlm.nih.gov/pubmed/16949565
http://dx.doi.org/10.1073/pnas.0707323104
http://www.ncbi.nlm.nih.gov/pubmed/17846422
http://dx.doi.org/10.1016/j.devcel.2015.01.028
http://dx.doi.org/10.1016/j.devcel.2015.01.028
http://www.ncbi.nlm.nih.gov/pubmed/25805135
http://www.ncbi.nlm.nih.gov/pubmed/8817449
http://dx.doi.org/10.1073/pnas.1601569113
http://www.ncbi.nlm.nih.gov/pubmed/26912458
http://dx.doi.org/10.1074/jbc.M313660200
http://dx.doi.org/10.1074/jbc.M313660200
http://www.ncbi.nlm.nih.gov/pubmed/15033990
http://dx.doi.org/10.1111/j.0022-202X.2005.23887.x
http://dx.doi.org/10.1111/j.0022-202X.2005.23887.x
http://www.ncbi.nlm.nih.gov/pubmed/16297201
http://dx.doi.org/10.1074/jbc.M101663200
http://www.ncbi.nlm.nih.gov/pubmed/11359770
http://dx.doi.org/10.1073/pnas.1516733112
http://www.ncbi.nlm.nih.gov/pubmed/26438849
http://dx.doi.org/10.1074/jbc.M212262200
http://dx.doi.org/10.1074/jbc.M212262200
http://www.ncbi.nlm.nih.gov/pubmed/12566438
http://dx.doi.org/10.1016/j.jdermsci.2014.09.004
http://dx.doi.org/10.1016/j.jdermsci.2014.09.004
http://www.ncbi.nlm.nih.gov/pubmed/25315296
http://dx.doi.org/10.1111/j.1600-0625.2012.01472.x
http://dx.doi.org/10.1111/j.1600-0625.2012.01472.x
http://www.ncbi.nlm.nih.gov/pubmed/22507538
http://dx.doi.org/10.1111/j.0022-202X.2004.22512.x
http://www.ncbi.nlm.nih.gov/pubmed/15140227
http://dx.doi.org/10.1371/journal.pgen.1005389
http://dx.doi.org/10.1371/journal.pgen.1005389
http://www.ncbi.nlm.nih.gov/pubmed/26390218
http://dx.doi.org/10.1086/429844
http://www.ncbi.nlm.nih.gov/pubmed/15756637
http://dx.doi.org/10.1016/j.bbalip.2013.08.009
http://www.ncbi.nlm.nih.gov/pubmed/23954554
http://dx.doi.org/10.1172/JCI24834
http://www.ncbi.nlm.nih.gov/pubmed/16007253


24. Mattiuzzo NR, Toulza E, Jonca N, Serre G, Guerrin M (2011) A large-scale multi-technique approach

identifies forty-nine new players of keratinocyte terminal differentiation in human epidermis. Exp Derma-

tol 20: 113–118. doi: 10.1111/j.1600-0625.2010.01188.x PMID: 21255089

25. Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL (1998) The forkhead/winged helix gene

Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93: 985–996. PMID:

9635428

26. Cui CY, Ishii R, Campbell DP, Michel M, Piao Y, Kume T, et al. (2016) Foxc1 Ablated Mice Are Anhidro-

tic and Recapitulate Features of Human Miliaria Sweat Retention Disorder. J Invest Dermatol.

27. Tkocz D, Crawford NT, Buckley NE, Berry FB, Kennedy RD, Gorski JJ, et al. (2012) BRCA1 and

GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 31:

3667–3678. doi: 10.1038/onc.2011.531 PMID: 22120723

28. Somerville TD, Wiseman DH, Spencer GJ, Huang X, Lynch JT, Leong HS, et al. (2015) Frequent Dere-

pression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia. Cancer

Cell 28: 329–342. doi: 10.1016/j.ccell.2015.07.017 PMID: 26373280

29. Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z, et al. (2013) Overexpression of forkhead box C1 pro-

motes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 57:

610–624. doi: 10.1002/hep.26029 PMID: 22911555

30. Zhou Y, Kato H, Asanoma K, Kondo H, Arima T, Kato K, et al. (2002) Identification of FOXC1 as a TGF-

beta1 responsive gene and its involvement in negative regulation of cell growth. Genomics 80: 465–

472. PMID: 12408963

31. Koster MI, Roop DR (2004) The role of p63 in development and differentiation of the epidermis. J Der-

matol Sci 34: 3–9. PMID: 14757276

32. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. (2010) Transcript assem-

bly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell dif-

ferentiation. Nat Biotechnol 28: 511–515. doi: 10.1038/nbt.1621 PMID: 20436464

33. Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C (2006) An expectation-maximization algorithm for probabilis-

tic reconstructions of full-length isoforms from splice graphs. Nucleic Acids Res 34: 3150–3160. doi:

10.1093/nar/gkl396 PMID: 16757580

FOXC1 Regulates Keratinocytes Differentiation

PLOS ONE | DOI:10.1371/journal.pone.0167392 December 1, 2016 13 / 13

http://dx.doi.org/10.1111/j.1600-0625.2010.01188.x
http://www.ncbi.nlm.nih.gov/pubmed/21255089
http://www.ncbi.nlm.nih.gov/pubmed/9635428
http://dx.doi.org/10.1038/onc.2011.531
http://www.ncbi.nlm.nih.gov/pubmed/22120723
http://dx.doi.org/10.1016/j.ccell.2015.07.017
http://www.ncbi.nlm.nih.gov/pubmed/26373280
http://dx.doi.org/10.1002/hep.26029
http://www.ncbi.nlm.nih.gov/pubmed/22911555
http://www.ncbi.nlm.nih.gov/pubmed/12408963
http://www.ncbi.nlm.nih.gov/pubmed/14757276
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pubmed/20436464
http://dx.doi.org/10.1093/nar/gkl396
http://www.ncbi.nlm.nih.gov/pubmed/16757580

