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Abstract

Research examining models of memory has focused on differences in the shapes of ROC curves 

across tasks and has used these differences to argue for and against the existence of multiple 

memory processes. ROC functions are usually obtained from confidence judgments, but the 

reaction times associated with these judgments are rarely considered. The RTCON2 diffusion 

model for confidence judgments has previously been applied to data from an item recognition 

paradigm. It provided an alternative explanation for the shape of the z-ROC function based on how 

subjects set their response boundaries and these settings are also constrained by reaction times. In 

our experiments, we apply the RTCON2 model to data from associative recognition tasks to 

further test the model’s ability to accommodate non-linear z-ROC functions. The model is able to 

fit and explain a variety of z-ROC shapes as well as individual differences in these shapes while 

simultaneously fitting reaction time distributions. The model is able to distinguish between 

differences in the information feeding into a decision process and differences in how subjects 

make responses (i.e., set decision boundaries and confidence criteria). However, the model is 

unable to fit data from a subset of subjects in these tasks and this has implications for models of 

memory.
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Introduction

Associative memory is memory for combinations of items (i.e., do you remember whether 

these items were presented together or separately during the study list). Compared to simple 

item recognition memory (i.e., do you remember an item or not) associative recognition 

shows greater declines with age (e.g., Bastin & Van der Linden, 2006; Craik, Luo, & Sakuta, 

2010; Naveh-Benjamin, 2000, 2012; Ratcliff, Thapar, & McKoon, 2011), is less susceptible 

to decay and interference (Hockley, 1992), has different patterns of false alarm rates 

(Hockley, 1994; Malmberg & Xu, 2007), has a different time course (Gronlund & Ratcliff, 

1989), and shows different word frequency effects (Clark, 1992), among other differences.
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In this paper, we apply the RTCON2 model to an associative recognition task for which 

subjects used a six-point scale to rate the confidence with which they believed a pair of test 

items had or had not appeared together earlier in the experiment. This is the more common 

method of collecting confidence responses, especially in memory research, although some 

researchers have had subjects make a two-choice response followed by a confidence rating 

(Baranski & Petrusic, 1998; Merkle & Van Zandt, 2006; Pleskac & Busemeyer, 2010; Van 

Zandt, 2000; Van Zandt & Maldonado-Molina, 2004; Vickers, 1979; Vickers & Lee, 1998, 

2000). In the model, evidence is accumulated toward a set of decision thresholds and the 

relative heights of these thresholds explains both the location and shape of subjects’ reaction 

time distributions and also the shape of their z-ROC functions. This means that z-ROC shape 

does not solely provide information about memory representations as has been assumed to 

date but also reflects individual differences in how subjects use confidence response scales. 

Application of the RTCON2 model to associative recognition is especially interesting 

because this type of memory task often produces z-ROC functions with different shapes than 

item recognition, and these differences have previously been used to motivate the 

development of various memory models (Glanzer, Hilford, & Kim, 2004; Hilford, Glanzer, 

Kim, & DeCarlo, 2002; Kelley & Wixted, 2001; Qin, Raye, Johnson, & Mitchell, 2001; 

Slotnick & Dodson, 2005; Slotnick, Klein, Dodson, & Shimamura, 2000; Wixted, 2007; 

Yonelinas, 1997, 1999) and in neuroscience research (Eichenbaum, Yonelinas, & Ranganath, 

2007; Henson, Rugg, Shallice, & Dolan, 2000; Kim & Cabeza, 2007; Kirwan, Wixted, & 

Squire, 2008; Moritz, Glascher, Sommer, Buchel, & Braus, 2006; Rissman, Greely, & 

Wagner, 2010; Stark & Squire, 2001; Wais, 2011; Yonelinas, Hopfinger, Buonocore, Kroll, 

& Baynes, 2001). However, these memory models typically focus only on the kind of 

evidence being fed into a decision, ignore or over-simplify the process of making a decision 

based on that evidence, and may not produce the same estimates of evidence that a full 

decision model would. In contrast, our research attempts to model the process of making 

confidence-judgments in an associative recognition paradigm and investigate to what degree 

experimental findings can be accounted for with a decision-making model.

In an associative recognition memory experiment, participants study pairs of words and are 

then asked to distinguish between pairs of words that were previously studied together 

(“intact”) or studied separately (“rearranged”). In an item recognition memory experiment, 

participants study individual items and are then asked to distinguish between items that were 

previously studied (“old”) and items that were not previously studied (“new”). Most of the 

work investigating either type of recognition memory has relied on Signal Detection theory 

(Banks, 1970; Bernbach, 1967; Donaldson & Murdock, 1968; Egan, 1958; Grasha, 1970; 

Kintsch, 1967; Kintsch & Carlson, 1967; Lockhart & Murdock, 1970; Norman & 

Wickelgren, 1969; Ratcliff, McKoon, & Tindall, 1994; Ratcliff, Sheu, & Gronlund, 1992; 

Yonelinas, 1994). In the signal detection framework, it is assumed that each tested pair has 

some value of associative strength that is normally distributed for each category of tested 

items (for example, “intact” or “rearranged” word pairs). The intact/rearranged decision can 

then be modeled by placing a single criterion on a dimension representing the associative 

strength of the test items. If the associative strength value for a test item is above the 

criterion, then an ‘intact’ response is made; otherwise, if the associative strength value is 

below the criterion, then a ‘rearranged’ response is made. Bias toward one of the response 
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choices can be modeled by changes in the placement of the decision criterion, and multiple 

response options (such as confidence judgments) can be modeled by including additional 

decision criteria.

In confidence judgment procedures, subjects rate their confidence that an item is intact or 

rearranged using a response scale with levels ranging from ‘very sure intact’ to ‘very sure 

rearranged’. To model these multiple response options, additional decision criteria are used 

to divide the memory strength dimension into multiple response regions. Fig. 1 depicts two 

normal distributions, one for intact items and one for rearranged items, and three possible 

decision criteria. These decision criteria partition the match dimension into four response 

regions corresponding to four confidence categories: from left to right, high confidence 

rearranged, low confidence rearranged, low confidence intact, high confidence intact. As the 

decision criterion moves from left to right, both the hit and false alarm rates decrease.

These decision criteria can then be used to create receiver operating characteristic (ROC) 

functions, which are plots of the hit rate (“intact” responses to intact word pairs) against the 

false alarm rate (“intact” responses to rearranged word pairs). To create an ROC function 

from the data, each criterion is treated as if it were the only criterion and the hit and false 

alarm rates for that criterion are calculated and plotted against each other as a single point on 

the ROC curve. Hit and false alarm rates are calculated first for the rightmost criterion, 

representing the highest confidence intact category, then for the two rightmost categories 

(adding together the number of responses in those two categories), then for the three 

rightmost, and so on.

These hit and false alarm rates are frequently converted to z-scores, resulting in a function 

called a z-ROC. The assumption of normal distributions of memory evidence predicts linear 

z-ROC functions with a slope equal to the ratio of the standard deviations of the “intact” and 

“rearranged” item distributions (Ratcliff et al., 1992). The lower portion of Fig. 1 depicts the 

z-ROC function obtained from the two distributions. However, linear z-ROC functions are 

also consistent with other kinds of distributions such as poisson, gamma, and even a 

combination of ramp and rectangular distributions (Banks, 1970; Lockhart & Murdock, 

1970; Murdock, 1974). With different distributions of evidence, the slope of the z-ROC 

function is not the ratio of the standard deviations of the distributions as it is when the 

distributions are normal.

As predicted by SDT with normal distributions, most of the z-ROC functions found in the 

memory literature on item recognition have been approximately linear. However, a number 

of studies have demonstrated systematically non-linear z-ROC functions and these findings 

have prompted theoretical elaborations of the standard single-process signal-detection theory 

(DeCarlo, 2002; Malmberg & Xu, 2006; Ratcliff et al., 1994; Ratcliff & Starns, 2013; 

Rotello, Macmillan, & Reeder, 2004; Rotello, Macmillan, & Van Tassel, 2000; Yonelinas, 

1994, 1997; Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996). Several of these 

theories have focused on explaining the slightly U-shaped z-ROC functions observed in 

some associative recognition and source-memory experiments (Glanzer et al., 2004; Hilford 

et al., 2002; Kelley & Wixted, 2001; Qin et al., 2001; Slotnick & Dodson, 2005; Slotnick et 

al., 2000; Wixted, 2007; Yonelinas, 1997, 1999).
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There are a number of problems with this SDT approach to memory modeling. First, this 

approach often ignores differences between individuals. ROC analyses are frequently 

conducted on data that has been averaged across subjects, so any differences between 

subjects are ignored or relegated to an Appendix A. As the present study will demonstrate, 

there can be substantial differences in how subjects utilize confidence response scales such 

that it is not appropriate to only analyze averaged data (Malmberg & Xu, 2006; Ratcliff et 

al., 1994). Second, the SDT approach ignores the reaction time associated with each 

response. Although there is a well-known relationship between the speed and accuracy with 

which people make decisions (Pachella, 1974; Wickelgren, 1977), most memory researchers 

only collect and analyze accuracy data. In order to provide a complete account of the 

confidence decision process, it is important to consider both reaction time and accuracy. 

Third, the SDT approach assumes that the only source of variability in the decision process 

is the variability in memory strength between items. This assumption leads to inappropriate 

conclusions about the z-ROC functions (Ratcliff & Starns, 2009, 2013; Starns, Ratcliff, & 

McKoon, 2012). Fourth, elaborations of SDT often include additional memory processes or 

additional sources of information in order to accommodate non-linear z-ROC functions 

(Arndt & Reder, 2002; DeCarlo, 2002, 2003; Hilford et al., 2002; Kelley & Wixted, 2001; 

Rotello et al., 2004; Yonelinas, 1994; Yonelinas & Parks, 2007). With the inclusion of 

reaction time data and individual differences, the present study will demonstrate that these 

additional processes are not always necessary to produce non-linear z-ROC functions. All of 

these problems with SDT can potentially be addressed by using the RTCON2 model. This 

model produces both accuracy and reaction time predictions for individual subjects, it 

includes several sources of variability related to the decision process, and it has been able to 

fit a variety of item recognition z-ROC functions without additional memory processes 

(Ratcliff & Starns, 2009, 2013). The RTCON2 model is not a memory model in the same 

way SDT is not a memory model. A complete description of processing would have a 

memory model provide the distributions of memory evidence used in making the decision as 

in SDT. However, the model has been able to explain various z-ROC shapes observed in 

item recognition tasks, including non-linear functions. The explanation for these shapes is 

based on how subjects set their decision boundaries and is constrained by reaction time data. 

As such, the explanation for these shapes is based on the process of making a decision as 

opposed to the type of information entering into the decision process from memory. The 

goal of these experiments is to determine whether the RTCON2 model can similarly account 

for the non-linear z-ROC functions commonly observed in associative recognition tasks.

The RTCON2 model has previously been applied to confidence judgments in item 

recognition and motion discrimination tasks and was shown to provide a better fit to the data 

than several competing decision models (Ratcliff & Starns, 2013). In the RTCON2 model, 

the evidence available to the decision process on a single trial (i.e., the memory strength for 

a particular item) is assumed to be a distribution across the evidence-strength dimension 

instead of a single value (cf. Beck et al., 2008; Gomez, Ratcliff, & Perea, 2008; Jazayeri & 

Movshon, 2006; Ratcliff, 1981; Ratcliff & Starns, 2009). These item distributions have a 

standard deviation of 1 and their mean location varies from trial to trial (as in SDT). The 

bottom portion of Fig. 2 illustrates how the distribution of evidence for a single item is 

mapped to the decision process. As in SDT, multiple confidence criteria are used to divide 
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the match dimension into multiple response regions corresponding to different levels of 

confidence.

Each response region has its own accumulator and decision boundary, as shown in the top 

portion of Fig. 2, and the diffusion processes race until one of the processes reaches its 

decision boundary and the corresponding response is made. Evidence for each confidence 

response accumulates separately over time toward a decision boundary. This is similar to 

other sequential sampling models that assume that noisy evidence is accumulated separately 

for each response alternative (as in the dual-diffusion model, Ratcliff, Hasegawa, Hasegawa, 

Smith, & Segraves, 2007; and the Leaky-Competing Accumulator model, Usher & 

McClelland, 2001).

The mean position of the distribution of evidence (μ) is determined by the quality of 

information extracted from the stimulus and determines the rate of accumulation (ν) for 

each accumulator. In an experiment, the value of μ would be different for stimulus 

conditions of differing difficulty. For example, in an associative recognition experiment, μ 
would represent the quality of the match between a given word pair and memory. A pair of 

words that had been presented together during the study period should have a higher degree 

of match (i.e., a higher value of μ) than a pair of words that had been presented in different 

pairs during the study period. The quality of information from stimuli of the same type is 

allowed to vary across trials to reflect differences in the encoding and retrieval of associative 

information across pairs of items. This between-trial variability in μ is assumed to be 

normally distributed with standard deviation s. The average rate of accumulation (ν) for 

each response is determined by the proportion of the within-trial distribution of evidence in 

each of the response regions. This accumulation process is subject to moment-to-moment 

variability such that processes with the same accumulation rates will not always terminate at 

the same time or with the same confidence response.

Several aspects of this model affect the relationship between the level of confidence and the 

evidence in favor of a particular choice. Specifically, a particular confidence judgment is 

determined by the decision boundaries of the response accumulators and by the criteria that 

divide the strength dimension into response regions as well as by the amount of evidence in 

favor of a particular confidence response. For example, a high confidence response region 

may have a higher decision boundary such that more evidence must be accumulated for that 

response to be selected. The height of the decision boundary would cause that particular 

response to be selected less often and with a longer reaction time than if that response region 

had a lower decision boundary, even for items that have a high mean value of evidence. Thus 

in RTCON2 confidence is not merely a function of accuracy.

The RTCON models are an extension of the diffusion model (Audley & Pike, 1965; Ratcliff, 

1978, 1988, 2006; Ratcliff & McKoon, 2008), and were developed to accommodate both 

accuracy and reaction time distributions from multi-choice confidence judgment tasks 

(Ratcliff & Starns, 2009, 2013). RTCON2 differs from the original RTCON model in that it 

uses a slightly different decision process (RTCON2 uses constant summed evidence whereas 

RTCON uses an OU diffusion process) and allows accumulators to go below zero (in fact, 
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because it is a linear process, there is no true zero point; a constant could be added to the 

base evidence level and decision bounds and the behavior of the model would be the same).

In the constant summed evidence algorithm, the increment to evidence (Δx) on each time 

step (Δt) is determined by its drift rate (v) and noise (Eq. (1)). On each time step, one of the 

response accumulators is selected randomly and increased (Eq. (1)) and some of the other 

response accumulators are decreased such that the sum of the total decrease is equal to the 

increase in the selected accumulator (Eq. (2)).

(1)

(2)

There are several possible variants of this algorithm. For example, all of the response 

accumulators could be competing (i.e., an increase on one accumulator would cause all of 

the other N accumulators to decrease) or only some of the accumulators could be competing 

(i.e., if one of the ‘intact’ accumulators was increased, only the ‘rearranged’ accumulators 

would decrease – the other ‘intact’ accumulators would be unchanged). For this application, 

we used the variant of the model where an increase in evidence in one of the ‘intact’ 

accumulators would cause a decrease in evidence only in the ‘rearranged’ accumulators (this 

is shown in Eq. (2)), but not the other ‘intact’ accumulators. This version of the constant-

summed evidence algorithm makes intuitive sense in that evidence for one type of response 

(intact or rearranged) should not compete with other confidence levels of that same 

response. This version of the algorithm also provides parameter values that are more 

consistent across different numbers of response options. The expressions for the changes in 

evidence for each accumulator are given in Eqs. (1) and (2). Eq. (1) describes the update in 

evidence for the selected accumulator and Eq. (2) describes the corresponding change in 

activity for the non-selected accumulators (note that, due to noise from the second terms in 

the right-hand side of Eq. (1), Δxi could also be a negative value such that the other 

accumulators would all take a proportional step up). If the selected accumulator was one of 

the ‘intact’ accumulators, then Eq. (2) would be used to adjust the ‘rearranged’ 

accumulators, but the other intact accumulators would be unchanged (and vice versa, if a 

‘rearranged’ accumulator was selected). In these equations, as is a scaling parameter that 

adjusts drift rate (the area under the distribution in the bottom of Fig. 2), σ is within-trial 

variability in the accumulation process, η is a normally distributed random variable with 

mean 0 and SD 1, and N is the total number of accumulators. The constant summed 

evidence algorithm has been shown to provide a better fit to empirical data than a competing 

class of models because it is better able to account for shifts in the RT distributions across 

confidence responses (Ratcliff & Starns, 2013).
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Reaction time distributions are obtained by combining the decision time (the time taken for 

one of the evidence accumulators to reach a decision boundary) with a uniformly distributed 

non-decision component. The non-decision component is assumed to have mean Ter and 

range st, and it encompasses both encoding and response output processes. Reaction time 

distributions are also dependent on the height of the decision boundaries, which vary from 

trial to trial over a uniform distribution with a range of sb.

Although both RTCON2 and SDT use normal distributions of stimulus information, they 

produce considerably different interpretations of z-ROC functions. In SDT, the proportion of 

hit and false alarm rates can only be manipulated through the placement of the decision 

criterion. In RTCON2, the proportion of hit and false alarm responses can be manipulated 

either by adjusting the height of the decision boundaries or by adjusting the confidence 

criteria. A shift in the heights of the decision boundaries will shift the response time 

distributions and have an effect on the leading edge of the RT distribution whereas a shift in 

the confidence criteria will have a smaller effect on the leading edge. Thus, the two ways of 

adjusting response proportions in RTCON2 are identifiable based on reaction time 

distributions. Because the response proportions depend on both the height of the decision 

boundaries and the placement of the confidence criteria, RTCON2 is able to fit a wider 

variety of z-ROC functions than standard SDT. In contrast to SDT, which deals only with 

accuracy, RT distributions provide additional severe constraints on RTCON2 because the 

model not only has to account for z-ROC functions but also RT distributions.

As mentioned previously, standard SDT with normal distributions of evidence is unable to 

account for the non-linear z-ROC functions observed in some associative recognition 

experiments (Glanzer et al., 2004; Hilford et al., 2002; Kelley & Wixted, 2001; Qin et al., 

2001; Slotnick & Dodson, 2005; Slotnick et al., 2000; Wixted, 2007; Yonelinas, 1997, 

1999). This has prompted theorists to add extra memory processes (Yonelinas, 1994; 

Yonelinas & Parks, 2007) or extra sources of information (DeCarlo, 2002, 2003; Hilford et 

al., 2002; Kelley & Wixted, 2001) to standard SDT in order to account for these findings. 

Because the RTCON2 model has different ways of adjusting response proportions (but 

additional constraints because of RT distributions), it can potentially account for non-linear 

z-ROC functions through changes in the decision-making process as opposed to changes in 

the memory process. Moreover, because RTCON2 is fit to both accuracy and RT data, 

applications of the model in other paradigms have demonstrated a relationship between the 

shape of the z-ROC function and the behavior of response time distributions that had not 

previously been observed.

Another important difference between SDT and RTCON2 is that SDT contains only a single 

source of variability. In SDT, the variability in the distribution of memory strength is the 

only source of variability that affects the decision. In RTCON2, however, there is variability 

across trials in the quality of evidence from a stimulus (the variability in the mean value of 

the evidence distribution across trials), variability in the evidence accumulation process, and 

variability in the decision boundaries. These three sources of variability are identifiable and 

are needed to account for decision time, that is, RT distributions for responses for the various 

confidence categories (see Ratcliff & Starns, 2009, for some discussion of parameter 

recovery and lack of parameter correlations for RTCON). In standard SDT, the slope of the 
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z-ROC function represents the ratio of the standard deviations of the distributions of old and 

new stimulus evidence. But because there are several sources of variability in the decision 

process, the slope of the z-ROC function is not a measure of the ratio of stimulus variability 

for the two choices as in SDT.

RTCON2 is able to account for both accuracy and reaction time values for confidence 

judgments, distinguishes between several sources of variability in the decision process, and 

provides an alternative explanation for the shape of z-ROC functions. The aim of these 

experiments is to investigate whether this model can account for data from an associative 

recognition task.

Experiment 1

The first experiment was designed to collect a large number of observations for a few 

subjects to provide stringent tests of the RTCON2 model performance on an associative 

recognition task. The aim is to determine whether this one-process model can account for 

the type of accuracy (and RT) data that has been assumed to provide evidence for different 

memory processes (DeCarlo, 2002, 2003; Healy, Light, & Chung, 2005; Kelley & Wixted, 

2001; Rotello et al., 2000; Yonelinas, 1994). In this experiment, subjects studied lists of 

pairs of words and then were presented with pairs of test words and had to distinguish 

between intact and rearranged versions of the study pairs.

Method

Subjects—Five Ohio State University undergraduate students participated in 8 sessions 

and earned $10 for each completed session.

Materials—The stimuli were drawn from a pool of 814 high-frequency words, 859 low-

frequency words, and 741 very-low-frequency words. Low-frequency words ranged from 4 

to 6 occurrences per million (M = 4.41), very-low-frequency words ranged from 0 to 1 

occurrence per million (M = 0.365), and high-frequency words ranged from 78 to 10,595 

occurrences per million (M = 323.22; Kučera & Francis, 1967). Study lists were composed 

of 12 high-frequency words, 12 low-frequency words, and 4 very-low-frequency words 

selected randomly (without replacement) from the word pools. These words were randomly 

paired within frequency to create 14 word pairs (6 high-frequency pairs, 6 low-frequency 

pairs, and 2 very-low-frequency pairs). The two very-low-frequency word pairs served as 

buffer items for the study list and were presented in the first and last positions of the study 

list, and the remaining pairs were target items. All of the target word pairs were presented 

twice within each list. The 12 target pairs were randomly assigned to the middle study list 

positions with the restriction that there was at least one intervening word pair between the 

two presentations of each pair.

Test lists consisted of the two buffer word pairs (presented in the first and last positions of 

the test list) and the 12 target pairs. Each pair was presented only once during the test list 

and exactly half of the target pairs were randomly rearranged within frequency (i.e., a low-

frequency word pair could only be rearranged with another low-frequency word pair). Words 

also maintained the same positions within pairs, such that a word presented as the first item 
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in a pair during study would also be the first item of a pair during test, regardless of what 

word it was paired with. Thus each test list consisted of 6 rearranged pairs and 6 intact pairs. 

Intact pairs consisted of words which had appeared together in the study list and rearranged 

pairs consisted of words which appeared in different pairs in the study list.

Procedure—Each experimental session lasted approximately 50 min. The first two 

sessions for each subject consisted of a response-key practice block, 3 study/test blocks, a 

second response-key practice block, and 20 more study/test blocks. The second response-key 

practice block was dropped after the first two sessions, because subjects were familiar with 

the response keys and no longer needed the additional practice. Subjects responded using a 

PC keyboard on which the Z, X, C, comma, period, and slash keys were labeled with the 

symbols “− − −”, “− −”, “−”, “+”, “+ +”, and “+ + +”. Subjects were instructed to place their 

left-hand ring, middle, and index fingers on the “− − −”, “− −”, and “−” keys and their right-

hand index, middle, and ring fingers on the “+”, “+ +”, and “+ + +” keys.

During the response-key practice, each of the symbols marked on the keyboard (e.g., “− −”) 

would appear on the screen one at a time and the subjects were told to press the designated 

key as quickly as possible. If a subject took longer than 800 ms to respond to one of the 

symbols, a “TOO SLOW” message would appear on the screen for 1000 ms. Each practice 

block consisted of 10 repetitions of each of the six response key options resulting in 60 trials 

total in each block. The symbols appeared in random order within the block with the 

restriction that repeated symbols had to have at least one intervening symbol.

For the remainder of the experiment, subjects were told that they would be presented with 

pairs of words during the study portions of the experiment and their job was to learn these 

pairs. During the study/test blocks, subjects initiated the start of each study list by pressing 

the spacebar. Each word pair in the study list was displayed for 3000 ms followed by 200 ms 

of blank screen. Immediately after the final study-list word pair, a message appeared 

directing subjects to press the space bar to begin the test list. During the test-list, subjects 

were required to distinguish between the word pairs that had not appeared during the study-

list (rearranged word pairs) and those that had (intact word pairs). Each word pair remained 

on the screen until the subject had made a response. Subjects were instructed to use the 

different response-key options to indicate whether a word pair had appeared in the study-list 

and their confidence in their response. They were told to use one of the “−” keys to indicate 

that the word pair had not appeared in the study-list, and to use one of the “+” keys to 

indicate that it had. Subjects were instructed to use the different levels of “+” and “−” to 

indicate their amount of confidence in their response (e.g., if a subject felt very confident 

that a word pair was intact they would use the “+ + +” key, whereas if they felt only 

moderately confident they would use the “+ +” key). Subjects were encouraged to respond 

quickly and accurately and to try to spread their responses among all six response-keys 

throughout the course of the experiment. If a subject took less than 280 ms to respond to one 

of the test items, a “TOO FAST” message would appear on the screen for 1500 ms. Subjects 

were given error feedback throughout all test blocks in the form of the words “CORRECT” 

or “ERROR” displayed for 300 ms after their response to each test item.
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Model fitting

The RTCON2 model was fit to each individual subject’s response proportion and reaction 

time quantiles (.1, .3, .5, .7, .9) for each of the 6 confidence response for each of the 4 

conditions (rearranged high frequency, rearranged low frequency, intact high frequency, and 

intact low frequency word pairs). The RT quantiles divide the response proportion data into 

six bins for each confidence category. Initial parameter values were chosen that produced 

predictions similar to the empirical data, and then a simplex function (Nelder & Mead, 

1965) was used to adjust the parameters of the model until the predictions matched the data 

as closely as possible. The match between the empirical data and the model predictions was 

quantified by a chi-square (χ2) statistic, which was minimized by the simplex function (see 

Ratcliff & Tuerlinckx, 2002 for more detail). Because there are no exact solutions for this 

model, simulations are used to generate predicted values from the model. To simulate the 

process of accumulation given by Eqs. (1) and (2), we used the simple Euler’s method with 

1-ms steps (cf. Brown, Ratcliff, & Smith, 2006; Usher & McClelland, 2001). For each 

millisecond step, one accumulator was chosen randomly, and the evidence in it was 

incremented or decremented according to Eq. (1) and opposite accumulators were 

incremented or decremented according to Eq. (2) (e.g., if the selected accumulator was for 

one of the ‘intact’ responses, then the evidence in the ‘rearranged’ accumulators would be 

adjusted according to Eq. (2) and the other ‘intact’ accumulators would be unchanged). For 

each condition, 20,000 simulations of the decision process were used to generate the 

response proportions and RT quantiles for each confidence category. Note that we use the 

term ‘model predictions’ to refer to data generated by the model for a specific set of 

parameter values. These predictions are thus the data predicted by the model structure and a 

given parameter set, as opposed to predictions about some future data based on fits of the 

current data.

There are six RT bins for each confidence response, which gives 36 degrees of freedom for 

the 6-choice task. But these response proportions have to add to 1, which reduces the 

degrees of freedom to 35 for each condition. With four conditions, this gives a total of 140 

degrees of freedom in the data. For this experiment there are 23 free parameters in RTCON2. 

Of these, 12 are used to represent the memory strength feeding into the decision (3 mean 

drift values – one is fixed to zero, 4 between-trial variability in the mean of the drift 

distribution, and 5 confidence criteria) and the remaining 11 parameters are used to model 

the decision process (6 decision boundaries, non-decision time, variability in non-decision 

time, the scaling parameter on drift, variability in the decision boundaries, and within-trial 

noise in the diffusion process). These 11 additional parameters are what enable the model to 

produce response times as well as accuracy. Note that an accuracy-only SDT model with the 

same representation of memory strength would require 12 parameters (the same ones for 

RTCON2) for data with only 20 degrees of freedom. Additionally, although RTCON2 has a 

fairly large number of parameters, a change in any one of the parameter values will affect 

predictions across multiple conditions or response categories such that it is not possible to 

remedy misfits in a single condition by simply adjusting a single parameter.
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Results and discussion

There are two main results of this experiment. First, the model fits both the proportion of 

responses and the RT quantiles for each confidence category. Second, because the model fits 

the proportions of responses, it also fits the ROC and z-ROC functions for all but one subject 

reasonably well.

Data from this experiment consisted of response proportions and reaction-time quantiles for 

each subject from each condition and each confidence response. There were four conditions 

in this experiment: rearranged high frequency, rearranged low frequency, intact high 

frequency, and intact low frequency word pairs. Reaction time latencies less than 300 ms or 

greater than 4000 ms were excluded from these analyses (less than 0.3% of all data).

We analyzed response rates across all levels of confidence for word frequency effects. There 

was a higher hit-rate for LF word pairs (M = 0.81, SD = 0.07) than HF word pairs (M = 

0.66, SD = 0.10) and this difference was significant (t(4) = −9.3, p < .05). There was also a 

higher false-alarm rate for LF word pairs (M = 0.34, SD = 0.22) than HF word pairs (M = 

0.25, SD = 0.14) but this difference was not significant (t(4) = −2.3, p > .05).

The model was fit to data from individual subjects and the best-fitting model parameters are 

shown in Table 1. For each subject, these parameter values were used to generate predicted 

reaction time quantiles and response proportions for each condition. These predicted values 

can then be compared with the empirical data using a χ2 test to quantitatively assess the 

model fit. The mean χ2 value for this experiment was 254 with a SD of 36. This mean is 1.5 

times the critical χ2 value (168.6) which indicates a mismatch between the model’s 

predictions and the data. However, the size of this mismatch is comparable to those obtained 

in other experiments with diffusion models. Ratcliff, Thapar, Gomez, and McKoon (2004) 

demonstrated that a miss as large as .1 in the proportion of responses between quantiles 

could produce χ2 values 2–3 times the critical value. Similarly, Ratcliff and Starns (2009) 

demonstrated that 10 ms perturbations of the quantile reaction times could produce large 

increases in χ2 values. The significance of the χ2 values is also, at least partially, a power 

issue. In order to fit RCON2, we need good RT quantile estimates and so need to collect a 

sizeable amount of data from each subject. For this experiment, we collected an average of 

550 responses per condition from each subject. With this many responses, even small 

differences between the empirical data and the model predictions will be significant. For 

comparison, if we had observed these same response proportions and quantile RTs from 

about 358 responses per condition (65% of the actual 550) then the same χ2 test yields a 

mean value of 153.29 (4 out of 5 subjects have values less than the critical value) and the 

model would be considered to be a reasonably good match to the data. Additionally, the 

original RTCON model produces an average χ2 value of 331 when fit to these data. This 

demonstrates that this new version of the RTCON model is indeed an improvement over the 

original version in that it provides a closer fit to the data. The original RTCON model 

primarily had difficulty producing the bowed RT quantiles that were observed in this 

experiment.

In addition to the quantitative comparison, the model predictions for each condition can also 

be compared with the empirical data to qualitatively assess the model fit. Quantile reaction-
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times for each subject for each of the four experimental conditions are shown in Fig. 3. In 

each of these plots, the six confidence responses are plotted across the x-axis (the “sure 

rearranged” category is labeled 1 and the “sure intact” category is labeled 6) and each line 

represents a quantile (with the lowest line depicting the .1 quantile, followed by .3, .5, .7 

and .9). The numbers plotted in these figures represent the empirical data and the lines 

represent the predicted data from the model’s best fitting parameters. From these plots, it is 

apparent that there is consistency in the quantile response patterns of individual subjects 

across experimental conditions as well as wide differences between subjects in the quantile 

response patterns. For example, subjects 2 and 3 exhibit bowed reaction time quantiles 

where the high confidence responses are made more quickly than the low confidence 

responses. This is a response pattern that has been observed in previous confidence response 

paradigms (Murdock, 1974; Murdock & Dufty, 1972; Ratcliff & Murdock, 1976), but for 

which the original RTCON model was unable to account (see Ratcliff & Starns, 2013 for a 

discussion of why models with a decay term, such as RTCON, have difficulty capturing 

changes in the leading edge of RT distributions across response options). The fits to these 

data show that RTCON2 is able to capture this behavior of RT distributions.

RTCON2 was also able to capture the proportion of responses in each condition and 

confidence category. In Fig. 4, the empirical response proportions for each subject are 

plotted against the predicted response proportions for that subject (with a reference line with 

an intercept of 0 and a slope of 1). We can see that the model matches the data reasonably 

well for all subjects. ROC and z-ROC functions from both the model predictions and the 

empirical data for each subject are plotted in Fig. 5. The solid lines depict the empirical data, 

the dashed lines are the predictions from the model, the black lines are for HF word pairs 

and the gray lines are for LF word pairs. If the model is successful at capturing the response 

patterns of the subjects, then the dashed lines should match the solid lines. The linearity of 

each of the individual z-ROC curves was tested using maximum likelihood estimation 

(Ogilvie & Creelman, 1968) and subjects 3, 4, and 5 were all found to have z-ROC curves 

that are significantly different from linear (χ2 values are reported in Table 2). Subjects 1 and 

2 have z-ROC functions that are not significantly different from linear, subject 3 has inverted 

U-shaped z-ROC functions, and subjects 4 and 5 have U-shaped z-ROC functions. The 

model’s predicted ROC and z-ROC functions are relatively close to the empirical functions 

and exhibit the same linear and nonlinear patterns found in the empirical data for the first 

three subjects, but the model predicts linear z-ROC functions for subjects 4 and 5. These 

misfits can occur for several reasons, which will be discussed in greater detail following 

Experiment 3. In short, mismatches between the empirical data and model predictions occur 

for subjects and conditions with low numbers of observations or certain patterns of response 

proportions which are difficult for RTCON2 to handle. Specifically, subject 2 made very few 

high-confidence errors in any condition (fewer than 1.8%) and the model had difficulty 

producing such extreme response proportions so that a small difference between predicted 

and observed proportions leads to a miss in the predictions for the extreme points on the z-

ROC. Similarly, subject 4 also made very few high-confidence errors. While such misses 

were numerically small (for example, the model predicted that subject 4 would make high 

confidence errors about 9.3% of the time instead of 2.2%), such small misses are 

exaggerated in the z-transformed ROC function. More crucially, as will be discussed 
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following Experiment 3, certain patterns of data give rise to u-shaped z-ROC functions that 

are difficult for RTCON2 to produce.

Additionally, as noted earlier, in much of the research investigating memory models it is 

common practice to examine only group data. For illustrative purposes, Fig. 6 shows the 

ROC and z-ROC functions for this experiment averaged across subjects. The linearity of the 

averaged z-ROC curve was also tested using the maximum likelihood estimation method 

(see the last column of Table 2). While the χ2 values indicate that the averaged z-ROC 

function is still significantly different from linear, we can see that the variety present in the 

individual z-ROC shapes is largely obscured by averaging.

In RTCON2, the shape of the z-ROC function is primarily dependent on the relative heights 

of the individual decision boundaries, provided the proportion of responses in each 

confidence category is not tiny (e.g., less than 1%). Simulations of the original RTCON 

model demonstrated that inverted u-shaped decision boundaries can yield inverted u-shaped 

z-ROC functions (Ratcliff & Starns, 2009) and fits of RTCON2 to item recognition also 

demonstrated this relationship (Ratcliff & Starns, 2013). In this experiment we see that the 

relative shape of the decision boundaries across categories corresponds to the shape of the z-

ROC curves for some of the subjects. The setting of these decision boundaries is assumed to 

be entirely under the control of the subject, although it can be affected by instructions 

(Ratcliff & Starns, 2009), and so reflects an individual decision-making preference. 

Moreover, the relative shape of the decision boundaries is primarily constrained by the 

reaction time data. If a subject’s boundary for a given confidence response is set higher than 

the other boundaries, those responses will be slower (and the proportion of responses will be 

lower than if the boundary was set lower). This relationship is illustrated in Fig. 7, where the 

shape of the decision boundaries matches the shape of both the reaction time quantile 

functions for most of the subjects. The relationship between the shape of the z-ROC function 

and the decision boundaries is apparent for some subjects (e.g., subject 3) but not for others.

This experiment demonstrates that RTCON2 can fit both RT and accuracy data from an 

associative recognition experiment with confidence responses. The RTCON2 model 

distinguishes between different sources of variability, can fit individual differences in how 

people use confidence response scales, and provides an alternative explanation for the shape 

of ROC and z-ROC functions that is linked to reaction time and decision-related processes 

rather than changes in the nature of information from memory.

RTCON2 is able to fit both response proportions and reaction time distributions from a 

confidence judgment paradigm, and does so without a 1:1 mapping between accuracy and 

confidence. Additionally, the model is able to account for individual differences in how 

subjects use the confidence scale and as a result can produce a variety of ROC and z-ROC 

shapes. This explanation for various ROC and z-ROC shapes is entirely based on the 

decision-making process and individual differences in how people make confidence 

judgments. Therefore, some of the behavioral evidence that has been the primary support for 

additional memory processes may be alternatively explained through the addition of an 

explicit model of the decision-making process. These findings demonstrate the importance 
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of focusing not only on what kind of information is used in a decision, but also on how the 

decision-making process handles that information and makes a decision.

Experiment 2

The RTCON2 model distinguishes between the representation of information from memory 

and how that information is used to make a decision. As such, it is important to demonstrate 

the validity of the representation of information in RTCON2. To this end, the second 

experiment was designed to compare the RTCON2 model with the standard two-choice 

diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008). If these models explain 

individual differences in decision-making in the same way, then their parameter values 

should be consistent when fit to the same data. Additionally, the two-choice diffusion 

model’s ability to explain decision making behavior over a wide range of tasks is well-

established so comparison of the two models can lend validity to the RTCON2 model. This 

experiment allows us to compare 6-choice and two-choice data using the RTCON2 model 

and then compare the RTCON2 and the diffusion model for the two-choice data. The 

parameters from the diffusion and RTCON2 models should be consistent when fit to the 

two-choice data, and the RTCON2 model should be able to fit both 6-choice and two-choice 

data with select parameters held constant across the number of response options.

Since most decision models focus on two-choice tasks (Busemeyer & Townsend, 1992; 

Laming, 1968; Link, 1975; Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 

1998; Ratcliff, Van Zandt, & McKoon, 1999; Usher & McClelland, 2001; Wagenmakers, 

2009), these models are well-established and provide a benchmark for model performance. 

Because RTCON2 can be seen as an extension of the diffusion model, the models are quite 

similar. Just like RTCON2, the diffusion model has parameters that describe the non-

decision process (non-decision time and variability in non-decision time, st), drift rate 

parameters that describe the quality of evidence entering the decision process (mean ν and 

between-trial variability η), and starting point (z) and boundary (a) parameters that control 

the amount of evidence needed to make a decision (as well as any bias toward a particular 

response). However, there are a few differences between the models which make their 

comparison worthwhile. First, the models represent the accumulation rate differently. In the 

diffusion model, the rate of evidence accumulation is represented as a discrete value that 

varies between items. In RTCON2, the rate of evidence accumulation for each response is 

determined by the area between the confidence criteria under a normal distribution with SD 
of 1 whose mean value (μ) varies between items. The area of this distribution in each 

response region is then scaled by a parameter (as) to produce an accumulation rate for each 

confidence response. Second, unlike the diffusion model, RTCON2 has no closed form 

solution and so must be fit by simulation methods.

In this task, subjects will alternate between using a 6-choice confidence response scale, and 

a two-choice response scale (corresponding to a simple intact/rearranged decision).

Method

Subjects—Four Ohio State University undergraduate students participated in 7 sessions 

and earned $10 for each completed session.
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Materials—The stimuli were drawn from the same high-frequency, low-frequency, and 

very-low-frequency word pools described in the first experiment. Study lists were composed 

of 12 high-frequency words, 12 low-frequency words, and 4 very-low-frequency words 

selected randomly (without replacement) from the word pools. These words were randomly 

paired within frequency to create 14 word pairs (6 high-frequency pairs, 6 low-frequency 

pairs, and 2 very-low-frequency pairs). As in the first experiment, the 2 very-low-frequency 

word pairs served as buffer items for the study list and were presented in the first and last 

position within each list. All of the target word pairs were presented twice within each study 

list and were assigned to study-list positions randomly with the restriction that repeated pairs 

had at least one intervening word pair.

As in experiment one, test lists consisted of the two buffer word pairs (which were again 

presented in the first and last positions of the test list) and the 12 target pairs. Each pair was 

presented only once during the test list and exactly half of the target pairs were randomly 

rearranged within frequency and number of presentations. Thus each test list consisted of 2 

buffer word pairs, 6 rearranged word pairs and 6 intact word pairs. Intact pairs consisted of 

words which had appeared together in the study list and rearranged pairs consisted of words 

which appeared in different pairs in the study list.

Procedure—Each experimental session lasted approximately 50 min. The first two 

sessions for each subject consisted of a response-key practice block, 3 study/test blocks, a 

second response-key practice block, and 20 more study/test blocks. The second response-key 

practice block was dropped after the first two sessions, because subjects were familiar with 

the response keys and no longer needed the additional practice. During the first three study/

test blocks, subjects alternated between using 6 or 2 response-keys between each list (one 6-

choice list, then one two-choice list, then another 6-choice list). During the last twenty 

study/test blocks, subjects alternated between blocks of lists (three two-choice lists, then 

seven 6-choice lists, then three two-choice lists, then seven 6-choice lists). Subjects 

responded using a PC keyboard on which the Z, X, C, comma, period, and slash keys were 

labeled with the symbols “− − −”, “− −”, “−”, “+”, “+ +”, and “+ + +”. Subjects were 

instructed to place their left-hand ring, middle, and index fingers on the “− − −”, “− −”, and 

“−” keys and their right-hand index, middle, and ring fingers on the “+”, “+ +”, and “+ + +” 

keys.

During the response-key practice, each of the symbols marked on the keyboard (e.g., “− −”) 

would appear on the screen one at a time and the subjects were told to press the designated 

key as quickly as possible. If a subject took longer than 800 ms to respond to one of the 

symbols, a “TOO SLOW” message would appear on the screen for 1000 ms. Each practice 

block consisted of 10 repetitions of each of the six response key options resulting in 60 trials 

total in each block. The symbols appeared in random order within the block with the 

restriction that repeated symbols had to have at least one intervening symbol.

For the remainder of the experiment, subjects were told that they would be presented with 

pairs of words during the study portions of the experiment and their job was to learn these 

pairs. Additionally, subjects were informed at the beginning of each study-list and each test-

list how many different response-keys were to be used for that study/test block (e.g., ‘Please 

Voskuilen and Ratcliff Page 15

J Mem Lang. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use all 6 confidence categories for the next study list’). During the study/test blocks, subjects 

initiated the start of each study list by pressing the spacebar. Each word pair in the study list 

was displayed for 3000 ms followed by 200 ms of blank screen. Immediately after the final 

study-list word pair, a message appeared directing subjects to press the space bar to begin 

the test list. During the test-list, subjects were required to distinguish between the word pairs 

that had not appeared during the study-list (rearranged word pairs) and those that had (intact 

word pairs). Each word pair remained on the screen until the subject had made a response.

On the 6-choice study/test blocks subjects were instructed to use all 6 response-keys to 

indicate whether a pair was intact or rearranged and their confidence in their response. They 

were told to use one of the “−” keys to indicate that the word pair had not appeared in the 

study-list, and to use one of the “+” keys to indicate that it had. Subjects were instructed to 

use the different levels of “+” and “−” to indicate their amount of confidence in their 

response (e.g., if a subject felt very confident that a word pair was intact they would use the 

“+ + +” key, whereas if they felt only moderately confident they would use the “+ +” key). 

On the two-choice study/test blocks, subjects were instructed to use only the two most 

extreme response-keys (“+ + +” and “− − −”) to indicate only whether a pair was intact or 

rearranged. Subjects were encouraged to respond quickly and accurately and to try to spread 

their responses among all six response-keys throughout the course of the experiment. If a 

subject took less than 280 ms to respond to one of the test items, a “TOO FAST” message 

would appear on the screen for 1500 ms. Subjects were given error feedback throughout all 

test blocks in the form of the words “CORRECT” or “ERROR” displayed for 300 ms after 

their response to each test item.

Model fitting

The two-choice and 6-choice versions of the RTCON2 model are fit using the same 

procedure described for the first experiment. To facilitate comparison between RTCON2 and 

the diffusion model, within-trial variability in the decision process (σ) was fixed to 0.1. All 

other RTCON2 parameters were allowed to vary freely when fitting the 6-choice data, and 

then select parameters were fixed when fitting the two-choice data. For the two-choice data, 

the mean value of the drift rate distributions, the between-trial variability in these mean 

values, and the between-trial variability in the height of the decision boundaries were fixed 

to the values estimated from the 6-choice data. As in the first experiment, there are 35 

degrees of freedom per condition in the 6-choice task. In the two-choice task, there are also 

six RT bins for each response key, which gives 12 degrees of freedom, but these 12 

proportions have to add to 1, which reduces the degrees of freedom to 11 per condition. With 

four conditions, this gives a total of 140 degrees of freedom in the 6-choice task and 44 

degrees of freedom in the two-choice task. For these fits there were 23 free parameters in 

RTCON2 for the 6-choice data and 6 free parameters for the two-choice data, and 13 free 

parameters for the diffusion model.

Results and discussion

Data for this experiment consisted of response proportions and reaction-time quantiles for 

each subject from each condition and for each response category. Reaction time latencies 
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less than 300 ms or greater than 4000 ms were excluded from this analysis (less than 0.1% 

of all data).

This experiment was designed to compare the performance of RTCON2 with the diffusion 

model. There are three main results of this experiment. First, all of the models fit both the 

proportions of responses in each confidence category and their RT quantiles well for the 

appropriate tasks. Second, as in the previous experiment, the RTCON2 model also fits the 

empirical ROC and z-ROC functions for the 6-choice task. Third, there is consistency in the 

model parameters across the diffusion model and RTCON2, and the RTCON2 model is able 

to fit data from 6-choice and two-choice task with appropriate parameters fixed across tasks.

For data collapsed over the 6-choice and two-choice tasks, there was a higher hit-rate for LF 

word pairs (M = 0.88, SD = 0.08) than HF word pairs (M = 0.79, SD = 0.13) and this 

difference was significant (t(3) = −3.5, p < .05). There was again a higher false-alarm rate 

for LF word pairs (M = 0.24, SD = 0.19) than HF word pairs (M = 0.21, SD = 0.16) but this 

difference was not significant (t(4) = −1.9, p > .05).

The diffusion model and two versions of the RTCON2 model (one for 6-choice decisions 

and one for two-choice decisions) were fit to the data from individual subjects. The 

RTCON2 model was fit to the 6-choice data and both the diffusion model and RTCON2 

model were fit to the two-choice data. The RTCON2 and diffusion models were both able to 

fit both the quantile reaction-times and response proportions for each condition and 

response-key. The best-fitting parameters for each model are shown in Tables 3–5. Table 3 

contains the parameters for the 6-choice version of RTCON2, Table 4 contains the 

parameters from the two-choice version of RTCON2, and Table 5 contains the parameters 

from the diffusion model.

For the 6-choice version of the RTCON2 model, the mean χ2 value for this experiment was 

151 with a SD of 45. This mean is less than the critical value for χ2 with 140 degrees of 

freedom and α = 0.05 (168.6) indicating that the model provides an adequate fit to the data. 

For comparison, the original RTCON model produces an average χ2 value of 211 when fit 

to this data. For the two-choice version of the RTCON2 model, the mean χ2 value was 55 

with a SD of 21. For the standard two-choice diffusion model, the mean χ2 value was 43 

with a SD of 13. These means are both less than the critical value for χ2 with 44 degrees of 

freedom and α = 0.05 (60.5) indicating that both models provide an adequate fit to the data.

For each subject, their parameter values were used to generate predicted reaction time 

quantiles and response proportions for each model. These predicted values can then be 

compared with the empirical data to qualitatively assess the fit of the various models. For the 

6-choice task, quantile reaction-times for each subject for each of the four experimental 

conditions (rearranged high frequency, rearranged low frequency, intact high frequency, and 

intact low frequency word pairs) are shown in Fig. 8 along with predicted values from the 6-

choice version of RTCON2. As in the previous experiment, the 6 response keys are plotted 

on the x-axis and each line represents a reaction time quantile. The numbers plotted in the 

figures represent the subject data and the lines represent predicted data. As before, there is 

considerable consistency in the shapes of the subjects’ RT quantiles across conditions and 
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considerable differences across subjects, and RTCON2 is successful at capturing these 

effects. Note that there is considerably less 6-choice data for this experiment compared to 

the first (since subjects in this experiment were alternating between using a 6-choice 

response scale and a two-choice response scale), so there are more conditions where subjects 

made fewer than 10 responses over the course of all of the sessions.

Despite these small numbers of observations, RTCON2 was still able to capture the 

proportion of responses in each condition and confidence category. In Fig. 9, the empirical 

response proportions for each subject are plotted against the model’s predicted response 

proportions for that subject (with a reference line with an intercept of 0 and a slope of 1). We 

can see that the model matches the data quite well for all subjects. ROC and z-ROC 

functions from both the model predictions and the empirical data for each subject are plotted 

in Fig. 10. The solid lines depict the empirical data, the dashed lines are the predictions from 

the model, the gray lines are the LF word pairs, and the black lines are the HF word pairs. If 

the model is successful at capturing the response patterns of the subjects, then the dashed 

lines should match the solid lines. The model’s predicted ROC and z-ROC functions are 

close to the empirical functions and generally exhibit the same linear and nonlinear patterns 

found in the empirical data, although there are slightly larger mismatches for subjects with 

extremely low numbers of observations in some conditions (such as subject 4, who made 

very few errors across all of the sessions).

The linearity of the subjects’ z-ROC curves was tested using maximum likelihood estimation 

(Ogilvie & Creelman, 1968) and two subjects had z-ROC curves that were significantly 

different from linear: the low-frequency condition for subject 3 and both conditions for 

subject 4 (χ2 values are reported in Table 6).

For the two-choice task, Fig. 11 compares the predicted RT values from the two-choice 

version of RTCON2 and the diffusion model with the individual subjects’ data. Data in each 

row are from a single subject and data in each column are from a single experimental 

condition (rearranged high frequency, rearranged low frequency, intact high frequency, and 

intact low frequency word pairs) with the 2 response keys on the x-axis (1 representing 

‘rearranged’ and 2 representing ‘intact’). The numbers plotted in the figures represent the 

subject data, the solid lines represent predicted data generated from RTCON2, and the 

dashed lines represent predicted data generated from the diffusion model. The predicted data 

from both models fit the empirical RT data relatively well. Both models are also able to 

capture the proportion of responses in each condition and response category. In Fig. 12, the 

empirical response proportions for each subject are plotted against the RTCON2 model’s 

predicted response proportions (the dots) and against the diffusion model’s predicted 

response proportions (the x’s) with a reference line with an intercept of 0 and a slope of 1. 

Although both models match the data reasonably well, the diffusion model’s predictions 

provide a slightly better match to the empirical data.

Parameters from the 6-choice version of RTCON2 were fixed for fits of the two-choice 

version of RTCON2, and parameters from the two-choice version of RTCON2 were 

compared with corresponding diffusion model parameters. Not all of the model parameters 

are directly comparable given that the models have different numbers of confidence criteria 
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and decision boundaries. However, parameters that represent the quality of evidence from 

the stimuli (such as drift rate) and parameters that reflect individual differences in decision 

making (such as decision boundaries) should be consistent across all the models and tasks. A 

comparison of drift rate values and boundary heights across models is shown in Fig. 13. In 

the figure on the left, drift rate values from the diffusion model are plotted against the mean 

of the drift distributions from the RTCON2 model (based on fits of the 6-choice data) along 

with a linear regression line. The RTCON2 model fixes the mean of one of the drift 

distributions to zero, and allows the other drift distributions and confidence criteria to vary 

(see Table 3). The diffusion model allows all of the drift values to vary. For comparison 

purposes, for this figure the drift values from the RTCON2 model have been adjusted to 

match the diffusion model (mean drift values were shifted such that the middle confidence 

criterion was at zero) and multiplied by the scaling parameter. The two models produced 

very similar estimates of drift rate. This demonstrates that the RTCON2 model is able to 

produce estimates of the quality of evidence used in a decision that are comparable to the 

estimates produced by the more established standard diffusion model. In the figures in the 

middle and on the right of Fig. 13, the decision boundaries from the two-choice RTCON2 

model are plotted against the boundaries from the 6-choice RTCON2 model and the 

diffusion model. For the 6-choice model, the heights of the ‘intact’ and ‘rearranged’ 

response options were averaged over confidence level to produce two values to compare to 

the parameters estimated from the two-choice task. For the diffusion model, the total 

distance between the two decision boundaries (a) was split into the distance from the starting 

point (z) to produce two values (z and a–z) to compare to the parameters estimated from the 

two-choice task. For both figures, a linear regression line is included for reference. Overall, 

the models produce similar estimates of decision boundary heights. This demonstrates both 

that the RTCON2 model is able to produce estimates of response caution that are 

comparable to estimates produced by the diffusion model and that individual differences in 

response caution appear consistent across response options.

This experiment provided another demonstration of RTCON2’s ability to fit a variety of z-

ROC functions as well as bowed reaction time quantiles. Additionally, this experiment 

demonstrated consistency in model parameters within subjects and across tasks. The 

RTCON2 model was able to fit data from both a 6-choice task and a two-choice task with a 

reasonable subset of the parameters held constant across tasks. We also observed 

considerable correspondence between the drift rates across models. This indicates that, 

regardless of task differences (which likely affect other parameters such as those related to 

making a decision), the quality of evidence extracted from the stimulus can be held constant 

across task conditions.

Experiment 3

The third experiment was designed to collect a moderate number of observations from a 

larger group of subjects with the goal of providing more examples of non-linear z-ROC 

shapes to be fit by the model. As in the previous experiments, subjects in this experiment 

studied lists of pairs of words and then were presented with pairs of test words and had to 

distinguish between intact and rearranged versions of the study pairs. For this experiment, 
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the study lists were slightly longer and each item was presented for a shorter duration in 

order to collect more observations from each session.

Method

Subjects—34 Ohio State University undergraduate students participated in 2 sessions each 

and earned research credit for an introductory Psychology course for each completed 

session.

Materials—The stimuli were drawn from the same high-frequency, low-frequency, and 

very-low-frequency word pools described in the first experiment. Study lists were composed 

of 20 high-frequency words, 20 low-frequency words, and 4 very-low-frequency words 

selected randomly (without replacement) from the word pools. These words were randomly 

paired within frequency to create 22 word pairs (10 high-frequency pairs, 10 low-frequency 

pairs, and 2 very-low-frequency pairs). As in the first experiment, the 2 very-low-frequency 

word pairs served as buffer items for the study list and were presented in the first and last 

position within each list. All of the target word pairs were presented twice within each study 

list and were assigned to study-list positions randomly with the restriction that repeated pairs 

had at least one intervening word pair.

As in Experiment 1, test lists consisted of the two buffer word pairs (which were again 

presented in the first and last positions of the test list) and the 20 target pairs. Each pair was 

presented only once during the test list and exactly half of the target pairs were randomly 

rearranged within frequency and number of presentations. Thus each test list consisted of 2 

buffer word pairs, 10 rearranged word pairs and 10 intact word pairs. Intact pairs consisted 

of words which had appeared together in the study list and rearranged pairs consisted of 

words which appeared in different pairs in the study list.

Procedure—Each experimental session lasted approximately 50 min. Each session 

consisted of a response-key practice block, one practice study/test block, and 16 more study/

test blocks. Subjects responded using a PC keyboard on which the Z, X, C, comma, period, 

and slash keys were labeled with the symbols “− − −”, “− −”, “−”, “+”, “+ +”, and “+ + +”. 

Subjects were instructed to place their left-hand ring, middle, and index fingers on the “− − 

−”, “− −”, and “−” keys and their right-hand index, middle, and ring fingers on the “+”, “+ 

+”, and “+ + +” keys.

During the response-key practice, each of the symbols marked on the keyboard (e.g., “− −”) 

would appear on the screen one at a time and the subjects were told to press the designated 

key as quickly as possible. If a subject took longer than 800 ms to respond to one of the 

symbols, a “TOO SLOW” message would appear on the screen for 1000 ms. The practice 

block consisted of 10 repetitions of each of the six response key options resulting in 60 trials 

total. The symbols appeared in random order within the block with the restriction that 

repeated symbols had to have at least one intervening symbol.

For the remainder of the experiment, subjects were told that they would be presented with 

pairs of words during the study portions of the experiment and their job was to learn these 

pairs. During the study/test blocks, subjects initiated the start of each study list by pressing 
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the spacebar. Each word pair in the study list was displayed for 2500 ms followed by 200 ms 

of blank screen. Immediately after the final study-list word pair, a message appeared 

directing subjects to press the space bar to begin the test list. During the test-list, subjects 

were required to distinguish between the word pairs that had not appeared during the study-

list (rearranged word pairs) and those that had (intact word pairs). Each word pair remained 

on the screen until the subject had made a response. Subjects were instructed to use the 

different response-key options to indicate whether a word pair had appeared in the study-list 

and their confidence in their response. They were told to use one of the “−” keys to indicate 

that the word pair had not appeared in the study-list, and to use one of the “+” keys to 

indicate that it had. Subjects were instructed to use the different levels of “+” and “−” to 

indicate their amount of confidence in their response (e.g., if a subject felt very confident 

that a word pair was intact they would use the “+ + +” key, whereas if they felt only 

moderately confident they would use the “+ +” key). Subjects were encouraged to respond 

quickly and accurately and to try to spread their responses among all six response-keys 

throughout the course of the experiment. If a subject took less than 280 ms to respond to one 

of the test items, a “TOO FAST” message would appear on the screen for 1500 ms. Subjects 

were given error feedback throughout all test blocks in the form of the words “CORRECT” 

or “ERROR” displayed for 300 ms after their response to each test item.

Model fitting

The 6-choice version of the RTCON2 model was fit using the same procedure described for 

the first experiment. As in the first experiment, there are 35 degrees of freedom per 

condition in this task. With two conditions, this gives a total of 70 degrees of freedom. For 

these fits there were 19 free parameters in RTCON2.

Results and discussion

This experiment was designed to elicit a larger variety of z-ROC shapes and investigate the 

performance of the RTCON2 model when fitting these data. To yield more observations per 

condition for fitting the model, the high and low frequency conditions were combined 

resulting in two conditions: rearranged and intact word pairs. Prior to collapsing across 

word-frequency we analyzed hit and false alarm rates and the results were similar to those 

observed in the first two experiments. There was a higher hit-rate for LF word pairs (M = 

0.74, SD = 0.10) than HF word pairs (M = 0.66, SD = 0.12) and this difference was 

significant (t(33) = −6.5, p < .05). There was again a higher false-alarm rate for LF word 

pairs (M = 0.39, SD = 0.18) than HF word pairs (M = 0.31, SD = 0.16) and this difference 

was significant (t(33) = −5.9, p > .05). Although the change in false-alarm rate was 

significant for this experiment, the mean of the difference across subjects (M = −0.08) was 

in-line with those observed in the first two experiments (Experiment 1: M = −0.09; 

Experiment 2: M = −0.03).

Data for this experiment consisted of response proportions and reaction-time quantiles for 

each subject from each condition and for each response category. Reaction time latencies 

less than 300 ms or greater than 4000 ms were excluded from this analysis (less than 0.1% 

of all data).
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The model was fit to data from individual subjects and the best-fitting model parameters are 

shown in Table 7. The mean χ2 value for this experiment was 91.3 with a SD of 28.8. This is 

slightly larger than the critical χ2 value (90.5) indicating a mismatch between the model’s 

predictions and the data. Half the subjects, however, had χ2 values less than the critical 

value.

The linearity of the subjects’ z-ROC curves was tested using maximum likelihood estimation 

(Ogilvie & Creelman, 1968). Out of 34 total subjects, 17 subjects had a z-ROC curve that 

was significantly different from linear (χ2 values are reported in Table 8).

For each subject, these parameter values were used to generate predicted reaction time 

quantiles and response proportions for each condition. These predicted values can then be 

compared with the empirical data to qualitatively assess the fit of the various models. The 

model was able to produce the various RT and response proportion patterns quite well for 

most of the subjects, however there were slight but systematic misses for most of the 

subjects with u-shaped z-ROC functions. Fits for select subjects are shown in Figs. 14 and 

15 and fits for the remaining individual subjects are in Appendix A. The subjects in Fig. 14 

were chosen to illustrate the model’s ability to capture a variety of ROC and z-ROC shapes 

and patterns of response proportions. The subjects in Fig. 15 were chosen to illustrate the 

model’s slight misfits to u-shaped z-ROC functions.

The first two rows in Figs. 14 and 15 plot the RT quantiles for each confidence response 

with the 6 response keys plotted on the x-axis (the “sure rearranged” category is labeled 1 

and the “sure intact” category is labeled 6) and the RT quantiles plotted vertically with each 

line representing a reaction time quantile. The numbers plotted represent the empirical data 

and the lines represent predicted data from the model. Note that there is considerably less 

data for this experiment compared to the first (since subjects only completed 2 sessions), so 

there are more conditions where subjects made fewer than 10 responses over the course of 

all of the sessions. The third and fourth row in each figure plot the empirical and predicted z-

ROC and ROC curves for each subject. The solid lines depict the empirical data and the 

dashed lines depict the model predictions. The fifth row plots the decision boundaries for 

each confidence response and the sixth row plots the response proportions (both empirical 

data and model predictions) for each confidence response and condition. The solid lines 

depict the empirical data, the dashed lines depict the model predictions, the black lines 

depict responses for ‘intact’ pairs and the gray lines depict responses for ‘rearranged’ pairs.

The model predictions match the data quite closely for the subjects in Fig. 14 (there is a 

significant difference between the model predictions and the data only for subject 18). The 

model predicted ROC curves match the data closely, even for subjects whose performance is 

near ceiling (e.g., subject 13) or floor (e.g., subject 12). The model is also able to reproduce 

the response proportions from subjects who spread their responses fairly evenly across the 

confidence categories (e.g., subjects 7 and 18) as well as those who used some confidence 

responses much more often than others (e.g., subjects 3 and 13). The model is able to 

produce both linear z-ROC functions (e.g., subjects 7 and 18) and non-linear z-ROC 

functions (e.g., subject 13).
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The model predictions also match the data quite closely for the subjects in Fig. 15, despite 

the small misfits of the z-ROC functions for most of the subjects (there is a significant 

difference between the model predictions and the data for subjects 14 and 28, but not the 

others in this figure). All of the subjects in this figure have z-ROC functions that are 

significantly non-linear. Although there is not a significant difference between the model 

predictions and the data for most of these subjects, the model fails to produce the non-

linearity in the z-ROC function for most of these subjects (the z-ROC predicted by the 

model for subject 21 is slightly non-linear).

There are several aspects of these u-shaped z-ROC functions that are difficult for the model 

to capture. First, the model has difficulty producing u-shaped z-ROC functions for subjects 

whose RT quantiles are not u-shaped across the confidence responses. For example, subject 

24 has a u-shaped z-ROC function but relatively fast high-confidence responses. The model 

is able to account for the shape of the RT distributions, but misses the slight non-linearity of 

the z-ROC function. In contrast, subject 21 has both u-shaped RT quantiles and a u-shaped 

z-ROC function and the model is able to produce a non-linear z-ROC function for this 

subject. This was also an issue in Experiment 1, where subjects 4 and 5 had u-shaped z-ROC 

functions but relatively flat RT quantiles. Second, the transformation of the ROC to the z-

ROC causes small misses at the ends of the ROC function to be amplified. As shown in Fig. 

15, the misses in ROC space that lead to changes in linearity in z-ROC space are relatively 

small. In fact, for these five subjects the average absolute difference between the response 

proportions predicted by the model and the empirical response proportions ranged from 2% 

to 3% (with maximum absolute differences ranging from 3% to 7%). Moreover, the model is 

quite constrained in its ability to accommodate the entire pattern of response proportions and 

RT quantiles. For example, the model over-predicted by 7% the number of high-confidence 

‘intact’ responses to rearranged word pairs made by subject 8. In order to reduce the number 

of false alarms for this response, the decision bound for this response could be raised, but 

this would also reduce the number of correct responses for this response option (since other 

responses would be more likely to be chosen over that response) and change the RT for this 

response. Similarly, the right-most confidence criteria could be moved further to the right to 

reduce the number of false alarms, but this would also reduce the number of hits and change 

the proportion of responses made in the neighboring medium-confidence response region. 

Overall, the model is quite constrained in its ability to fit response patterns since small 

changes in confidence criteria and decision boundaries affect the overall patterns of both the 

response times and response proportions across all of the conditions. Third, the model has 

difficulty producing patterns of response proportions that have very low discriminability 

between intact and rearranged items for the medium and low confidence responses but 

higher discriminability for high confidence responses. For example, note that the solid black 

and gray lines (empirical response proportions) for subject 14 in the bottom row of Fig. 15 

nearly overlie each other for the middle four confidence responses and then separate for the 

high confidence responses. This indicates that this subject’s performance was close to 

chance when he or she was responding using the middle four confidence responses (as 

demonstrated by the fact that there is little separation between the black and gray curves for 

those responses) and only performed better than chance for the highest confidence 

responses. While the model is able to capture this general pattern, the model produces values 
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that are less extreme than the pattern observed in the data (i.e., the model predictions for the 

middle confidence responses are slightly more accurate than the data and the predictions for 

the highest confidence responses are slightly less accurate than the data). A similar pattern is 

observed with subject 8, especially for the “intact” response options. This pattern can be 

difficult for the model to account for given the representation of evidence in RTCON2. 

Memory strength is represented by a normal distribution on each trial, and the area under the 

curve of that distribution in each response region drives the accumulation for that response. 

To produce a comparable number of correct and incorrect responses for a particular 

confidence response, there must be similar evidence in that response region for both ‘intact’ 

and ‘rearranged’ stimuli (i.e., the drift distributions for ‘intact’ and ‘rearranged’ items will 

need to overlap in that region). On the other hand, to produce different numbers of correct 

and incorrect responses for a particular confidence response, there must be more evidence 

(i.e., larger area under the curve) in that response region for one condition over the other.

The model can handle low discriminability in the medium and low confidence responses 

when the overall pattern of responses is consistent with the representation of evidence in 

RTCON2. For example, subject 21 had low discriminability for the medium and low 

confidence responses and higher discriminability for high confidence responses and a 

smaller proportion of high confidence responses overall. The model is able to handle this 

pattern of responses because it is consistent with having overlapping drift distributions such 

that there will be less difference between the two distributions around the middle of the 

response region (where they overlap) and a greater difference in the tails of the distributions 

(in the higher confidence regions). This representation will also tend to produce more low 

and medium confidence responses and relatively fewer high confidence responses, as is the 

case for subject 21. In contrast, the model has difficulty producing response patterns like 

those of subject 14, who made a relatively large number of correct high confidence 

responses but was at chance at the other confidence levels. It is also worth noting that the 

cumulative nature of the ROC and z-ROC functions obscures most of this information about 

response pattern. For subjects like 14, the model predictions are missing as much on the 

middle confidence regions as the extremes, but the ROC functions make it appear that the 

model is only missing the tails since the misses in the middle confidence regions compensate 

for the misses in the high confidence regions when using cumulative values.

Previous application of the original RTCON model demonstrated that the slope of subjects’ 

z-ROC functions showed sequential effects (i.e., the slope of the z-ROC changed as a 

function of the prior response; Ratcliff & Starns, 2009). In that study, subjects were biased in 

favor of repeating a particular response (i.e., if they made an ‘old’ response on the previous 

trial, they were more likely to make another ‘old’ response on the current trial). In this 

experiment we observed sequential effects of confidence level. Subjects were more likely to 

make a high confidence response if their previous response was a high confidence response 

and similarly for medium and low confidence responses. In Fig. 16A, response proportions 

for each confidence response (1–6) and each condition (intact and rearranged) are plotted 

separately as a function of a previous response. The solid lines show the response 

proportions for each condition and response option sorted based on the response from the 

immediately preceding trial and the dashed lines show the response proportions sorted based 

on response from a trial ten trials before the current trial. That is, the upper left plot shows 
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the proportion of ‘sure rearranged’ responses made to rearranged pairs as a function of the 

previous response (solid line) and as a function of the response ten trials previous (dashed 

line), the upper right plot shows the proportion of ‘sure intact’ responses made to rearranged 

pairs, and so on. From these plots we can see that subjects were likely to respond with the 

same level of confidence on subsequent trials. For example, in the upper left plot we see that 

subjects made more ‘sure rearranged’ responses to rearranged stimuli if they had previously 

made a high confidence response (i.e., a 1 or a 6 in this figure) than if they had previously 

made a medium or low confidence response (i.e., a 2–5). Similarly, in the second plot in the 

top row we see that subjects made more ‘medium-confident rearranged’ responses to 

rearranged stimuli if they had previously made a medium confidence response (i.e., a 2 or a 

5) than if they had previously made a low or high confidence response. Similar results were 

observed across all confidence response options and conditions and for both lags (i.e., the 

immediately preceding trial or one ten trials before the current trial). This was an unexpected 

result. Although Ratcliff and Starns (2009) observed a bias in favor of repeating a particular 

response, that bias was based on the category of the response (e.g., intact vs. rearranged), not 

the confidence level of the response. We discuss two possible explanations for this type of 

behavior.

First, it is possible that, rather than distributing their responses across the entire confidence 

scale, subjects were switching around which pair of intact/rearranged responses they were 

using (i.e., essentially making two-choice decisions and mapping those responses onto a 

particular pair of response keys). Subjects were told to try to use all of the confidence levels 

over the course of the experiment to discourage them from using just two responses (i.e., 

using just one confidence level throughout the whole experiment), so this type of behavior 

may have been a strategic way of following those instructions.

Second, it is possible that subjects were using the confidence levels based on general 

changes in attention or motivation. For example, subjects may have been more attentive or 

motivated during some blocks (and would likely perform better on those blocks in terms of 

accuracy) and then made their confidence responses based on how they felt they were 

performing during those periods of time (as opposed to making confidence responses solely 

based on their perceived memory strength for each word pair). If this were the case, we 

would also expect to see differences in performance based on previous confidence levels. To 

examine this, we generated ROC and z-ROC functions as a function of previous responses 

averaged over all the subjects. Fig. 16B shows average ROC and z-ROC functions sorted 

according to the previous response (here collapsed across ‘intact’ and ‘rearranged’ responses 

to produce three conditions based just on the confidence level of the immediately preceding 

response). Accuracy was indeed higher on trials made following a high confidence response, 

and the z-ROC functions were more u-shaped following a low or medium confidence 

response. Standard memory and decision-making models do not produce these types of 

effects (without including additional assumptions) and so the data produced by subjects 

using these types of strategies are challenging for standard models.

This experiment demonstrated the ability of RTCON2 to fit a wide variety of ROC and z-

ROC shapes in an associative recognition task while simultaneously fitting RT distributions. 

By collecting data from a larger group of subjects we were able to demonstrate when 
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RTCON2 is able to produce various z-ROC functions and when it has difficulty. The model 

is able to reproduce the z-ROC shapes when the shape of the RT quantiles across confidence 

levels matches the shape of the z-ROC, when there are sufficient numbers of observations in 

the extreme confidence categories, and when the response patterns across confidence levels 

are consistent with the model’s continuous representation of evidence. The model has 

difficulty producing non-linear z-ROC shapes when these conditions are not met, which 

tends to be the case when u-shaped z-ROC shapes occur. However, the misfits in these cases 

were quite small. The average absolute deviation between the model and the data ranged 

from 2% to 3% for the subjects in Fig. 15, and the χ2 values for the model fits were non-

significant for three of these five subjects. It is possible that a different representation of 

memory information would enable the model to fit these u-shaped functions, but such a 

representation should not hinder the model’s ability to fit the other patterns of data as well. 

We also identified some possible strategies (based on sequential effects) that subjects may 

use when responding with confidence scales and these effects should be considered when 

modeling and interpreting this type of data. Note that these effects were not observed in 

Experiments 1 and 2 which used paid subjects who were more practiced at the task.

General discussion

These experiments were designed to test the ability of the RTCON2 model to fit both the 

properties of confidence responses and reaction times in an associative recognition 

paradigm. This would be a substantial advance over signal-detection based models that 

address only choice proportions and could provide an alternative account for the z-ROC 

patterns that have been observed in this paradigm. While the model was able to account for 

most of the response patterns and reaction times in these experiments, the model was not 

able to account for some of the non-linear z-ROC shapes which are of particular interest to 

memory modelers. However, although the model was not able to produce the u-shaped z-

ROC functions, the response proportions predicted by the model did not always significantly 

differ from the empirical response proportions (based on χ2) and the differences between the 

model predictions and the data were quite small.

Previous research has demonstrated an alternative explanation for the shapes of the ROC and 

z-ROC functions that is based on how subjects set their decision boundaries (Ratcliff & 

Starns, 2013). In the RTCON2 model, if the response proportions for the different 

confidence responses are not close to zero (see appendix of Ratcliff & Starns, 2013), there is 

a relationship between the shape of the z-ROC function, the RT quantiles, and the decision 

boundaries. Intuitively, the height of the decision boundary affects the amount of evidence 

required to make a response and therefore affects reaction times. But the relative heights of 

the decision boundaries also affect the response proportions for the different confidence 

responses. If one of the confidence categories has a lower decision boundary than the others, 

the accumulator for that response will be able to reach its boundary more quickly and that 

response will be chosen a higher proportion of the time. These changes in the response 

proportions for different confidence responses directly affect the shape of the z-ROC 

function. The experiments in this paper demonstrate a relationship between the shape of the 

z-transformed receiver operating characteristic and the behavior of response time 

distributions for subjects with linear z-ROC functions and inverted u-shaped z-ROC 
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functions, and this relationship is explained by the behavior of the decision boundaries in the 

RTCON2 model.

The model had difficulty, however, producing most of the u-shaped z-ROC functions 

observed in these experiments. Specifically, the model had trouble producing these z-ROC 

shapes when the shapes of the RT quantiles were not consistent with the shapes of the z-

ROC functions, or when there was a low number of high-confidence responses. In the 

model, evidence is represented as a normal distribution (with an SD of 1) on some memory 

strength dimension and the position of this normal distribution varies across trials (according 

to another normal distribution with mean μ and SD s). This representation of evidence 

restricts the possible response patterns that the model can produce. For example, in order to 

produce chance performance for some response option, the evidence distributions for ‘intact’ 

and ‘rearranged’ items must have similar area in that response region. However, such a 

restriction affects the area of these evidence distributions in all of the other response regions 

since they are all determined by the location of the normal distribution of evidence. Thus the 

model has difficulty producing, for example, extreme changes in performance for 

neighboring response options. Although the placement of the confidence criteria and 

decision boundaries will also affect response patterns (by adjusting the area of the response 

region and adjusting the amount of evidence required to make a particular response), these 

parameters are constrained by the response time data as well as the response proportions and 

so are unable to take on extreme values to produce any possible pattern of responses (e.g., a 

very low decision boundary would lead to chance performance, but would also result in 

faster RTs and an increase in the number of responses predicted for that particular 

confidence response). This representation of evidence was used because it has previously 

provided a good fit to data (Ratcliff & Starns, 2013). However, as discussed in Ratcliff and 

Starns (2013), the distribution of memory strength across trials does not need to be a normal 

distribution and could instead take the form of some distribution predicted by a memory 

model. In recent years, much of the research attempting to distinguish between models of 

memory has been focused on slight differences in the shape of these z-ROC functions. Such 

variation in the shapes of the z-ROC has been used to make claims about the number of 

processes involved in a memory decision, the nature of the evidence involved in the 

decision, and specific characteristics of the decision process.

In the associative memory literature, non-linear z-ROC functions are a violation of the 

normal distributions of evidence usually assumed in SDT, and have prompted theorists to 

elaborate upon the basic theory. One such elaboration is the dual-process signal detection 

(DPSD) model (Yonelinas, 1994; Yonelinas & Parks, 2007), which assumes that recognition 

consists of an equal-variance signal-detection process referred to as “familiarity” plus a 

discrete threshold process referred to as “recollection”. According to this model, some 

recognition decisions are based on a vague sense of familiarity while others are based on 

recollection of a qualitative detail of the learning event (e.g., “this word was followed by 

‘house’ in the study list”). When responding is based entirely on familiarity, the DPSD 

model predicts asymmetrical curvilinear ROC functions and linear z-ROC functions with a 

slope equal to one. When responding is based on recollection for some proportion of the 

word pairs, the model predicts linear ROC functions and slightly non-linear (i.e., slightly U-

shaped) z-ROC functions with slopes less than one.
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In an associative recognition paradigm, the familiarity of the individual words should not 

help discriminate between intact and rearranged pairs since all of the words were seen 

during the previous study period. Therefore, according to the DPSD model, performance in 

an associative paradigm should be based primarily on the “recollection” process and should 

result in linear ROC and non-linear z-ROC functions. This prediction has been supported by 

linear associative recognition ROC functions reported by Yonelinas (1997) and replicated by 

Rotello et al. (2000) as well as linear source memory ROC functions reported by Yonelinas 

(1999). However, Kelley and Wixted (2001) and Verde and Rotello (2004) reported 

curvilinear associative recognition ROC functions and Healy et al. (2005) reviewed 13 

associative recognition studies and found that a curvilinear ROC function provided a better 

fit to the data than a linear ROC function. There were a number of task differences that may 

have produced these discrepancies in the shapes of the ROC functions. In the experiments 

reported by Yonelinas (1997) and Rotello et al. (2000) that produced linear associative 

recognition ROC functions, subjects were making both item and associative recognition 

judgments for the same lists. When these tasks are mixed, subjects may rely on different 

response strategies than they would in a pure associative recognition task. Rotello et al. 

(2000) also demonstrated that an additional guessing process could influence the linearity of 

the ROC and z-ROC functions.

In our experiments we did not observe systematically linear ROC functions. Although some 

of the subjects in Experiment 3 did have relatively linear ROC functions (e.g., subjects 5 and 

29), the majority of the subjects across all three experiments had curved ROC functions 

(although note that ROC functions will necessarily become more linear as performance goes 

to chance). Some of our subjects did have slightly U-shaped z-ROC functions, but other 

subjects had linear z-ROC functions or inverted U-shaped z-ROC functions, which are at 

odds with the predictions of DPSD.

However, even when curvilinear ROC functions are found in associative recognition and 

source memory studies, these were not as curvilinear as would be predicted by an unequal-

variance signal-detection model (Hilford et al., 2002; Kelley & Wixted, 2001). In order to 

explain these effects, Hilford et al. (2002) assumed that on some proportion of trials, the 

information necessary for the memory decision, either associative or source, was not 

available. Hilford et al. (2002) proposed that subjects failed to encode the information for 

some proportion of items during the study phase. Similarly, DeCarlo (2002, 2003) 

demonstrated that nonlinear z-ROC functions can be produced if the memory strength 

distributions are mixtures of two different distributions, such as a distribution from items 

that were encoded during study and a distribution from items that were not encoded during 

study.

All of the approaches described above use the shape of the ROC and z-ROC functions to 

draw conclusions about the nature of memory evidence. In DeCarlo (2002, 2003), Hilford et 

al. (2002) and Kelley and Wixted (2001), evidence comes from a mixture of qualitatively 

similar processes. In Yonelinas’ (1994) model, evidence comes from two qualitatively 

different processes. Support for these models has come from observations of the shape of 

ROC and z-ROC functions sources across tasks and conditions. For example, Kelley and 

Wixted (2001) found that ROCs in an associative recognition experiment were more 
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curvilinear for strong (i.e., studied more often) word pairs than weak pairs. This change in 

ROC shape across conditions was consistent with a mixture model that included 

continuously distributed item and associative information (as opposed to a high-threshold 

model or a signal-detection type model with a single source of evidence). However, changes 

in ROC shape can also be produced by RTCON2 with just changes in the mean of the drift 

distribution (see Appendix of Ratcliff & Starns, 2013).

Additionally, these accuracy-only memory models were designed solely to account for 

accuracy and completely ignore the amount of time required to make a particular memory 

decision. Using a model like RTCON2 allows us to investigate how many of the observed 

patterns of responses could be explained through the addition of a model for making 

confidence judgments. Explicitly modeling both the information feeding into a decision and 

the decision-making process allows us to distinguish between effects on z-ROC shapes that 

are a result of how subjects set confidence criteria and decision boundaries (aspects of the 

decision-making process), and effects that are a result of changes in the information being 

provided from memory. This model can handle some of the observed response patterns, but 

is unable to account for the subset of subjects who exhibited u-shaped z-ROC functions. 

However, the misfits for these subjects are quite small – there is an average difference of 2–

3% between the model predictions and the data for these subjects. It remains to be seen if 

adjusting the memory information feeding into the decision (e.g., combining the memory 

strength predictions of a memory model with the decision-making process of RTCON2) will 

enable the model to handle these patterns. Such an approach could also be informative for 

models of memory based on the additional constraint provided by RTs. This type of 

combined modeling approach would allow researchers to take advantage of the ability of 

RTCON2 to distinguish between the information feeding into a confidence response and 

individual differences in how the confidence response scale is used. However, the adjusted 

model would still need to be able to handle all of the patterns observed in these experiments 

that RTCON2 was able to fit. So far, none of the existing memory models can handle the full 

observed pattern of RTs and response proportions across confidence levels and none of 

them, to our knowledge, would predict the diversity of z-ROC shapes observed in these 

experiments. Without assuming more than a relatively simple single distribution of memory 

strength, RTCON2 was able to produce a variety of ROC and z-ROC shapes. Thus the 

specific ROC and z-ROC shapes cannot be used solely to infer the nature of evidence from 

memory but are also indicative of differences in how different subjects choose to set decision 

boundaries when using confidence response scales.

In many memory experiments, data from individual subjects are averaged together and 

conclusions are made based on these averaged data. Differences between individual subjects 

are, at best, presented only to illustrate that most of the subjects exhibit the same general 

pattern of results as the average. These experiments demonstrate the importance of 

considering individual differences when reporting ROC and z-ROC experiments. Subjects in 

these experiments exhibited a wide variety of z-ROC functions with some subjects having 

linear z-ROCs and other subjects having nonlinear z-ROCs. These experiments, as well as 

work by Ratcliff et al. (1994) and Ratcliff and Starns (2013), demonstrate dramatic 

individual differences in the shapes of the z-ROC functions that appear to be relatively stable 

across tasks (although these effects are some-what susceptible to specific response 
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instructions; Ratcliff & Starns, 2009). Other models, such as the dual-process signal-

detection account (Yonelinas, 1997), would have difficulty explaining these consistent 

individual differences, except possibly as a result of individual differences in response or 

encoding strategies, and are unable to explain the inverted u-shaped z-ROCs exhibited by 

some subjects.

This research also demonstrates the advantages of the new version of the RTCON model 

compared to the original. This version of the model was able to fit the bowed reaction time 

quantiles that the other model was unable to handle. While practice and specific instructions 

can eliminate these bowed effects (Ratcliff & Starns, 2009), this pattern of reaction time 

behavior is relatively common in confidence response paradigms (Murdock, 1974; Murdock 

& Dufty, 1972; Norman & Wickelgren, 1969; Ratcliff & Murdock, 1976) and a model 

designed to account for data from these paradigms should be capable of handling this 

pattern. As shown, RTCON2 was able to produce the necessary bowed RT quantiles which 

were slower for low confidence responses than high confidence responses (as well as the 

other observed RT quantile patterns). The ability of the model to handle these shifts in RT 

distributions is crucial given the relationship between these shifts and the shape of the z-

ROC function.

The RTCON2 model also provides a better fit to two-choice data then the original RTCON 

model (Starns et al., 2012), as demonstrated in the second experiment. In order to be 

considered a viable model of multi-choice data, RTCON2 should be able accommodate two-

choice data as well as 6-choice. In the second experiment, subjects alternated between using 

a 6-choice response scale and a two-choice response scale. The data from both tasks was 

then fit with the RTCON2 model, and the two-choice data was also fit with the standard 

diffusion model. The RTCON2 model was able to fit data from a two-choice task nearly as 

well as the diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008), and was able to do 

so with some of the parameters constrained across the 6-choice and two-choice tasks (i.e., 

some of the same parameters were used to fit the RTCON2 model to data from both the two-

choice and 6-choice tasks).

Although RTCON2 has a relatively large number of parameters, there are considerably more 

degrees of freedom in the data than in the model because of the need to fit RT distributions. 

Additionally, because of the structure of the model, a change in any one parameter value will 

affect predictions across multiple conditions or response categories. This means that it is not 

possible to remedy misfits in a single condition by simply adjusting single parameters. The 

model is also not overly flexible. While it was able to fit most of the patterns of individual 

differences found in these two experiments, it was not able to fit a set of artificial data 

created by combining some subjects’ accuracy data with other subjects’ reaction time data. 

In this analysis, we rearranged subjects’ data into artificial data sets consisting of one 

subject’s response proportions and a different subject’s reaction time quantiles from 

Experiment 1. When the model was fit to these artificial data sets, the resulting mean χ2 

value was 445 (more than twice as large as the observed mean value in the first experiment). 

The misfits were largest for data sets that consisted of data from subjects with different z-

ROC function shapes. For example, when trying to fit a data set consisting of subject 3’s 

bowed reaction times (see Fig. 3) and subject 5’s accuracy (see Fig. 5), the model’s best 
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fitting parameter values yielded a χ2 of 1029 (compared with χ2 values of 250 and 273 for 

subjects 3 and 5 respectively).

This research demonstrates the strengths of RTCON2 as a model of multi-choice confidence 

judgments as well as areas for future development. The model is able to fit a wide range of 

reaction time and response proportion behaviors and is able to do so without assuming any 

additional memory processes. However, the model slightly misses some of the observed u-

shaped z-ROC functions for associative recognition such that it may be necessary to adjust 

the information feeding into the model to account for these patterns. RTCON2 performs as 

well as the standard diffusion model when applied to two-choice data, and provides 

parameter estimates that are consistent across models and response paradigms. With the 

addition of reaction time and decision-related processing, RTCON2 is able to distinguish 

between the information feeding into a decision and aspects of the decision-making process, 

and in some cases is able to provide an alternative interpretation of z-ROC functions that is 

based on individual differences in the decision-making process.
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Appendix A

See Figs. A1–A5.

Fig. A1. 
Experiment 3: Data and model fits. The first two rows plot the RT quantiles for each 

confidence response with the 6 response keys plotted on the x-axis (the “sure rearranged” 

category is labeled 1 and the “sure intact” category is labeled 6) and the RT quantiles plotted 

vertically with each line representing a reaction time quantile. The numbers plotted represent 

the empirical data and the lines represent predicted data from the model. In conditions where 

subjects made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other 

quantiles are not included. Conditions where subjects made fewer than 5 responses are 

omitted from the figure. In conditions where the model predicted between 5 and 10 

responses only the median RT is plotted and the other quantiles are not included. Conditions 

where the model predicted fewer than 5 responses are omitted from the figure. The third and 

fourth row in each figure plot the empirical and predicted z-ROC and ROC curves for each 

subject. The solid lines depict the empirical data and the dashed lines depict the model 

predictions. The fifth row plots the decision boundaries for each confidence response and the 

sixth row plots the response proportions (both empirical data and model predictions) for 
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each confidence response and condition. The solid lines depict the empirical data, the dashed 

lines depict the model predictions, the black lines depict responses for ‘intact’ pairs and the 

gray lines depict responses for ‘rearranged’ pairs.

Fig. A2. 
Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A3. 
Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A4. 
Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. A5. 
Experiment 3: Data and model fits. Same plotting conventions as Fig. A1.
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Fig. 1. 
The standard Signal Detection model with one normal distribution each for the intact and 

rearranged items respectively, four response regions created by three confidence criteria, the 

z-ROC obtained from the two distributions, and the equation relating the z-transformed hit 

and false alarm rates.
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Fig. 2. 
RTCON2. The distribution of evidence for an item on a given trial drives six mutually 

inhibitory accumulators (one for each confidence category). The proportion of the 

distribution between the confidence criteria on the match dimension drives the drift rate for 

each confidence category. When one of the accumulators reaches its decision boundary, the 

corresponding response is made. Each time one accumulator takes a step up of size x, the 

accumulators on the opposite side take a x/(N/2) step down (where N is the number of 

accumulators) such that the amount of evidence stays constant (i.e., if an ‘intact’ 

accumulator is incremented, then the ‘rearranged’ accumulators are all decremented and the 

other ‘intact’ accumulators are unchanged).
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Fig. 3. 
Experiment 1: Quantile reaction times for each condition for each subject. Confidence 

responses are plotted along the x-axis (ranging from 1: Sure Rearranged to 6: Sure Intact). 

The numbers 1–5 depict the RT quantiles from the behavioral data and the corresponding 

lines depict the predictions from RTCON2. In conditions where subjects made between 4 

and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not 

included. Conditions where subjects made fewer than 5 responses are omitted from the 

figure (e.g., subject 2 made fewer than 5 ‘Sure Rearranged’ responses to intact low-

frequency word pairs so there are no behavioral data plotted for that condition).
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Fig. 4. 
Experiment 1: Empirical response proportions plotted against predicted response proportions 

(for the six confidence conditions and four experimental conditions for each subject) with a 

reference line with an intercept of 0 and a slope of 1.
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Fig. 5. 
Experiment 1: ROC and z-ROC functions for each subject and each condition. The solid 

lines are the functions from the behavioral data and the dashed lines are the predictions from 

RTCON2. The black lines are the functions for HF words and the gray lines are the 

functions for LF words. Conditions where subjects made fewer than 10 responses are 

omitted from the figure.
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Fig. 6. 
Experiment 1: ROC and z-ROC functions for data averaged across subjects. The gray lines 

are the low-frequency condition and the black lines are the high-frequency condition.
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Fig. 7. 
Experiment 1: Comparison of RT quantile shapes (from Intact – LF condition), z-ROC 

functions, and the relative heights of the decision boundaries for each subject. Plotting 

conventions are the same as for Figs. 3 and 5.
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Fig. 8. 
Experiment 2: Quantile reaction times from the 6-choice task for each condition for each 

subject. Confidence responses are plotted along the x-axis (ranging from 1: Sure Rearranged 

to 6: Sure Intact). The numbers 1–5 depict the RT quantiles from the behavioral data and the 

corresponding lines depict the predictions from RTCON2. In conditions where subjects 

made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles 

are not included. Conditions where subjects made fewer than 5 responses are omitted from 

the figure (e.g., subject 4 made fewer than 5 ‘Intact’ responses of any confidence level to 

rearranged low-frequency word pairs so there are no behavioral data plotted for those 

conditions).
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Fig. 9. 
Experiment 2: Empirical response proportions from the 6-choice task plotted against 

predicted response proportions (for the six confidence conditions and four experimental 

conditions for each subject) with a reference line with an intercept of 0 and a slope of 1.
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Fig. 10. 
Experiment 2: ROC and z-ROC functions from the 6-choice task for each subject and each 

condition. The solid lines are the functions from the behavioral data and the dashed lines are 

the predictions from RTCON2. The black lines are the functions for HF words and the gray 

lines are the functions for LF words. Conditions where subjects made fewer than 10 

responses are omitted from the figure.

Voskuilen and Ratcliff Page 50

J Mem Lang. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Experiment 2: Quantile reaction times from the two-choice task for each condition for each 

subject. The numbers 1–5 depict the RT quantiles from the behavioral data, the solid lines 

depict the predictions from RTCON2, and the dashed lines depict the predictions from the 

diffusion model. In conditions where subjects made fewer than 10 responses the median RT 

is plotted as an ‘M’ and the other quantiles are not included.
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Fig. 12. 
Experiment 2: Empirical response proportions from the two-choice task plotted against 

predicted response proportions from the RTCON2 model (the triangles) and the diffusion 

model (the dots) for each subject (for the two responses and four experimental conditions) 

with a reference line with an intercept of 0 and a slope of 1.
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Fig. 13. 
Experiment 2: Comparison of drift rates and decision bounds across the models along with 

best-fitting linear regression lines. In the figure on the left, drift rate values have been shifted 

and adjusted to account for differences in how the models parameterize drift rates. In the 

middle figure, for the 6-choice RTCON2 model the heights of the ‘intact’ and ‘rearranged’ 

response options were averaged over confidence level. In the figure on the right, for the 

diffusion model the total distance between the two decision boundaries (a) was split into the 

distance from the starting point (z) to produce two values (z and a–z). Original values for all 

parameters are available in Tables 3–5.
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Fig. 14. 
Experiment 3: Data and model fits. The first two rows plot the RT quantiles for each 

confidence response with the 6 response keys plotted on the x-axis (the “sure rearranged” 

category is labeled 1 and the “sure intact” category is labeled 6) and the RT quantiles plotted 

vertically with each line representing a reaction time quantile. The numbers plotted represent 

the empirical data and the lines represent predicted data from the model. In conditions where 

subjects made between 4 and 10 responses the median RT is plotted as an ‘M’ and the other 

quantiles are not included. Conditions where subjects made fewer than 5 responses are 

omitted from the figure. In conditions where the model predicted between 5 and 10 

responses only the median RT is plotted and the other quantiles are not included. Conditions 

where the model predicted fewer than 5 responses are omitted from the figure. The third and 

fourth row in each figure plot the empirical and predicted z-ROC and ROC curves for each 

subject. The solid lines depict the empirical data and the dashed lines depict the model 

predictions. The fifth row plots the decision boundaries for each confidence response and the 

sixth row plots the response proportions (both empirical data and model predictions) for 

each confidence response and condition. The solid lines depict the empirical data, the dashed 

lines depict the model predictions, the black lines depict responses for ‘intact’ pairs and the 

gray lines depict responses for ‘rearranged’ pairs.
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Fig. 15. 
Experiment 3: Data and model fits. Same plotting conventions as Fig. 14.
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Fig. 16. 
Experiment 3: Sequential effects. (A) Response proportions as a function of previous 

responses. Response proportions for each confidence response (1–6) and each condition 

(intact and rearranged) are plotted separately as a function of a previous response. The solid 

lines show the response proportions for each condition and response option sorted based on 

the response from the immediately preceding trial and the dashed lines show the response 

proportions sorted based on response from a trial ten trials before the current trial. So the 

upper left plot shows the proportion of ‘sure rearranged’ responses made to rearranged pairs 

as a function of the previous response (solid line) and as a function of the response ten trials 

previous (dashed line), the upper right plot shows the proportion of ‘sure intact’ responses 

made to rearranged pairs, and so on. (B) z-ROC and ROC functions for averaged data as a 

function of previous responses. Data were collapsed across previous ‘intact’ and 

‘rearranged’ responses to produce three conditions based just on the confidence level of the 

immediately preceding response (1: high, 2: medium, and 3: low).
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Table 6

Linearity analysis of behavioral zROC curves – Experiment 2.

Subject 1 Subject 2 Subject 3 Subject 4

HF 2.99 1.68 5.76 10.08*

LF 3.84 0.47 17.89* 21.80*

df = 3, critical value = 7.815.

*χ2 is significant at the p < .05 level.
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Table 8

Linearity analysis of behavioral zROC curves – Experiment 3.

Subject χ2 Subject χ2

1 23.85* 18 6.52

2 11.48* 19 5.02

3 3.36 20 4.68

4 1.15 21 15.94*

5 29.33* 22 1.46

6 2.69 23 5.27

7 3.98 24 11.38*

8 29.31* 25 20.88*

9 3.86 26 18.45*

10 24.01* 27 11.34*

11 3.58 28 35.10*

12 6.54 29 24.67*

13 20.81* 30 11.19*

14 29.50* 31 14.57*

15 7.56 32 2.95

16 7.63 33 2.98

17 10.45* 34 3.43

df = 3, critical value = 7.815.

*χ2 is significant at the p < .05 level.
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