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SUMMARY

Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely 

used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein 

production and to guide cell engineering and bioprocess optimization, we reconstructed the 

metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus 
genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell 

line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells, provide the biochemical basis of 

growth and recombinant protein production. The models accurately predict growth phenotypes and 

known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of 

CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase 

inhibitors, inefficiently increase product yield. However, our simulations show the metabolic 

resources in CHO are >3 times more efficiently utilized for growth or recombinant protein 

synthesis following targeted efforts to engineer the CHO secretory pathway. This model will 

further accelerate CHO cell engineering and help optimize bioprocesses.

Graphical abstract
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INTRODUCTION

Since their first commercial use in the late 1980s to produce tissue plasminogen activator, 

Chinese hamster ovary (CHO) cell lines have remained the platform of choice for producing 

proteins requiring complex post-translational modifications for therapeutic activity and 

regulatory approval (Kildegaard et al., 2013). Over the years, dramatic increases in product 

titer have been achieved in CHO cells as the result of bioprocess optimizations that increased 

cell culture density and longevity (Jayapal et al., 2007), resulting in CHO being the 

dominant host cell line for biotherapeutic production (Walsh, 2014). Despite these 

achievements, the molecular basis of protein production in CHO cells remains poorly 

characterized. Recent access to genome sequences (Brinkrolf et al., 2013; Lewis et al., 2013; 

Xu et al., 2011) and advances in systems biology (Gutierrez and Lewis, 2015) now enable 

the construction of a mechanistic basis for growth and protein production in CHO cells.

Three key cellular processes drive recombinant protein production: transgene expression, 

metabolism, and protein secretion. Metabolism is particularly important and inexorably 

linked to the others. For example, metabolic enzymes, including dihydrofolate reductase 

(Kaufman and Sharp, 1982) and glutamine synthetase (Bebbington et al., 1992), have served 

as selection systems for transfecting and amplifying transgenes in CHO cells. Additionally, 

metabolism provides the building blocks for the protein product and the secretory machinery 

needed to secrete it. Cell metabolism has been modulated extensively in the enhancement of 

CHO-based bioprocessing. Specifically, the balance of cellular metabolic demands has been 

targeted through media optimization to improve cell density, growth, and product yields 

(Castro et al., 1992). Efforts have also reduced the secretion of undesirable byproducts (e.g., 

lactate and NH3) to ameliorate the impact on cell growth (Lao and Toth, 1997), product 

quality (Chen and Harcum, 2006), and the cellular metabolic state (Yang and Butler, 2000). 

Additionally, metabolism influences product quality attributes (e.g., drug efficacy and 

compatibility with the human immune system) including glycosylation (Fan et al., 2015), 

oxidation, acetylation, and disulfide bridge formation (Lorendeau et al., 2015). Intuitive 

modifications of metabolic enzyme levels have improved protein production and quality 

(Altamirano et al., 2013); however, since each enzyme contributes to pathways, imbalances 

of components and interactions between pathways can yield unexpected results. Thus, a 

more complete understanding of CHO metabolism is vital to identify metabolic bottlenecks 

in CHO cell culture and to rationally guide complex cell engineering efforts.

To cope with the complexity of CHO metabolism, computational models have been applied 

to study CHO under various conditions (Carinhas et al., 2013; Nolan and Lee, 2011; 

Selvarasu et al., 2012; Sengupta et al., 2011; Templeton et al., 2013; Zamorano et al., 2010). 

Studies have focused primarily on central metabolism (Templeton et al., 2013) or used 

models extrapolated from mice (Martínez et al., 2015; Selvarasu et al., 2012; Smallbone, 

2013). However, CHO-specific genome-scale metabolic models (GeMs) are now within 

reach, given the recent sequencing of the CHO-K1 and Chinese hamster genomes (Brinkrolf 

et al., 2013; Lewis et al., 2013; Xu et al., 2011). GeMs (Lewis et al., 2012) contain detailed 

information about all known biochemical reactions in a specific organism based on its 

genome and physiological information. Since metabolic pathways synthesize the 

components necessary for growth and survival, these models link the genetic basis of a cell 
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to phenotypic capabilities, allowing more precise and complex metabolic engineering efforts 

(Curran et al., 2013; Gutierrez and Lewis, 2015).

Here we present a genome-scale metabolic network reconstruction for CHO cells that 

specifically links the genes encoded by the CHO-K1 and hamster genome to growth and 

recombinant protein production. This network was constructed and carefully curated by 

dozens of researchers in the community, and delineates the genetic basis of the metabolic 

pathways fueling all cell functions in CHO. We further built specific models for the CHO-

K1, -S, and -DG44 cell lines and demonstrate that the models accurately predict important 

phenotypes such as growth rate, and unique metabolic features of CHO cells (e.g., 

auxotrophies). Using these models we analyzed the metabolic impact of common bioprocess 

treatments that aim to increase cell productivity. We found that while the treatments 

increased product titers by liberating cell resources, the cells failed to efficiently redirect 

metabolic precursors towards recombinant protein production after treatment. However, 

targeted engineering efforts showed more efficient redirection. Differences between 

treatments in redirection efficacy highlight potential avenues for further engineering efforts. 

Thus, the genome-scale network of CHO metabolism is an invaluable tool for data analysis, 

bioprocess optimization, and CHO cell engineering efforts.

RESULTS

A community genome-scale metabolic network reconstruction of Cricetulus griseus

Draft C. griseus metabolic models were reconstructed independently by multiple research 

groups. Subsequently, these models were merged using a systematic reconciliation process 

to capture all the careful curation that had gone into each model by groups representing 

diverse areas of expertise (Figure 1). As a result, we constructed and present a community 

consensus model for CHO metabolism and protein secretion.

The reconciliation and reconstruction effort first identified and curated the biochemical 

relationships linking genes, proteins, and reactions (GPRs) for human metabolism from 

established genome-scale reconstructions for Homo sapiens (Duarte et al., 2007; Quek et al., 

2014; Swainston et al., 2016). CHO homologs to human genes were found using three 

different methods: reciprocal BLAST, the standalone InParanoid program v4.1 (Ostlund et 

al., 2010), and gene name matching. Based on this effort, putative CHO GPRs were 

constructed. These GPRs were then compared against the GPRs from each of the earlier 

independently-developed genome-scale metabolic network reconstructions. Manual curation 

of the reactions ensured accuracy of the GPRs, subcellular compartmentalization, and 

reaction stoichiometry. Additional CHO-specific reactions were included based on literature 

support and updates were made to mitochondrial and peroxisomal beta oxidation to reflect 

biochemical GPRs (Figure 2A–B).

The resulting community genome-scale metabolic network reconstruction, based on 

literature support from over 1,300 publications, includes 1,766 genes and 3,229 reactions 

associated with those genes. As is common when building genome-scale metabolic models, 

an additional 3,434 reactions without gene associations were added to convert the 

reconstruction to a computable model. These include boundary reactions defining metabolite 
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uptake and secretion rates, as well as reactions where the specific gene responsible is 

unknown (e.g., transporters). In total, the global C. griseus metabolic model, iCHO1766, 

contains 6,663 metabolic reactions involving 2,341 unique metabolites (4,456 metabolites 

when accounting for subcellular compartmentalization). Only 22% (1,490) of the reactions 

were present in all three input models. Furthermore, almost 25% (1,571) of the reactions 

were newly added, in that these reactions were not present in any of the initial genome-scale 

CHO models. A more detailed breakdown of reaction sources is shown in Figure 2C.

To formulate a GeM that can simulate growth and recombinant protein production, we used 

known compositional data to define the relative amounts of each metabolite needed for 

synthesizing all cell components (i.e., biomass (Feist and Palsson, 2010)) and the 

recombinant proteins erythropoietin (EPO) and IgG. Due to differences between calculated 

gross cell composition in nonproducing CHO cell lines and measured values for IgG-

producing hybridoma lines (i.e. measured protein fraction was more than 70% of cell dry 

weight in a producing cell, while calculated to be 55% in a non-producing cell), two separate 

biomass reactions were formulated (see STAR Methods). Cell-line specific models for 

CHO-K1, -S, and -DG44 were constructed using the GIMME algorithm (Becker and 

Palsson, 2008) and contained 4,718, 4,672, and 4,502 reactions, respectively (Figure 2D). 

The CHO-S and CHO-K1 models were built using RNA-Seq and proteomic data for both 

cell lines. In the proteomic data, 1,326 and 3,200 proteins were detected in CHO-S and 

CHO-K1, respectively. The CHO-DG44 model was built based on microarray data for 

13,504 genes (see STAR Methods for data generation protocols, and Supplemental Data S4 

for data used for model construction). Additional information on reconstruction and model 

content is available in Supplemental Data S1, including supporting literature associated with 

reactions, metabolites, and/or genes. The model accounts for 9 compartments (cytosol, 

mitochondria, nucleus, endoplasmic reticulum, Golgi complex, lysosome, peroxisome, 

mitochondrial intermembrane space, and extracellular space) with the subcellular 

localization of reactions summarized in Figure 2E. The global model and reconstruction are 

available to browse and download at the BiGG Models Database (King et al., 2015) (http://

bigg.ucsd.edu), while the three cell line models and global model are additionally hosted at 

http://www.CHOgenome.org (Kremkow et al., 2015).

CHO cell-line specific models recapitulate experimental growth rates

Genome-scale models can be used to predict phenotypes, including growth rates, when 

uptake and secretion rates are provided for major metabolites. Thus, to evaluate the models, 

we simulated growth rates for several different cell lines producing recombinant proteins. 

Data were acquired from literature (Ahn and Antoniewicz, 2013, 2011; Carinhas et al., 

2013; Martínez et al., 2015; Selvarasu et al., 2012) and from new experiments presented 

here (see STAR Methods). Measured uptake and secretion rates for major nutrients and 

recombinant proteins were applied as constraints to the appropriate cell-line specific model, 

and flux balance analysis was used to predict growth rates by optimizing for flux through the 

appropriate biomass reaction (see Supplemental Data S3 for constraints). These 

computationally predicted growth rates were—on average—within 25% of the measured 

growth rates for cells grown in serum free conditions (Figure 3). Additional predictions were 

Hefzi et al. Page 5

Cell Syst. Author manuscript; available in PMC 2017 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bigg.ucsd.edu
http://bigg.ucsd.edu
http://www.CHOgenome.org


made for datasets exhibiting high uncertainty in calculated uptake and secretion rates, as 

well as cells grown in serum containing media (Supplemental Figures S3–5).

Cell-line specific models recapitulate known amino acid auxotrophies

CHO cells exhibit several amino acid auxotrophies (Kao and Puck, 1967; Naylor et al., 

1979; Valle et al., 1973) beyond the nine essential amino acids in human (His, Ile, Leu, Lys, 

Met, Phe, Thr, Trp, and Val) and arginine, which is additionally essential in rats for normal 

growth (Borman et al., 1946). The CHO-specific auxotrophies include cysteine, proline, and 

at least one report of an asparagine auxotrophy (Duarte et al., 2014). While cysteine, proline, 

asparagine, and arginine are essential based on experimental evidence, homologs for all 

genes required for their biosynthesis are in the C. griseus genome. Thus, we tested the cell 

line specific models for agreement with the reported amino acid auxotrophies and 

investigated the cell line specific transcriptomic and proteomic data (see Supplemental Data 

S4) to understand the underlying mechanisms.

All the cell line models reproduced the arginine and cysteine auxotrophies. Arginine 

biosynthesis was inhibited due to low or absent gene expression of one or both arginine 

biosynthetic genes (Figure 4A), and cysteine synthesis was disabled since cystathionine 

lyase and synthase were not expressed (Figure 4B). The asparagine synthase reaction, on the 

other hand, has strong transcriptomic and proteomic evidence for its presence in CHO cell 

lines (Figure 4D). Therefore, we experimentally tested if our CHO-S and CHO-K1 lines 

were auxotrophic for asparagine. Consistent with our models and the expression data, the 

cells could grow without asparagine (Supplemental Table S1). The reported asparagine 

auxotrophy was likely unique to the CHOK1SV cell line used in the earlier study (Duarte et 

al., 2014), and not a general characteristic of CHO cells.

We next analyzed the source of the proline auxotrophy in CHO cells (Figure 4C). Mammals 

can synthesize proline from arginine or glutamate; however, previous reports show that 

CHO-K1 cells do not incorporate glutamate into proline, and exhibit a drastically decreased 

(yet present) rate of ornithine transaminase activity (<10% of the activity in C. griseus lung 

cells) (Valle et al., 1973). Both biosynthetic pathways normally converge upon glutamate-5-

semialdehyde, which is then converted to proline after spontaneous decomposition to 1-

pyrroline-5-carboxylate. In the CHO-S and CHO-DG44 models, the pathway from 

glutamate is missing due to a lack of the necessary protein and/or mRNA expression. The 

GIMME algorithm incorrectly included the pathway from arginine to proline (via ornithine) 

in the CHO-S and CHO-DG44 models (the CHO-K1 model was missing the arginase 

reaction); however, careful inspection of the transcriptomic and proteomic data demonstrate 

that this pathway is missing expression of at least one enzyme in all of the cell lines. The 

gene responsible for the final step in proline biosynthesis, reduction of pyrroline-5-

carboxylate, is expressed in all three cell lines, consistent with previous reports showing 

activity of the enzyme in CHO-K1 (Kao and Puck, 1967). Thus, the model-predicted proline 

synthesis capabilities show some inconsistencies with experimental observations due to 

limitations of the GIMME algorithm (i.e., it erroneously added the pathway linking arginine 

to proline); however, by overlaying transcriptomic and proteomic data, the reconstruction 
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provided an explanation for the proline auxotrophy characteristic of CHO cells (Figure 4C), 

guiding further model curation and enabling more accurate model predictions.

An examination of C. griseus transcriptomic data from multiple tissues (Lewis et al., 2013) 

(see Supplemental Data S4) further elucidates which auxotrophies are characteristic of the 

organism and which are cell line-specific. The enzymes needed for cysteine and asparagine 

synthesis were expressed in the hamster tissues, consistent with their nonessentiality in rat 

and human (Figure 4B, D). In the hamster tissues, the arginine biosynthetic pathway has 

high expression in one of two necessary reactions. The second reaction, argininosuccinate 

synthase, exhibits low expression levels (Figure 4A). This is perhaps unsurprising since rats 

can synthesize arginine, but not in levels required to support normal growth (Borman et al., 

1946). Finally, synthesis of proline via ornithine shows expression in the hamster tissues, 

consistent with reports of higher ornithine transaminase expression in C. griseus lung cells 

(Valle et al., 1973); the pathway via glutamate also shows expression in the hamster tissues 

(Figure 4C). These data suggest that the cysteine and proline auxotrophies are specific to the 

CHO cell lines and the arginine auxotrophy is—at least partially—shared between the 

hamster and the CHO cell lines. Thus, by analyzing transcriptomic and proteomic data in the 

context of the cellular pathways, we are able to elucidate the functional basis for known 

amino acid auxotrophies in CHO cells.

Cell engineering enhances the efficiency of resource utilization compared to common 
bioprocess treatments

Substantial increases have been achieved in recombinant protein yields in CHO-based 

bioprocessing in part by balancing nutrient concentrations in media. Since nutrients can be 

used for growth and other purposes, chemical treatments and temperature shifts have been 

employed to increase product synthesis at the expense of growth. However, it is unclear how 

well these treatments redirect resources from growth to protein product. To test this, we used 

the cell-line models to simulate cell metabolism and recombinant protein production before 

and after culture perturbations. This approach allows us to analyze how efficiently cellular 

resources were redirected to protein synthesis following bioprocess treatments or targeted 

cell engineering efforts.

Specifically, we studied temperature shifts (Kim and Lee, 2009), sodium butyrate (NaBu) 

addition with (Kim and Lee, 2000) and without (De Leon Gatti et al., 2007; Mimura et al., 

2001) BCL2 overexpression, and overexpression of secretory pathway genes (Peng and 

Fussenegger, 2009). In each case, estimates for uptake and secretion rates of major nutrients 

were predicted for the control culture from each study (Figure 5A) by sampling feasible 

uptake and secretion rates that supported the measured growth and protein secretion rates 

(see STAR Methods and Supplemental Data S5). These limits on nutrient availability were 

then applied as constraints to the models exhibiting the lower growth rates and higher 

protein secretion rates observed in the studies after bioprocess treatments or cell 

engineering. Using this approach, we calculated the maximum protein production rate as a 

function of growth rate for each treatment by optimizing for protein production after 

constraining growth to a fixed value. When compared to experimentally measured changes 

in growth and protein synthesis following each treatment, we quantified how well the cells 
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made use of resources for both growth and production (Figure 5B). Furthermore, we 

assessed how efficiently the cells use newly available resources at lower growth rates for 

protein production (Figure 5C), as detailed in the following sections.

Bioprocess treatments, such as histone deacetylase inhibitors and temperature shifts can 

improve specific productivities and product titers. However, our analysis shows that overall 

resource utilization was inefficient post-treatment, independent of the decrease in growth 

rate (Figure 5B). To quantify the inefficiency, we compared the amount of protein that was 

produced experimentally to the amount of protein that could be produced if growth was 

halted (as calculated via model simulation). We simulated maximum protein production 

across the range of feasible growth rates, and defined a region of optimal resource utilization 

for protein production—an area where neither additional growth nor protein production is 

possible with the resources available (rainbow region in Figure 5B). For several treatments, 

we examined proximity to optimal resource utilization by comparing the measured growth 

and protein production rates following bioprocess or cell engineering treatments to the 

simulated maximum growth rate and protein production rate. Cells treated with NaBu 

produced protein at 2–6% of the predicted maximum rate, irrespective of the decrease in 

growth rate, and were far from the region of full resource utilization. BCL2 overexpression 

(relieving the apoptotic effect of NaBu) still only achieved 8% of the maximum protein 

production rate. Meanwhile, overexpressing the secretory pathway proteins XBP1, STXBP3 
(MUNC18C), and SCFD1 (SLY1) allowed protein production at 24% of the maximum 

possible rate—3 fold higher than the best performance seen with cells overexpressing BCL2 
and treated with NaBu. Thus, yields are low, even following bioprocess treatments. 

However, the increases seen with targeted engineering, as cells move closer to the region of 

optimal resource utilization, suggest that there is considerable potential for increasing cell-

specific productivity to near optimal levels.

The inherent trade-off between growth and protein production suggests that resources for 

protein production may be liberated following growth-inhibiting bioprocess treatments. 

Thus, we simulated how efficiently cells, after suffering a decrease in growth rate from the 

different treatments, redirected newly available resources to protein production (Figure 5C). 

We found that while culture at lower temperatures (33°C vs. 37°C) often increases final 

titers, the specific productivity (qp) only increased to 6% of the theoretically possible level at 

the measured growth rate. Similarly, NaBu treated cells produced only 3–14% of their 

computationally predicted qp. Furthermore, simulating increases in NaBu concentration 

resulted in even less efficient redirection of resources to protein production. While these 

bioprocess treatments failed to efficiently redirect resources specifically to protein 

production, targeted cell engineering efforts improved the shift of resources. For example, 

overexpressing BCL2 during NaBu treatment resulted in a modest improvement in resource 

utilization (roughly 20% of the predicted qp). The greatest improvement in resource 

utilization was observed when the secretory pathway proteins were overexpressed, 

producing at close to 57% of computationally predicted maximum specific productivity.
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DISCUSSION

Here we present a genome-scale metabolic network reconstruction for the Chinese hamster, 

C. griseus. This resource enables the enumeration of true genotype-phenotype links by 

connecting the functions of more than 1,700 genes to CHO cell phenotypes such as growth, 

metabolic pathway activity, and protein production. It presents many opportunities for 

analyzing bioprocess performance and guiding cell engineering. First, the reconstruction 

provides a platform for managing and interpreting CHO-relevant big data. Second, the 

models demonstrated potential for improving recombinant protein production by 

engineering cells to efficiently shift resources to protein production. The reconstruction will 

guide further strategies for cell line development as advances are made in modeling and 

relevant techniques. Third, the reconstruction will serve as a resource, in which up-to-date 

knowledge on the biochemistry of CHO cells can be maintained and made available to the 

entire CHO community.

To gain greater control of product yields and quality attributes of biopharmaceuticals, efforts 

to engineer CHO cells must consider the activities of cell pathways and associated genes. 

Thus, CHO-based bioprocessing is adopting data-rich technologies to quantify the cellular 

parts, using next-generation sequencing, high-throughput omics techniques, high-content 

imaging, and online bioprocess measurement techniques. To effectively analyze the data and 

deploy interventions, powerful statistical and modeling methods are needed (Clarke et al., 

2014). This reconstruction serves as a platform for analyzing many types of molecular and 

phenotypic data using a variety of algorithms (Lewis et al., 2012). Furthermore, since this 

reconstruction provides a mechanistic link between the genotype and phenotype of CHO 

cells (via enumeration of enzymes underlying metabolic pathways), it allows for the 

effective integration of orthogonal data types such as metabolomics, transcriptomics, genetic 

variants, and growth rates (Cardoso et al., 2015; Hyduke et al., 2013). We demonstrated this 

with our cell line specific models for the CHO-K1, -S, and -DG44 lines. These models were 

built by integrating transcriptomic, proteomic, and metabolomic data with the global 

genome-scale metabolic model, validated by predicting growth rates and auxotrophies, and 

ultimately used to predict protein production capabilities. As the scope and quality of data 

expands, the CHO genome-scale network reconstruction will continue to enable the 

diagnosis of the molecular basis of different phenotypes, by serving as a platform to analyze 

the interplay of diverse data types.

The models provided quantitative evidence that targeted engineering of the secretory 

pathway allows for more efficient use of liberated resources as growth decreases. The 

models will enable further analyses of cell lines to help design mutants that provide desired 

protein quality attributes. The accuracy of such cell designs will further improve as five 

challenges are addressed. First, different CHO cell lines have accumulated hundreds of 

mutations in metabolic pathways (Lewis et al., 2013), which may contribute to differences 

seen in phenotypic traits across cell lines (Golabgir et al., 2016). However, more research is 

required to identify which mutations impact the activity of pathways. Second, growth and 

protein yield predictions require accurate measurements of metabolite concentrations, and 

advances in analytical chemistry will provide improved constraints on simulations with 

CHO metabolic models (see Supplemental Figure S4). Third, gaps remain in our 
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understanding of mammalian metabolism, but algorithmic developments (Thiele et al., 2014) 

and biochemical assays will continue to refine the CHO metabolic network. Fourth, our 

biomass objective functions were defined based on experimental measurements in CHO and 

hybridoma cells and provided accurate predictions of cell growth; however, biomass 

composition is not static, which may impact quantitative predictions of growth and protein 

production. Thus, there is a need for comprehensive measurements of the composition of 

CHO cells (e.g. protein, DNA, RNA, lipids, etc.) under different conditions to formulate 

more accurate biomass objective functions. Finally, metabolism is only part of the system 

that controls the quantity and quality of recombinant proteins. Efforts to model other 

processes such as glycosylation (Sha et al., 2016; Spahn et al., 2016) and the secretory 

pathway (Feizi et al., 2013) can be integrated with metabolic networks for a more 

comprehensive view of protein production; further addition of signaling and regulatory 

networks could reveal mechanisms behind inefficiencies in protein production. These five 

advances will further improve the predictive power of the genome-scale CHO models.

Lastly, the development of this resource involved the concerted effort of many groups in the 

community with interest in genome-scale metabolic modeling for mammalian bioprocesses 

and CHO cells. Together, these combined efforts enabled the careful curation of this 

community resource. The models are available at http://www.CHOgenome.org (Kremkow et 

al., 2015). Additionally, the global model can be browsed and downloaded at the BiGG 

Models database (King et al., 2015) (accessible at http://bigg.ucsd.edu), where literature 

information and experimental evidence is provided for each gene, reaction, and metabolite in 

the model. Updates will be made with continued research into CHO cells, including 

improvements in the C. griseus genome sequence and annotation, and experimental tests of 

model predictions (Chowdhury et al., 2015). As such studies accumulate, the network 

reconstruction, as a community resource, will be maintained and improved over time, thus 

enabling researchers throughout the CHO cell community to conduct many studies to 

enhance the value of the primary host for biotherapeutic production.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for datasets and/or protocols may be directed to, and will 

be fulfilled by the corresponding author Nathan Lewis (nlewisres@ucsd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cultures for Transcriptomic, Proteomic, and/or Metabolomic Data—CHO-S (Life 

Technologies # A11557-01) cells were cultured in CD CHO medium (Life Technologies # 

10743-029) supplemented with 8 mM L-glutamine (Life Technologies # 25030-024), Anti-

clumping agent 1:500 (Life Technologies # 0010057 AE), and Pen-Strep 1:100 (Life 

Technologies # 15140-122) in 2 L Corning shake flasks (Sigma # 431255) with 400 mL 

medium. All cultures were maintained in an incubator kept at 37°C, 5% CO2, 70% humidity 

and 25 mm throw, shaking at 120 rpm.
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Adherent CHO-K1 (ATCC CCL-61) cells were grown in F-12K medium, supplemented with 

10% FBS, 1% non-essential amino acids, and 2 mM L-glutamine (Gibco) incubated at 37°C 

and 5% CO2. Spent medium was sampled from the culture at regular intervals and 

metabolite concentrations were measured. Cell-free medium was also sampled at regular 

intervals to control for metabolite degradation. Samples were taken from the CHO-K1 and 

cell-free control every 2 hours between 24–36 hours, and every 4 hours subsequently (see 

Supplemental Data S4).

Cultures for Determining Asparagine Essentiality—CHO-S (Life Technologies) and 

CHO-K1 (ATCC CCL-61 adapted to grow in suspension, serum-free conditions) cells were 

grown in CD-CHO media with and without asparagine at a seeding concentration of 0.4–0.5 

× 106 cells/mL. Asparagine was either added via MEM NEAA solution (Control 1) or as an 

individual amino acid supplementing MEM NEAA solution lacking asparagine (Control 2). 

Both cell lines were able to grow successfully in media lacking asparagine, as measured by 

viability and VCD 72 hours after seeding (Supplemental Table S1). Cell growth and viability 

were monitored using the NucleoCounter NC-200 Cell Counter (ChemoMetec, Allerod, 

Denmark) based on two fluorescent dyes, acridine orange and DAPI for the total and dead 

cell populations, respectively.

METHOD DETAILS

Input genome-scale model construction—In the preliminary stages of this effort, 

three research groups contributing to this study independently developed unpublished 

genome-scale models of CHO cell metabolism. These were supplemented by an additional 

independent reconstruction of amino acid metabolism.

University of California San Diego metabolic model: The initial draft of the UCSD 

genome-scale CHO metabolic network was reconstructed using GIMMEp (Bordbar et al., 

2012). The algorithm requires an initial metabolic network, a core set of reactions that must 

be operational, a set of required metabolic functions, and an optional set of additional 

reactions that may or may not be included in the final model.

First, we used the global human metabolic network (Recon 1 (Duarte et al., 2007)) as the 

initial network for the algorithm to build the CHO metabolic network. Recon 1 served as a 

template for which metabolic reactions were initially chosen for the CHO metabolic 

network.

Second, a core set of reactions was defined based on homology between the CHO and 

human genomes. A bidirectional BLASTP was done by comparing human RefSeq proteins 

(downloaded on 12/13/2011) against the CHO genome sequence (Xu et al., 2011). 

Metabolic proteins from Recon 1 with a high identity (>70%) and high overlap (>70%) with 

a CHO protein in the bidirectional BLAST were marked as the core set of homologous 

proteins. A small set of proteins met the inclusion criteria in only one direction and was 

subsequently manually curated for inclusion. The gene-protein-reaction rules for Recon 1 

reactions were updated with CHO annotations for homologous proteins, and removed if no 

homologous protein was present. The set of optional reactions provided as an input to 

GIMMEp was not included in the final model.
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Third, a set of metabolic functions was defined including: 1) the ability for the metabolic 

model to produce biomass, 2) the ability to produce a glycosylated protein (EPO), and 3) the 

ability to uptake and secrete known metabolites characteristic of CHO-K1 cells. The 

necessary reactions to accomplish these three tasks were added to the initial model before 

the model building algorithm was run and were included in the core set of reactions. A 

biomass objective function (Feist and Palsson, 2010) was constructed accounting for RNA, 

DNA, protein content, free amino acids, glycogen, free fatty acids, lipids, phospholipids, 

triglycerides, and associated ATP maintenance costs using primary literature. The ratio of 

nucleotide content in DNA was set based on the GC content of the genome (Xu et al., 2011). 

Ratios of nucleotide content in RNA and amino acid content in proteins were estimated 

based on RNA-Seq data (Xu et al., 2011). In addition, metabolic reactions were 

reconstructed that translated the EPO protein and added the necessary N- and O-glycans, as 

well as degraded the protein. Also, the exchange reactions of metabolites known to be taken 

up or secreted by CHO cells were included in the core set of reactions.

The resultant draft model contained all CHO metabolic proteins that had high homology 

with the human metabolic proteins, while minimizing the number of metabolic reactions 

with low homology that were added to enable the model to accomplish a set of key 

metabolic functions including growth, protein production, and uptake/secretion of 

documented metabolites.

This was followed by manual curation of the model to ensure that gene associations, 

reaction localization, and other reaction contents were accurate.

National University of Singapore/Bioprocessing Technology Institute metabolic 
model: The H. sapiens reconstruction, Recon 1 (Duarte et al., 2007), served as the starting 

point of the NUS CHO-K1 genome scale metabolic model reconstruction. This was 

motivated by the high-quality manual curation performed on Recon 1, and the large number 

of genes (81%) that were shared between the human and CHO-K1 genomes (Xu et al., 

2011). To create a draft list of reactions for the new model, a protein BLAST search of 

human genes was conducted against CHO-K1 genes. This allowed the mapping of metabolic 

genes from human to CHO-K1. Of the 1496 metabolic genes in the Recon 1 model, 1441 

(96%) corresponding matches were found in the CHO-K1 genome. Based on the list of 55 

missing genes, 39 relevant reactions were removed from the Recon 1 model. The number of 

reactions removed is less than the number of genes due to reactions associated with 

isozymes. The 1514 non-gene associated reactions in the original model were retained, since 

they were necessary to produce a functioning model.

The removal of missing genes introduced gaps within the model that prevented biomass 

production and removed metabolic functions. By examining the list of removed reactions, 

SQLEr (squalene epoxidase) and C3STKR2r (C-3 sterol keto reductase zymosterol) were 

found to be necessary to ensure biomass formation. We also found that the removal of the 

three reactions catalyzed by 2-oxoisovalerate dehydrogenase prevented the catabolism of 

branched amino acids (valine, leucine, and isoleucine). While the removal of TPI1 

(triosephosphate isomerase 1) strictly did not impair biomass formation, there are strong 

physiological arguments for its existence, and there is evidence that the enzyme exists in the 
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ancestral CHO cell line (Daar et al., 1986). Based on experimental evidence (Selvarasu et 

al., 2012), the GGLUCT (gamma-glutamylcyclotransferase) reaction was not also removed.

As the Recon 1 model was constructed to represent the global human metabolic model, the 

model includes tissue specific reactions that are not relevant to CHO-K1. Consequently, we 

removed these reactions from the reaction list. The reactions removed include 26 demand 

reactions for micronutrients such as vitamins, and 36 duplicate reactions for liver and uterus 

tissue (e.g., in dolichol biosynthesis). The R Group synthesis reactions were also removed as 

the lipid requirement for CHO-K1 biomass formation was subsequently reconstructed based 

on literature sources. Finally, 80 reactions and relevant metabolites with the “hs” suffix were 

relabeled to the “cho” suffix.

To further refine the model, we utilized the KEGG PATHWAY (Kanehisa and Goto, 2000) 

and BRENDA Enzyme Database (Chang et al., 2009) databases to identify CHO metabolic 

reactions based on physiological evidence. Based on curated databases of BRENDA and 

KEGG, 85 additional reactions were added to subsystems such as arginine and proline 

metabolism, IMP biosynthesis, and inositol phosphate metabolism. These include two 

reactions previously removed based on the gene mapping using BLAST.

The model reconstruction was originally conceived for biotechnological applications. 

Therefore, relevant biomass formation reactions were constructed and added. As the R 

Group synthesis reactions were removed, 15 reactions were added for the production of fatty 

acid and cholesterol components of the cellular biomass. Reversible transport via proton 

symport reactions were also added to facilitate the independent exchange of amino acids. 

Finally, based on recent evidence obtained by LC-MS experiments (Selvarasu et al., 2012), 

13 reactions were added to account for the production and secretion of the detected amino 

acid derivatives. The reconstructed CHO-K1 model consists of 3718 reactions and 2774 

compartment specific metabolites (1523 non compartment specific).

The University of Queensland/University of Natural Resources and Life Sciences, 
Vienna metabolic model: An updated version (Quek et al., 2014) of the H. sapiens 
reconstruction Recon 2, was used as a starting point for generation of a manually curated 

CHO specific model by the UQ/BOKU groups. Curation focused on the identification of 

inconsistencies in the naming conventions, annotations, removal of duplicated reactions and 

metabolites, as well as correction of the mass and energy balance.

Homologous genes between CHO and H. sapiens were identified from RefSeq Release 66 

using the standalone InParanoid program v4.1 (Ostlund et al., 2010). The identified 

homologies were then used to convert the human specific Recon 2 metabolic network to a 

CHO specific network. This provided an initial basis for a CHO-specific metabolic network 

based on Recon 2, which later was considered in the curation of the community-level 

network.

Technical University of Denmark amino acid subnetwork: A metabolic network 

reconstruction of amino acid metabolism in CHO cells was generated at DTU using mouse 

genomic and biochemical pathway information from the KEGG database as a starting point. 
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To identify orthologous metabolic genes in CHO, a protein BLAST search of amino acid 

metabolic genes from mouse was manually conducted against the CHO-K1 genome (Xu et 

al., 2011), hosted at http://www.CHOgenome.org. The resulting list of CHO genes was 

manually curated for inclusion based on information from literature.

Reconciliation process—To merge these into one final community reconstruction, we 

developed a workflow to reconcile similarities and differences among the existing models 

(Figure 1).

The final metabolic network reconstruction was initially based on knowledge from human 

metabolism, as detailed in Recon 1 (Duarte et al., 2007) and an updated version of Recon 2 

(Quek et al., 2014) (Figure 1A). Additional curation of Recon 2 was conducted to refine the 

reconstruction (Swainston et al., 2016). These two reconstructions were first compared to 

determine a baseline set of gene-protein-reaction (GPR) relationships for all reactions in the 

models. If GPRs showed discrepancies between the two reconstructions, manual curation 

was carried out to determine a consensus GPR. This combined human reconstruction was 

subsequently used to identify C. griseus homologs. Specifically, three different homology 

methods were used to determine CHO-human protein homologs. First, two-way BLAST was 

conducted between the CHO proteome and the human proteome. Reciprocal top matches for 

both C. griseus and human proteins were identified and retained. Second, the standalone 

InParanoid program v4.1 (Ostlund et al., 2010) was used to find orthologs between human 

and C. griseus. Third, a search was conducted to identify genes with identical gene names.

For each human gene, the union of these three methods was used to map from human GPRs 

to putative CHO GPRs, resulting in 3701 reactions with gene associations. In this set of 

reactions, 733 had GPRs that were identical between all 3 preliminary reconstructions and 

the putative CHO GPR. For the remaining reactions (2968), careful manual curation was 

carried out to determine the most accurate GPR for each reaction in the final model (Figure 

1B). In each case, primary literature was searched to find CHO-specific information about 

the reaction (e.g. substrate specificity, subcellular localization, protein complex composition, 

gene association, etc.). When such information was unavailable, information from other 

mammals was used. Through the curation process, additional CHO-specific reactions were 

identified and added.

The curated gene-associated reactions were then combined with all the non-gene associated 

reactions from Recon 1 and the updated Recon 2 to give a base CHO metabolic network. 

Mass imbalances were corrected and the network was tested for biomass functionality. 

Further refinements included the removal of opposing irreversible reactions (in favor of a 

single reversible form), the replacement of lumped reactions, and the addition of pathways 

for synthesizing IgG and EPO.

As a final comparison, the model content was compared against another unpublished and 

independently reconstructed CHO metabolic reconstruction, based on Recon 1 (Duarte et al., 

2007) (see below for details on this model’s construction) and any differences manually 

curated.
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University of Chile metabolic model: For the generation of a preliminary CHO genome-

scale metabolic model we used Pantograph, a tool to reconstruct genome-scale models for 

eukaryotic organisms (Loira et al., 2015). This tool uses a template metabolic model and 

annotated genomes for both template and objective organisms, automatically rewriting the 

template’s GPRs in terms of the genes of the target organism, inheriting knowledge from the 

template model and producing a draft metabolic model well suited for manual curation.

Three models were considered as templates for network reconstruction. A hybridoma 

metabolic reconstruction based on Mus musculus genomic and biochemical information 

(Selvarasu et al., 2010) was modified and upgraded to include new genomic information 

available in databases such as KEGG and NCBI-gene by manual curation and by using a 

script that connects to the KEGG database to download new GPR candidates to be added to 

the model.

A metabolic reconstruction for Mus musculus based on Recon 1 (Duarte et al., 2007), 

iMM1415, was also used as template for the generation of a model for CHO cell 

metabolism. This model includes 1,415 genes, 2,212 gene-associated reactions and 1,514 

non-gene-associated reactions. Finally, the human reconstruction, Recon 1, was also used as 

a template for the generation of a CHO genome-scale model (Duarte et al., 2007).

Orthologous genes often exhibit similar biological activities. Thus, they can often reliably be 

used to build novel reconstructions from a template organism. The search for orthologs was 

performed using the standalone InParanoid program v4.1 (Ostlund et al., 2010), which finds 

clusters of orthologous genes based on similarity scores calculated by NCBI-Blast between 

proteomes of the analyzed species. The protein sequences for CHO were retrieved from 

http://www.CHOgenome.org and Ensembl, and these sequences were used to find orthologs 

between CHO and Mus musculus and CHO and Homo sapiens.

The template model and ortholog information for Mus musculus, Homo sapiens, and CHO 

were used to generate a preliminary genome-scale model for CHO cells using Pantograph. 

Critical components for biomass synthesis were identified by analyzing metabolic pathways 

that lead to their synthesis using the COBRA toolbox (Schellenberger et al., 2011).

GapFind (Satish Kumar et al., 2007) was used to find dead-end metabolites, which were 

subsequently studied using information from databases such as CHOgenome.org, KEGG, 

and Virtual Metabolic Human in order to fill the gaps present in the initial reconstruction. 

Model validation was performed using Pantograph (Loira et al., 2015) which tests the ability 

of the obtained genome-scale models to replicate experimental data, such as the effect of 

known gene deletions and use of alternate carbon sources for CHO cells in culture.

While the University of Chile model was not used as a base model in the reconciliation, it 

was compared to the global model and all discrepancies manually curated. All validated 

reactions suggested by this secondary curation process were added to the final global model.

Biomass reaction—Two biomass reactions were built here: one for a recombinant-protein 

producing cell line (biomass_cho_producing) and one for a nonproducing cell line 

(biomass_cho). The overall cell composition (e.g., protein, DNA, RNA, lipid fraction) of a 
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protein producing cell line was averaged from previously reported values for mouse 

hybridoma cell lines. The nonproducing cell line overall cell composition was calculated 

based on literature values for different cellular components in CHO. Both biomass reactions 

used experimentally determined amino acid compositions of the protein fraction, obtained 

by averaging the composition of 5 cell lines (Selvarasu et al., 2012). The ratios of different 

nucleotides for RNA and DNA composition were determined from genome and transcript 

sequences. Phospholipid composition was taken from previously reported values for CHO-

K1. A detailed formulation of the biomass equations (including all associated references) is 

available in Supplemental Data S2.

Choice of objective function: An objective function should encapsulate what the cell is 

“trying” to do. What that entails remains a matter of great scientific interest. In bacterial 

systems, the use of a biomass objective function (Feist and Palsson, 2010) has come to 

dominate, as experimental work shows cells evolving toward optimal states as predicted by 

maximization of biomass production (Edwards et al., 2001; Ibarra et al., 2002; Lewis et al., 

2010).

Mammalian cells, as a whole, are more difficult to ascribe a one-size-fits-all objective 

function for, since many (e.g., terminally differentiated cells) do not rapidly proliferate; their 

‘objective’ may be another biological activity such as antibody production (plasma cells), 

maintaining structural integrity (red blood cells), or generation of energy and signaling 

molecules (neurons). As CHO cells are proliferative, we selected a biomass objective 

function for simulation of cell growth. In a study comparing experimental fluxomic data to 

model flux predictions (Schuetz et al., 2007) in core metabolism in Escherichia coli, 
alternative objective functions were evaluated for their accuracy in recapitulating 

experimental measurements. This study found that maximization of ATP or biomass both led 

to the highest consistency between FBA predictions of metabolic flux and experimental flux 

measurements. Subsequent research provided further support for biomass optimization 

(Lewis et al., 2010), but found that maximization of ATP yield showed less consistency in 

genome-scale models. The authors noted that “in a genome-scale model, the maximization 

of ATP selects against the usage of biosynthetic pathways, since the end products are not 

specified in the objective function”. A similar conclusion can be drawn for minimizing redox 

load as an objective function, which also does not require the use of many biosynthetic 

pathways, and so such an objective function would not capture the activities of all pathways.

It is possible that in mammalian cell culture, that some combination of objective functions is 

the most biologically accurate; however, as our line of investigation largely focuses on 

predictions of growth rate, a gross phenotypic characteristic which definitionally has an 

upper limit set by cellular composition (e.g., biomass generation), a simplification to a 

biomass objective function for growth simulations is a reasonable approximation. 

Furthermore, the ability to recapitulate experimentally-measured growth rates provides 

further support for this assumption and that the measurements used the biomass objective 

functions are within a reasonable range.

Construction of cell-line specific models—We used GIMME (Becker and Palsson, 

2008) to generate cell-line specific models for CHO-S, CHO-K1, and CHO-DG44. 
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Transcriptomic and proteomic data were generated for CHO-S, while existing data were 

used for CHO-K1 and CHO-DG44 (see Method Details for information on data used or 

generated). Genes were called as present if their FPKM was greater than 1 or they were 

found in the proteomic analysis. For microarray data, genes were called as present if their 

normalized log2-transformed value was greater than 10. Blocked reactions were removed 

from the global model and the algorithm was used while optimizing for growth, IgG 

production, and erythropoietin production. The union of reactions present in these models 

served as the base cell-line model in each case.

Since algorithmic generation of the cell-line specific models ensures only functionality for 

user-defined objectives (here we used growth, IgG production, and erythropoietin 

production), additional manual curation was done to incorporate other biological 

functionalities important for simulation. We added eight reactions to all models: GLYCt and 

SUCCt4_3 were added to permit secretion of glycerol and succinate, respectively. HISD, 

URCN, IZPN, GluForTx, FTCD and DM_trp_L[c] were added to account for histidine and 

tryptophan uptake rates being significantly higher than needed for growth and protein 

production. Histidine catabolic reactions were added to permit conversion to glutamate, 

since evidence for histamine production (from histidine) in CHO could not be found. The 

tryptophan demand reaction was added as tryptophan is converted to many metabolites with 

diverse functions (e.g., hormones), at least some of which have been detected in CHO cell 

culture (Hiller and Mulukutla, 2015); however, we were uncertain whether the production of 

specific tryptophan-derived metabolites is cell line specific or a characteristic of the CHO 

cell in general, thus the inclusion of a generic demand reaction rather than specific 

biosynthetic pathways. Three additional reactions were added to the DG44 model, the 

mitochondrial and endoplasmic reticulum localized phosphatidylethanolamine N-

methyltransferase and methionine adenosyltransferase (PETOHMm_cho, PETOHMr_cho, 

and METAT, respectively) to allow growth in the absence of measured choline uptake. The 

ORNTArm, GLU5Km, and G5SDym reactions were constrained to be off (lower 

bound=upper bound=0) to reflect the fact that—even if present—the enzymes do not appear 

to carry flux, leading to the experimentally observed proline auxotrophy in CHO cell lines 

(Valle et al., 1973).

Omic data generation

Transcriptomics and Proteomics

CHO-S: Starting at 72 hours into culture and every 12 hours after, cells were collected for 

proteomic (5 time points) and transcriptomic analysis (10 time points). 5 × 106 cells were 

harvested for transcriptomic analysis via RNA-Seq. Cells were centrifuged and the pellet 

resuspended in 2%/98% DTT/RLT buffer and stored at −80°C. RNA was extracted with 

Qiagen’s RNeasy mini kit (Qiagen #74104) according to manufacturer’s protocol with on-

column DNase digestion. RNA libraries for sequencing were prepared using TruSeq 

Stranded mRNA Sample prep kit with 96 dual indexes (Illumina, CA, USA) according to the 

manufacturer’s instructions with the following changes. The protocols were automated using 

an Agilent NGS workstation (Agilent, CA, USA) using purification steps as previously 

described (Borgström et al., 2011; Lundin et al., 2010). Libraries were clustered using cBot 

and sequenced on HiSeq2500 (HiSeq Control Software 2.2.38/RTA 1.18.61) with a 2×101 
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setup in RapidHighOutput mode. The raw reads are available at GEO (Accession 

GSE77800). Bcl to Fastq conversion was performed using bcl2Fastq v1.8.3 from the 

CASAVA software suite. The quality scale is Sanger / phred33 / Illumina 1.8+.

FastQC (Andrews, 2010) was used to assess read quality. Trimmomatic v0.32 (Bolger et al., 

2014) was used to trim reads with adapters or low quality scores. STAR2.4.0a (Dobin et al., 

2013) was used to align trimmed reads to the CHO-K1 genome (Xu et al., 2011). Mapping 

results were stored using SAMtools 1.0(Li et al., 2009). Cufflinks 2.2.1 (Trapnell et al., 

2010) was used to assemble mapped reads and quantify expression levels. FPKM levels for 

all time points are available in Supplemental Data S4.

For proteomic analysis, 1 × 107 cells were harvested and centrifuged. Pelleted CHO cells 

were lysed in 100 μl urea (8M, 75 mM NaCl, 50 mM Tris-HCl pH 8.2). To assist the rupture 

of the cells, two 3 mm Zirconium oxide beads were added and samples were placed in a 

mixer mill (Glen Mills Inc, NJ, USA). Two rounds of mixing were applied, with the first 2 

min at 25 Hz in the mixer mill followed by 30 min at 4 °C and additional 2 min at 25 Hz in 

the mixer mill. Between the two rounds, an additional 100 μl of urea were added. Samples 

were then centrifuged for 15 minutes at 15000 g, after which the supernatant was collected. 

Then 400 μl 25 mM ammonium bicarbonate was added and the volume reduced to 100 μl 

using a 3 kDa cutoff filter. Five μl DTT were added to samples containing 100 ug of protein 

and then kept at 37 °C for 45 minutes, after which 100 μl of iodoacetamide was added and 

samples were kept in the dark for 45 minutes. Tryptic digestion of the proteins was done for 

8 hours at 37 °C. Digestion was terminated with the addition of 10 μl 10% TFA and finally 

samples were staged tipped using C18 filters (Empore, 3M Company, USA) following an 

established protocol (Rappsilber et al., 2007).

Each sample was trapped on a precolumn (Symmetry C18 5μm, 180μm × 20mm, Waters, 

Manchester UK) and washed for 4 min after which it was loaded on the analytical column. 

The analytical setup consists of a nanoACQUITY™ System (Waters, Manchester UK) 

equipped with a nanoACQUITY™ BEH130 C18 1.7 μm, 75 μm × 250 mm analytical 

reversed-phase column (Waters, Manchester UK). The reverse phase elution profile included 

mobile phase A (0.1 formic acid in water) and mobile phase B (0.1% formic acid in 

acetonitrile), during which B was increased from 5–40% over 90 minutes with a flow rate of 

250 nL min−1 and a column temperature of 35°C. To minimize carry over, the method 

included a 30 minutes wash phase to clear the column.

Data acquisition was accomplished on a Synapt G2 (Waters, Manchester UK) Q-TOF 

instrument using ESI with a NanoLock-spray source. The mass spectrometer was operated 

in positive and resolution mode with continuum spectra being acquired. Data were 

continuously calibrated using leucine encephalin as lock mass. Data were acquired using 

MSE, during which the mass spectrometer alternated between low- and high-energy mode 

using a scan time of 0.8 s for each mode over a 50–2000 Da interval. In the low-energy MS 

mode, data were collected at constant collision energy of 4 eV. In the elevated-energy MS 

mode, the collision energy was increased from 15 to 40 eV.
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Raw data files for protein identification were obtained by using the 

ProteinLynxGlobalServer software v2.5.3 (Water corporation) using the in-build MSE 

search function against the Chinese hamster UniProt proteome database (UP000001075). 

The search parameters were trypsin as enzyme, carboxamidomethyl on cysteine as a fixed 

modification and oxidation of methionine as partial modification, while allowing one missed 

cleavage.

CHO-K1: Additional proteomic and RNA-Seq data were obtained from existing studies 

(Baycin-Hizal et al., 2012; Xu et al., 2011). Briefly, for RNA-Seq, CHO-K1 cells were 

grown in F-12K medium (Invitrogen) supplemented with 10% FBS at 37°C with RNA 

extraction during exponential phase. Sequencing was carried out using Illumina GA2 

technology with paired-end reads. Quantification of expression levels was carried out in an 

identical manner as for CHO-S. For proteomics, CHO-K1 cells were grown in F-12K 

medium, supplemented with 10% FBS, 1% non-essential amino acids, and 2 mM L-

glutamine (Gibco) and gathered at 70–80% confluence for analysis.

CHO-DG44: Microarray data for an IgG-producing CHO-DG44 derivative were obtained 

from literature (Courtes et al., 2013). Briefly, the CHO-DG44 cells expressing IgG, known 

as CHO M250-9, were grown in a proprietary protein free and chemically defined medium. 

The total RNAs were extracted using the Qiagen RNeasy Plant Mini Prep kit during the 

exponential phase of cell culture. Subsequently, the gene expression was profiled with a 

NimbleGen CHO microarray chip containing 135,883 probes corresponding to a total of 

13,514 annotated CHO genes. Scanned microarray signals were then analyzed by the 

NimbleScan V2.6 (Nimblegen, U.S.A.) and quantile normalized using the R package 

AffyPLM (Bolstad et al., 2005).

Metabolomics

CHO-K1: For each media sample, polar extracellular metabolites were analyzed by ultra 

performance liquid chromatography (UPLC) (Acquity, Waters, Manchester, UK) coupled in 

line with a quadrupole-time-of flight hybrid mass spectrometer (Synapt G2, Waters, 

Manchester, UK) as previously reported (Paglia et al., 2012).

For the analysis of targeted metabolites, data were processed using TargetLynx (Waters) 

while for untargeted analysis MarkerLynx (Waters) was used to integrate and align MS data 

points and convert them into exact mass retention time pairs. Extracted ion chromatograms 

were obtained by using a 0.02 mDa window centered on the expected m/z for each targeted 

compound. Quantitation was performed by external calibration with reference standards 

(Paglia et al., 2012).

The identity of each metabolite was established by verifying retention time, accurate mass 

measurements and collision induced dissociation information against our in-house database 

and/or online databases, including HMDB and METLIN (Smith et al., 2005; Wishart et al., 

2013).

All materials used in the UPLC-MS experiments were purchased from Sigma-Aldrich 

(Germany) and were of analytical grade or higher purity.
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Model simulation—When optimizing for growth, solutions were obtained by maximizing 

flux through the biomass_cho or biomass_cho_producing reaction, depending on if the 

simulation was of a non-producing or producing cell line, respectively. For predicting 

maximum protein production, solutions were obtained by maximizing flux through the 

DM_igg[g] or DM_epo[g] reaction, for production of IgG or EPO, respectively.

Growth-rate prediction discrepancies

Serum containing media formulations: When applied as constraints, the uptakes from two 

CHO-K1 MFA studies were unable to recapitulate the experimentally observed growth rate 

for the CHO-K1 cells grown in serum. The cause of this discrepancy is due to the low uptake 

of proline in one study (Ahn and Antoniewicz, 2011) and the production of proline by the 

cells in another study (Ahn and Antoniewicz, 2013), despite reports of the proline 

auxotrophy being a hallmark of the cell line. It is possible that the presence of serum (and 

associated protease activity or peptide uptake and catabolism) may ‘mask’ a higher uptake 

rate of proline required to sustain the higher observed growth. However, we also investigated 

whether spontaneous proline prototroph revertants (Kao and Puck, 1967) could also explain 

the difference in calculated vs. observed growth rates. To do so, we first added an 

extracellular arginase reaction to the models (Hölttä and Pohjanpelto, 1982), and then 

simulated growth with individual or both proline biosynthetic pathways active, compared to 

simulated proline auxotrophy. Inclusion of active proline biosynthetic pathways in the model 

greatly improved the consistency of model predictions with measured growth (Supplemental 

Figure S3), indicating that increased proline availability, either via biosynthetic routes or via 

unmeasured uptake from serum components, can explain the discrepancies between model 

predicted and experimental growth rates.

Metabolomic measurement uncertainty impacts growth rate prediction accuracy: We also 

examined how variability in uptake and secretion rate calculations impacts the accuracy of 

model predictions. To do this test, we focused on three data sets in which computed uptake 

and secretion rates for some metabolites demonstrated large standard deviations. These 

included three lower quality cultures generated by the authors of this study. In these 

experiments, the calculated range (between 5th and 95th percentile confidence intervals) for 

more than half of the metabolite uptake or secretion rates was larger than the predicted best 

fit value (Supplemental Figure S4). For completeness, we show this metric compared to two 

cultures from a recent temperature shift study (Martínez et al., 2015) (labeled “Cold 1” and 

“Cold 2” in Supplemental Figure S4) that exhibited lower variability and are the same as 

those included in the main text (Figure 3).

We took the calculated values for amino acids, glucose, lactate, and IgG (if produced) and 

generated a family of uptake and secretion values (within the 5th–95th percentile confidence 

intervals) for each metabolite based on its predicted directionality of flow. For example, 

essential amino acids were forced to be taken up; alanine, traditionally secreted, was forced 

to be secreted. More formally, we generated 3000 sets of uptake and secretion values 

satisfying the following criteria. If metabolite is forced to be taken up, we generated random 

uptake values between 5th percentile value and min(0, 95th percentile value). If metabolite is 

forced to be secreted, than we generated random secretion values between max(0, 5th 
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percentile value) and 95th percentile value. Otherwise, we generated a random uptake or 

secretion value between the 5th and 95th percentile values. Each set of values was applied as 

constraints to the model and used to predict growth, and the results compared to the growth 

rate prediction obtained using just the calculated best-fit uptake/secretion values (Naive 

Uptakes bars in Supplemental Figure S5). This approach led to predictions more in 

agreement with experimental measurements (Supplemental Figure S5), highlighting the 

importance of accurate metabolomic measurements.

Uptake flux generation: Lower limits for amino acids and glucose were defined based on 

experimental measurements from the studies used for phenotype validation. The growth rate 

and production rate from the non-treated culture were set as constraints on the producing 

cell biomass reaction and IgG/EPO production (as appropriate) in the appropriate cell-line 

specific model. Iteratively, the following procedure was followed. First, an amino acid or 

glucose was randomly selected. If an uptake rate for the metabolite is not known, then we 

found the minimum and maximum allowable uptake/secretion rate for the nutrient that 

permits growth and production at the experimentally determined rate. Then the uptake or 

secretion of the nutrient was set to a randomly selected value within that range. This was 

then repeated until all amino acids and glucose had uptake or secretion values. For each 

study, 3000 sets of uptake fluxes were generated. Each set of uptake fluxes was checked by 

ensuring that removal of full constraints on protein production or growth resulted in a 

production/growth rate within 1% of the experimentally measured value. Uptake fluxes 

which satisfied this criterion were used for further analysis and are available in 

Supplemental Data S5.

Algorithmically generated uptake and secretion rates are consistent with experimental 
measurements: Results for nutrient uptake and secretion flux generation were validated 

using data from a previous study (Selvarasu et al., 2012). The algorithm was applied at the 

growth rate and specific productivity measured during early exponential phase and the range 

of resultant nutrient fluxes (available in Supplemental Data S5) is compared to the 

experimental values (Supplemental Figure S2). For 19 out of 20 measured metabolites (all 

except phenylalanine), the experimental uptake or secretion value was within the bounds of 

our algorithm-generated values. For phenylalanine, the deviation from the calculated range 

was very small: approximately 4.4×10−4 mmol gDW−1 hr−1 (2.8% of the median predicted 

value). Thus, it is clear that the predicted fluxes were consistent with experimentally 

measured fluxes.

Metabolite uptake and secretion rates are consistent before and after treatment: The 

resource redirection efficiency analysis assumes that metabolite uptake and secretion rates 

do not significantly change after treatment. This assumption was assessed by analyzing data 

from a study examining treatment of cells with sodium butyrate (NaBu) (Carinhas et al., 

2013). In this study, essential amino acid fluxes (which are limiting for growth and protein 

production) remain fairly stable before and after NaBu treatment (Supplemental Figure S1). 

In fact, the majority of changes were actually in the direction of increased metabolite uptake, 

which—if extrapolated to all simulated uptakes for NaBu treated cell lines—would further 

decrease the calculated efficiencies and yields for those treatments.
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Redirection analysis: For each ‘treatment’, the model growth rate was constrained to the 

experimentally measured value while protein production was unconstrained. After applying 

a set of uptake flux values, the model was simulated while optimizing for maximum protein 

production. This was repeated for all flux values passing the check for growth/production 

rate mentioned previously. The experimentally observed production rate was compared to 

the family of simulated production rates.

For the data stemming from a temperature shift treatment (Kim and Lee, 2009), fluxes were 

scaled by a random factor between 0.517 and 0.798 based on the difference in uptake rates 

observed for glucose and glutamine between cultures with and without a temperature shift.

Calculation of growth and protein production tradeoff: For each set of uptake fluxes 

passing the check for growth and production rates, the simulated maximum possible growth 

rate was calculated by not forcing any protein production and optimizing for biomass 

production (i.e. flux through biomass_cho_producing). Maximum simulated protein 

production was calculated by setting the growth rate to 0 and optimizing for protein 

production. The fraction of maximum protein production at various fractions of maximum 

growth rate were calculated by constraining growth rate to a fraction of the simulated 

maximum growth rate for a specific uptake flux and then optimizing for protein production 

(normalized by maximum protein production for that uptake flux). The growth rates and 

production rates from the treatment papers were normalized by the family of maximum 

growth rates and production rates, respectively, to evaluate production efficiency.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of model constraints—Metabolite uptake and secretion rates were 

quantified and used as constraints for the model simulations (see Supplemental Data S3). 

The workflow for quantification and integration of these exchange rates is presented below. 

Experimental growth rates were calculated by determining the slope of the linear polynomial 

fit to the natural log of the viable cell densities.

Serum-grown CHO-K1, non-producing (In house): Uptake and secretion rates were 

computed by calculating the slope of a linear polynomial fit to metabolite concentrations in 

the spent and control media vs. the integral of cell concentration (with respect to time) for 

exponential phase. The sample at 36 h was excluded due to poor quality (i.e., there were 

spurious jumps in some metabolite concentrations, which was inconsistent with 

measurements of preceding and subsequent time points). The final exchange rates were 

calculated by subtracting the control media rate from the spent media rate. Cell dry weight 

was set at 216.1 pg/cell, based on component weights (see Supplemental Data S2). The 

metabolite exchange rates were consistent with the expected rates for growth, except for 

arginine and cysteine equivalents, which showed a net efflux, despite being essential in CHO 

(Naylor et al., 1979) (also see Supplemental Figure S5).

CHO M250-9 cells grown in protein-free, chemically defined (PFCD) media: Previously 

published data were acquired for the metabolite uptake and secretion rates (Selvarasu et al., 
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2012). Since no information was available on tryptophan uptake, a previously published 

(Carinhas et al., 2013) uptake rate of 0.0032 mmol gDW−1 hr−1 was used.

Butyrate-treated CHO cells: Previously published uptake and secretion rates were 

obtained for exponential phase of CHO cells producing high and low quantities of protein 

under control and butyrate treatment while growing on CD CHO medium (Carinhas et al., 

2013). Since cysteine uptake was not measured, an uptake rate of 0.0052 mmol gDW−1 hr−1 

for cysteine was obtained from a previously reported value (Selvarasu et al., 2012). This 

value is qualitatively consistent with a previous report (Gorfien et al., 2003) showing that 

cysteine is taken up.

CHO-K1 from MFA studies: Exchange rates were taken from previous studies (Ahn and 

Antoniewicz, 2013, 2011) and supplemented with the values used in the associated 

metabolic flux analysis (MFA) model simulations for metabolites for which experimental 

data were not available. As both studies reported uptakes on a per-cell basis, fluxes were 

calculated after scaling to a cell dry weight of 216.1 pg/cell, 315 pg/cell, and 350 pg/cell 

since dry weight composition was not measured. These flux values thus cover the range of 

observed cell weights for CHO (Altamirano et al., 2001; Martínez et al., 2015). As the cells 

were grown in 10% FBS, an extracellular arginase reaction was added to the models (Hölttä 

and Pohjanpelto, 1982).

CHO-K1 derivative producing IgG in serum-free medium: Data were taken from a CHO 

XL99-Ab2 cell line producing an IgG1 antibody (Martínez et al., 2015). Uptake and 

secretion rates were calculated by fitting a linear polynomial to metabolite concentration vs. 

the integral of cell concentration (with respect to time, prior to temperature shift) and scaled 

using a cell dry weight of 350 pg/cell. We discuss the control cultures (no temperature shift) 

in the supplemental information (see Supplemental Figure S4–5). Since cysteine uptake was 

not measured, an uptake rate of 0.0052 mmol gDW−1 hr−1 for cysteine was obtained from a 

previously reported value (Selvarasu et al., 2012).

DATA AND SOFTWARE AVAILABILITY

Raw data files for CHO-S RNA sequencing have been deposited in the NCBI Gene 

Expression Omnibus under accession number GSE77800. All models are available at http://

www.CHOgenome.org. Additionally, the global model can be browsed and downloaded at 

the BiGG Models database (http://bigg.ucsd.edu).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chemicals, Peptides, and Recombinant Proteins
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Qiagen’s RNeasy Mini Kit Qiagen #74104

TruSeq Stranded mRNA 
Sample prep kit with 96 dual 
indexes

Illumina RS-122-2103

Deposited Data

Raw RNA-Seq data This paper GEO: GSE77800

Global model of C. griseus 
metabolism

This paper http://bigg.ucsd.edu; http://CHOgenome.org

Cell-line models of CHO-S, 
K1, and DG44

This paper http://CHOgenome.org

Experimental Models: Cell Lines

Hamster: CHO-S Life Technologies A11557-01

Hamster: CHO-K1 ATCC CCL-61

Experimental Models: Organisms/Strains

Recombinant DNA

Sequence-Based Reagents

Software and Algorithms

FastQC Andrews 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic Bolger et al. 2014 http://www.usadellab.org/cms/index.php?page=trimmomatic

STAR Dobin et al. 2013 https://github.com/alexdobin/STAR

SAMtools Li et al. 2009 http://www.htslib.org/

Cufflinks Trapnell et al. 2010 https://github.com/cole-trapnelllab/cufflinks

COBRA Toolbox Schellenberger et 
al., 2011

https://github.com/opencobra/cobratoolbox/
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REAGENT or RESOURCE SOURCE IDENTIFIER

GIMME Becker and Palsson 
2008

https://github.com/opencobra/cobratoolbox/

Other

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A multi-step process was used to reconcile a few existing unpublished models and to 
generate the final community reconstruction and models
(A) The manually-curated human metabolic network reconstructions (Recon 1 (Duarte et al., 

2007) and Recon 2 (Quek et al., 2014)) were used to define an initial set of reactions 

catalyzed in C. griseus and the genes and proteins involved in each reaction (GPRs). 

Specifically, Recon 1 and Recon 2 were combined and all enzyme-catalyzed reactions that 

differed between the two were manually curated and reconciled to obtain consistent GPRs. 

C. griseus homologs were obtained for each human gene to obtain a set of draft GPRs linked 

specifically to genes in the CHO-K1 genome annotation. (B) The draft CHO GPRs were 

then compared with the GPRs from three independently-reconstructed and unpublished 

CHO genome-scale models, thus leveraging the manual curation invested in each input 

model. By manually verifying all GPRs and adding additional CHO-specific reactions 

present in the input CHO genome-scale models, we obtained a more comprehensive 

community reconstruction for C. griseus. To enable computation with this network, orphan 

reactions from Recon 2 were added, and omics data were used to build a global and cell-line 

specific models.
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Figure 2. Outcomes from the reconciliation process
GPRs were updated and novel reactions were added in the reconstruction process, as shown 

for example in (A) mitochondrial and peroxisomal beta oxidation. Specifically, the 

trifunctional enzyme necessary for the 2nd, 3rd, and 4th steps of mitochondrial beta oxidation 

has been added to oxidation reactions occurring in the mitochondria while the GPRs of 

peroxisomal beta oxidation reactions have been updated to reflect additional catalytic 

activity of the SCP2 protein. (B) Additional enzymes necessary for catabolism of various 

unsaturated fatty acids have been added for both peroxisomal and mitochondrial beta 

oxidation. (C) The starting models had considerable differences in content, and following 

reconciliation, 1,571 new reactions were added to the model that had not been included in 

any of the starting CHO models. UCSD, NUS, and UQ/BOKU indicate the various groups 

contributing models to the initial reconciliation effort (see STAR Methods for additional 

details for each model). (D) The reconstruction refers solely to gene-associated content. To 

convert the reconstruction into a computable model, a global C. griseus model was built by 

including orphan reactions from Recon 2. These additions enable the activity of known 

enzymes in C. griseus and serve as hypotheses for enzyme discovery in CHO. After 

removing unexpressed genes, cell-line specific models were constructed for CHO-K1, -S, 

and -DG44 cells. (E) The reactions in the global C. griseus model account for pathways in 

multiple subcellular compartments.
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Figure 3. The CHO cell-line models can compute growth rates for various IgG-producing cell 
lines
All cell lines are grown in serum-free media and are producing IgG. HP and LP refer to high 

and low producers respectively while NaBu indicates the presence of sodium butyrate 

addition to the media (Carinhas et al., 2013). Early exp./Late exp. refer to the early and late 

exponential phase, respectively, (Selvarasu et al., 2012). Two cell lines are from cultures 

exposed to a temperature shift (Martínez et al., 2015); however the data points used come 

from the time period prior to the temperature shift. Simulations for the Selvarasu study 

utilize the CHO-DG44 cell line model. Other simulations use the CHO-K1 cell line model.
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Figure 4. The models provide insights into the molecular basis of CHO-specific amino acid 
auxotrophies
(A) Arginine, (B) Cysteine, (C) Proline, (D) Asparagine. For each reaction, information in 

the circles indicates whether the enzyme catalyzing the reaction is seen in transcriptomic 

(upper left quarter-circle) and/or proteomic (lower left quarter-circle) data, as well as its 

presence or absence in the cell line specific models generated by GIMME (right semi-

circle). The square shows whether the enzyme catalyzing the reaction is seen in 

transcriptomic data from a mix of C. griseus tissues. Data used is available in Supplemental 

Data S4. Metabolite abbreviations are as follows: CITR-citrulline, ASP-aspartate, 

ARGSUCC-argininosuccinate, ARG-arginine, SER-serine, HCYS-homocysteine, CYST-

cystathionine, ORN-ornithine, GLU-glutamate, GLU5SA-glutamate 5 semialdehyde, PRO-

proline, GLN-glutamine, ASN-asparagine.
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Figure 5. Resource utilization efficiency in CHO cell lines is greater after cell line engineering
(A) Feasible uptake fluxes were generated for nutrient utilization efficiency analyses. 

Growth rates and specific productivities were obtained and used to constrain the model. By 

sampling the constrained model, a set of feasible metabolite uptake rates and secretion rates 

was calculated that support growth and production at the specified values. (B) The efficacy 

of resource utilization following common growth-inhibiting treatments in protein-producing 

CHO cell lines was quantified. Uptake and secretion rates from (A) were used to predict 

maximum growth (i.e., no protein production) and maximum protein yield (i.e., no growth), 

as well as yields at various fractions of maximum growth. These were used to predict a 

range of optimal protein production rates (i.e. making full use of resources) as growth rate 

decreases (indicated as a region of full resource utilization), thus showing the theoretical 

maximal protein secretion rates at decreased growth rates. The 5th, 25th, 50th, 75th, and 

95th percentile of theoretical maximal protein production rates at each growth rate are 

indicated by the gradient in color from black to orange. After several cell treatments, the 

experimentally measured increased protein yield and decreased cell growth rate were 

compared to the predicted optimal protein secretion rates to assess how successfully each 

treatment utilized available resources (e.g., amino acids and sugars) for growth and protein 

production. Boxes span the 25th and 75th percentiles, whiskers represent the 5th and 95th 

percentiles, and a red line denotes the median value of overall resource utilization efficiency 

for each treatment, calculated as the ratio of experimentally measured protein production to 
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the theoretical maximum protein yield (i.e., no growth). (C) The efficiency of diversion of 

resources toward protein production following common treatments was assessed. Uptake 

and secretion rates from (A) were used to compute the theoretical maximum specific 

productivity after cell line or process modifications yielding a range of theoretical optimal qp 

values were computed. Experimentally measured production rates were compared to the 

computational predictions to assess how effectively the cells are able to make use of 

resources gained from growing slower. Boxes span the 25th and 75th percentiles, whiskers 

represent the 5th and 95th percentiles, and a red line denoting the median value.
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