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Abstract

Atherosclerosis is the key pathogenesis of cardiovascular disease, which is a silent killer and a 

leading cause of death in the United States. Atherosclerosis starts with the adhesion of 

inflammatory monocytes on the activated endothelial cells in response to inflammatory stimuli. 

These monocytes can further migrate into the intimal layer of the blood vessel where they are 

differentiate into macrophages, which take up oxidized low-density lipoproteins and release 

inflammatory factors to amplify the local inflammatory response. After accumulation of 

cholesterol, the lipid-laden macrophages are transformed into foam cells, the hallmark of the early 

stage of atherosclerosis. Foam cells can die from apoptosis or necrosis, the intracellular lipid is 

deposed in the artery wall forming lesions. The angiogenesis for nurturing cells is enhanced during 

lesion development. Proteases released from macrophages, foam cells and other cells degrade the 

fibrous cap of the lesion, resulting in rupture of the lesion and subsequent thrombus formation. 

Thrombi can block blood circulation, which represents a major cause of acute heart events and 

stroke. There are generally no symptoms in the early stages of atherosclerosis. Current detection 

techniques cannot easily, safely and effectively detect the lesions in the early stages, nor can they 

characterize the lesion feature such as the vulnerability. While the available therapeutic modalities 

cannot target specific molecules, cells, and processes in the lesions, nanoparticles appear to have a 

promising potential in improving atherosclerosis detection and treatment via targeting the intimal 

macrophages, foam cells, endothelial cells, angiogenesis, proteolysis, apoptosis, and thrombosis. 

Indeed, many nanoparticles have been developed in improving blood lipid profile and decreasing 

inflammatory response for enhancing therapeutic efficacy of drugs and decreasing their side 

effects.
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INTRODUCTION

Atherosclerosis is a disease characterized by a process of building up of lipids, primarily 

cholesterol, in the artery wall 1, 2. Atherosclerosis provides a pathological background for 

developing cardiovascular disease (CVD), the No. 1 killer in the United States. The structure 

of arteries from the inner cavity to the outermost layer is lumen, an intimal layer composed 

of an endothelial cell monolayer and underneath intima, a media layer composed of multiple 

layers of smooth muscle cells and connective tissues, and an adventitia layer composed of 

connective tissues3.

Cholesterol accumulation and deposition in the arterial wall and subsequent narrowing of the 

blood vessel lumen were considered as a sole cause of atherosclerosis in the past century1. 

In the past two decades, research in both preclinical and clinical areas has suggested that 

inflammation integrated with dyslipidemia plays an important role in the development of 

atherosclerosis4. The endothelial cells are important in maintaining blood vessel integrity 

and permeability, adhesion molecule expression, leukocyte recruitment, and blood clotting5. 

Under normal circumstance, vascular endothelial cells resist the adhesion of circulating 

immune cells on them6. Atherogenic stimuli such as inflammation, hypertension, cigarette 

smoking, hyperlipidemia, especially hypercholesterolemia, and/or hyperglycemia increase 

their expression of adhesion molecules, disrupt the monolayer structure of endothelial cells, 

increase blood vessel wall permeability, and enhance their release of inflammatory factors1. 

Although many immune cells contribute to atherosclerotic lesion formation, intimal 

macrophages play a critical role in the development of atherosclerosis4, 7. After monocytes 

attach on the endothelial cells via binding to adhesion molecules, chemokines, especially 

monocyte chemoattractant protein 1 (MCP-1), direct monocytes migration into the intimal 

layer where they differentiate into macrophages. Lesion-resident macrophages recruit more 

monocytes into the evolving intimal lesion via secreting more MCP-1 and other 

inflammatory factors. When cholesterol influx is more than efflux, cholesterol is 

accumulated in the intimal macrophages. The lipid-laden macrophages are called foam cells, 

which are the hallmark of atherosclerosis. After foam cells die from apoptosis and necrosis, 

the cellular lipids are deposited in the artery wall leading to formation of atherosclerotic 

lesions. If the inflammatory condition and dyslipidemia persist, the advanced atherosclerotic 

lesion will be formed, which is characterized by a large lipid, primarily cholesterol, core, 

proliferated smooth muscle cells and remodeled extracellular matrix8.

Rupture of vulnerable lesions (plaques) followed by thrombi formation accounts for a 

majority of coronary events and/or sudden deaths9–12. Vulnerable lesions are characterized 

by macrophage-dense inflammation, large lipid cores, thin fibrous caps and few smooth 

muscle cells11, 13. Intimal macrophage accumulation promotes the development of 

vulnerable lesions by producing reactive oxygen species to increase the intimal levels of 

oxidized low density lipoproteins (oxLDL) and further foam cell formation; by producing 

matrix metalloproteinases and other proteases to degrade the extracellular matrix and fibrous 

caps; by releasing tissue factors to promote thrombus formation; by secreting pro-

inflammatory cytokines to amplify the lesion inflammatory response6, 14, 15. Current 

imaging and diagnostic techniques can detect stenotic lesions, but they cannot detect early-

stage lesions and disclose the lesion biological aspects such as vulnerability16. Current 
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preventive and therapeutic modalities focus on improving blood lipid profile, inhibiting 

thrombus formation, and decreasing blood pressure, but the treatment cannot directly target 

the atherosclerotic lesion17.

Since most biological processes, including atherogenesis, occur at the nanoscale, 

nanotechnology provides a promising opportunity for molecular imaging and targeted 

treatment of atherosclerosis18. Nanoparticles can increase the stability, aqueous solubility 

and absorption of diagnostic agents or therapeutic compounds, prolong their circulation 

time, enable high binding and uptake efficiency in the target cells (or tissue) over other cells 

(or tissue), protect them from degradation by enzymes in tissues and physiological fluids, 

reduce their side effects and toxicity19. Nanomedicine has gained tremendous attention in 

cancer therapy for more than 30 years. In contrast, however, its application in atherosclerosis 

is much less studied even given the fact that atherosclerosis is the key pathogenesis factor for 

developing CVD, a top cause of mortality worldwide. In the earliest studies published in 

2000 and 2001, two studies reported that fibrin-targeted nanoparticles detected thrombi and 

perhaps vulnerable lesions20, 21. Meanwhile, ultrasmall superparamagnetic particles of iron 

oxide were used for imaging atherosclerotic lesions in an animal model22. Shortly later, 

other investigators used iron oxide nanoparticles with anti-human E-selectin fragments 

conjugated on their surface to detect endothelial cells23, or used alpha(v)beta3 (αvβ3) 

integrin-targeted nanoparticles to image angiogenesis in early-stage atherosclerosis24. Last 

decade has seen a fast development in using nanoparticle technique as tool for molecular 

imaging of atherosclerotic lesion25, 26. Since intimal macrophages are critical cells in 

atherosclerosis development, and can engulf nanoparticles by phagocytosis, they are the 

major nanoparticle targets in this research field27–29. Currently, majority of studies are in the 

preclinical stage as we summarized in a chronological manner (Table 1–5), while only a 

limited number of clinical studies were conducted by using passive macrophage-targeted 

nanoparticles and listed in Table 1.

In this review, we are focused on the nanoparticle-mediated detection and treatment of 

atherosclerosis via targeting intimal macrophages, foam cells, endothelial cells, and 

processes of neoangiogenesis, proteolysis, apoptosis, and thrombosis (Figure 1). 

Nanoparticle-mediated low density lipoproteins (LDL) and HDL metabolism and anti-

inflammation will be addressed at the end of this review.

STRUCTURAL AND FUNCTIONAL IMAGING OF ATHEROSCLEROSIS

Structural Imaging

Several imaging modalities have been used in visualizing the vascular structure of 

atherosclerosis including the lesion volume and fibrous cap thickness 30. Magnetic 

resonance imaging/angiography (MRI/MRA) is a commonly used method, which utilizes 

gadolinium (Gd) chelates/nanoparticles, superparamagnetic iron oxide probes (SPIO), 

ultrasmall superparamagnetic iron oxide (USPIO) as contrast enhancement with resolution 

of 10–100 µm to visualize the structure of atherosclerotic lesions31. Computed tomography 

(CT) is a method utilizing iodinated molecules as imaging moieties and high-resolution X-

ray as technology with resolution of 50 µm for clinical or preclinical imaging32. Positron 

emission tomography (PET)/Single-photon emission computed tomography (SPECT) as an 
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approach is increasingly popular by using imaging moieties such as 18F, 64Cu, 11C 

Tracers/ 99mTc,123/124/125/131I, 111In tracers and nuclear technology with resolution of ~2 

µm32. Angiography (X-ray-based fluoroscopy and iodinated molecules as contrast agent), 

optical coherence tomography (OCT)/optical frequency domain imaging (OFDI), optical 

angioscopy, intravascular ultrasound are commonly used invasive approaches to detect 

atherosclerotic lesions33.

Functional Imaging

Imaging of specific cells or components in lesions can disclose lesion biology and feature, 

especially vulnerability, which can help prevent major cardiovascular events34. By 

incorporating peptides, antibodies or other ligands on its surface, a nanoparticle can target 

lesion components (i.e. collagen, proteinases, reactive oxygen species) and cells17, 35. 

Diagnostic dyes or contrast agents are incorporated in the nanoparticles, which can be 

detected using modalities including MRI, PET/SPECT, CT, optical near infrared fluoroscopy 

(NIRF)36, 37. Although fluorescence imaging cannot be used in clinical research because of 

short penetration, it is a good approach to image atherosclerosis in small animal models. 

Dysfunctional endothelial cells can be visualized by using nanoparticles, conjugated with 

specific ligands allowing to target adhesion molecules38, 39. Macrophages and foam cells are 

the most abundant inflammatory cells in atherosclerotic lesions. Intimal macrophages and 

foam cells have phagocytic activities, express scavenger receptors (i.e., CD36, LOX-1, 

MSR1) and also release reactive oxygen species (oxidized epitopes) and matrix-degrading 

proteases (i.e., matrix metalloproteinases and cathepsins); thus all these features can serve as 

potential targets to visualize macrophages and foam cells and to estimate their oxidative and 

inflammatory activities 40, 41. Fibrin and factor XIII can be used to target thrombosis42. The 

αvβ3 Integrin can be used to visualize lesion neoangiogenesis24, 43. Abundance and 

distribution of those cells and the key active components in lesions provide valuable 

information beyond lesion volume34, 44. The events such as inflammation, especially 

neoangiogenesis, fibrous cap degradation, oxidative stress, are critical for subsequent 

selection of preventive and therapeutic modalities.

NANOPARTICLES TARGET ATHEROSCLEROTIC LESIONS

When an atherosclerotic lesion is developing, the permeability of the endothelial layer of 

arterial wall increases, which allows more lipoproteins and small particles such as 

nanoparticles to migrate into the intimal layer45, 46. Expanding atherosclerotic lesions 

requires oxygen and nutrients to allow neoangiogenesis occur47. The neovessels are prone to 

be leaky and fragile47 resulting in increased permeability and retention (EPR), further 

promoting lesion expansion. Nanoparticle migration into atherosclerotic lesions via the EPR 

effect is considered as a non-specific targeting process17. Recognition of nanoparticles by 

their binding to the specific cells or molecules in the lesions via their surface ligands are 

thought to be an active targeting process17.

Intimal Macrophages and Foam Cells

Macrophages and their derived lipid-laden foam cells are determinant cells of atherosclerotic 

lesions due to their ability to accumulate lipids and increase inflammatory responses2. 
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Recruitment and deposition of macrophages into the artery wall occur prior to lesion 

development48. Additionally, accumulation and activation of intimal macrophages positively 

correlates with lesion size49. The recruitment of blood monocytes followed by subsequent 

differentiation to intimal macrophages and their proliferation in situ increase lesion 

macrophage numbers, while macrophage emigration or death decreases their numbers2, 4 

The content of intimal macrophages depends on the kinetic balance between the above 

processes 2. Targeting intimal macrophages and foam cells is a promising avenue for 

detection and treatment of atherosclerosis.

Macrophages are phagocytic cells, and they eat up dying or dead cells and foreign particles 

or microbes. Iron oxide nanoparticles have been widely used to detect intimal macrophages 

by MRI, because like most other foreign particles, iron oxide particles can be taken up by 

macrophages through their phagocytic function of macrophages in the whole body28, 29 

(Table 1). There are two major types of iron oxide nanoparticles are superparamagnetic iron 

oxide (SPIO) nanoparticles with size of more than 50 nm in diameter and ultrasmall SPIO 

(USPIO) nanoparticles with size of between 18 nm to 50 nm in diameter51. Magnetic 

nanoparticles used in MRI usually contain iron cores such as magnetite (Fe3O4) and 

maghemite (γ-Fe2O3), and their surface is modified by hydrophilic coating such as dextrans 

(most commonly), carboxydextran, carboxymethylated dextran, chitosan, starches, polyvinyl 

alcohol, poly(ethylene glycerol) (PEG), polylactic-co-glycolic acid, polymethyl 

methacrylate, polyacrylic acid and polyvinyl pyrrolidone30.

Intimal macrophages bind and take up native LDL and oxLDL cholesterol via their 

scavenger receptors including the CD36 receptor, macrophage scavenger receptor 1 (MSR1/

CD204/SR-A1), lectin-like oxidized LDL receptor-1 (LOX-1), SR-B1, CD68, macrophage 

receptor with collagenous structure (MARCO) among others33, 52. CD36 is an 88-kDa 

transmembrane receptor belonging to the class B scavenger receptor family53, 54. Studies 

performed in mice suggest that CD36 is more important than other macrophage scavenger 

receptors in the process of oxLDL uptake, foam cell formation, and atherosclerotic lesion 

development55–57. Injection of CD36-null macrophages into atherosclerosis-prone mice 

profoundly reduced the atherosclerotic lesion formation, while reintroduction of 

macrophages with CD36 increased the lesion formation by 2-fold58. Blockage of oxLDL 

binding site of CD36 using a peptide ligand reduced lesion size by more than 50% in 

apolipoprotein E null (apoE−/−) mice59. Furthermore, CD36 correlates well with lesion 

severity56, 57, 60. Since CD36 can recognize and bind to oxLDL, one or more components of 

oxLDL must be ligand(s) for CD36. Terpstra V and Bird DA et al. extracted the lipids from 

oxLDL exhaustively by using a chloroform and methanol mixture, and reconstituted these 

lipids into microemulsions. They found these microemulsions competed effectively for the 

binding of intact oxLDL to the macrophages. However, microemulsions containing lipids 

from native LDL did not show the effect61, 62. Oxidized phospholipids naturally found on 

oxLDL are enriched in atherosclerotic lesions of animals63, 64. Therefore, they seem to be 

the most likely ligands for binding oxLDL to CD36. On the surface of oxLDL, hydrophilic 

head and sn-2 acyl group of oxidized phosphatidylcholines protrude to the aqueous phase, 

resulting in a lipid whisker model65. The protruded and oxidized sn-2 acyl group 

incorporating a terminal γ-hydroxy (or oxo)-α,β-unsaturated carbonyl is critical for its high 

binding affinity to CD3664, 66, 67. Podrez EA et al. compared the binding affinity of different 
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oxidized phosphatidylcholines to CD3664. 1-(Palmitoyl)-2-(5-keto-6-octene-

dioyl)phosphatidylcholine (KOdiA-PC), 1-palmitoyl-2-(4-keto-dodec-3-ene-

dioyl)phosphatidylcholine (KDdiA-PC) and 9-keto-12-oxo-10-dodecenoic acid of 2-

lysophosphatidylcholine (KODA-PC) have the highest binding affinity to CD36 among 14 

tested oxidized phosphatidylcholines64. We made liposome-like nanoparticles using 

phosphatidylcholine and KOdiA-PC27. We intravenously injected those CD36-targeted 

nanoparticles carrying KOdiA-PC into LDL receptor null (LDLr−/−) mice, and found that 

those nanoparticles can target intimal macrophages via binding to their CD36 receptors27. 

CD36-targeted nanoparticles had a higher binding affinity to mouse and human 

macrophages than non-targeted nanoparticles. When we knocked down CD36 using small 

interfering RNA (siRNA), the binding of CD36-targeted nanoparticles to macrophages was 

diminished27. Lipinski MJ et al. incorporated CD36 antibody on the surface of gadolinium 

(Gd)-containing lipid-based nanoparticles. Phospholipids, Tween 80 and an aliphatic 

gadolinium complex were used to make the nanoparticles. They found that the CD36-

targeted nanoparticles had high uptake by human macrophages in an in vitro experiment, 

increased signal intensity in human atherosclerotic lesions via binding to intimal 

macrophages in an ex vivo experiment68.

LOX-1 is a 52 KDa type II membrane receptor. LOX-1 expression on intimal macrophages 

positively correlates with atherosclerotic lesion instability and vulnerability36. Wen S et al 

conjugated LOX-1 antibody on the surface of USPIO nanoparticles36. Those LOX-1 targeted 

nanoparticles had higher binding affinity to and uptake by RAW264.7 macrophages than 

non-targeted nanoparticles. After intravenous administration of nanoparticles into apoE−/− 

mice, targeted nanoparticles gave signal enhancement of atherosclerotic lesions, especially 

in the areas enriched with macrophages/foam cells36. Besides imaging of the intimal 

macrophages and atherosclerotic lesions, this approach might also characterize vulnerable 

atherosclerotic lesions. MSR-1 is another important scavenger receptor involved in 

macrophage uptake of oxLDL and subsequent foam cell formation69. After conjugating 

peptidic MSR1 ligands or MSR1 antibodies on the nanoparticles, those MSR1-targeted 

nanoparticles can target atherosclerotic lesions by binding to MSR-1 on intimal 

macrophages37, 70, 71. Other macrophage targeting mechanisms include incorporating 

apolipoprotein A-1 peptides on high density lipoprotein (HDL)72; incorporating 

phosphatidylserine on nanoparticles for targeting phosphatidylserine receptors on 

macrophages52. Table 1 lists detailed information about different types of macrophage-

targeted nanoparticles, and their target mechanisms in published preclinical and clinical 

research studies.

Targeted delivery of therapeutic compounds, siRNA and others to intimal macrophages 

represents an innovative and efficient treatment to atherosclerosis (Table 2). Macrophage-

targeted therapy can prevent or inhibit lesion development by decreasing lipid accumulation 

and inflammation. Most of intimal macrophages are differentiated from circulating 

monocytes of both bone marrow and spleen origin2. There are two types of circulating 

monocytes: inflammatory and non-inflammatory monocytes2. Inflammatory monocytes 

(Ly-6Chigh in the mouse, CD14++CD16− in human) are differentiated to classical (M1 type) 

macrophages, which increase inflammatory response73. Non-inflammatory monocytes 

(Ly-6Clow in the mouse, CD14+/lowCD16+ in human) are differentiated to alternative (M2 
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type) macrophages, which decrease inflammatory response73. The M2 macrophages are 

subdivided into three subtypes (M2a, M2b, and M2c), which have functions of Th2 

responses, Th2 activation, and immunoregulation, respectively74. Different phenotypes of 

macrophages have different functions74, 75. Studies thus far have shown a lack of consensus 

in describing or defining their macrophage phenotypes75. To our knowledge, none of 

nanoparticles has been developed to identify or target a specific phenotype of macrophages. 

Inflammatory, but not non-inflammatory, monocytes depend on the CC-chemokine receptor 

2 (CCR2) for distribution to the blood vessel wall73. Upon binding to CCR2 of 

inflammatory monocytes, MCP-1 directs their migration into the intimal layer. Increased 

invasion of inflammatory monocytes critically promote lesion formation, progression and its 

complications76. In contrast, decreased invasion of inflammatory monocytes results in less 

foam formation and diminished local inflammatory response, which inhibit lesion formation 

and progression. Decreased expression of CCR2 prevents inflammatory monocyte migration 

to, and accumulation in the sites of inflammation73. Leuschner F et al. developed CCR2 

siRNA loaded lipid nanoparticles, which are composed of C12–200, 

disteroylphosphatidylcholine, cholesterol and PEG–dimyristolglycerol73. After systemic 

administration of those nanoparticles, mRNA and protein expression of CCR2 in 

inflammatory monocytes were significantly decreased. The CCR2 siRNA loaded lipid 

nanoparticles decreased the number of inflammatory monocytes by more than 70%, and 

lowered the migratory capacity of inflammatory monocytes towards MCP-1 by more than 

90%. After 3-week intravenous treatment to apoE−/− mice, the number of intimal 

macrophages was reduced by 82%, which correlated with a 38% reduction of aortic root 

lesion size73. Majmudar MD et al. used polymeric nanoparticles to carry CCR2 siRNA77. 

After administration of those CCR2 siRNA-loaded nanoparticles to apoE−/− mice, they 

found that more than 75% of nanoparticles were taken up by monocytes/macrophages. Mice 

treated with CCR2 siRNA-loaded nanoparticles had decreased monocyte invasion and 

subsequent decreased number of intimal macrophages, which are associated with decreased 

expression of inflammatory genes in the lesions77. McCarthy JR et al. developed a light-

activated nanoagent, which can be taken up by intimal macrophages in inflamed 

atherosclerotic lesions78. They induced apoptosis of intimal macrophages using a therapeutic 

dose of light. Ablation of intimal macrophages might decrease lesion formation via 

decreasing foam cell formation, and stabilize lesions via lowering inflammation78. Most of 

the above studies did not present deep underlying mechanisms, such as monocyte/

macrophage population number, phenotype, their origins, or shift from inflammatory to 

inflammatory monocyte/macrophage. More intensive and deep investigation in the 

underlying mechanisms is required in this research field.

Technically, specificity is still not satisfactory as most of targeted nanoparticles target not 

only intimal macrophages, but other types of cells in the body are also impacted. For 

example, many “intimal macrophage specific” target molecules including CD36, LOX-1, 

SR-B1 and other scavenger receptors are also present in other cells, and even the most 

advanced nanoparticles cannot target a specific monocyte or macrophage phenotype, which 

render the danger of off-target effects. Future studies are expected to provide more 

mechanistic insight as to how nanoparticles function to decrease inflammation in the 
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atherosclerotic lesion, which at least involves abundance, phenotype, origins, and 

transformation of monocytes/macrophages.

Important macrophage membrane proteins involved in cholesterol efflux are ATP-transporter 

cassette A1 (ABCA1), ATP-transporter cassette G1 (ABCG1) and scavenger receptor B 

class 1 (SR-B1)79. Ligand activation of liver X receptors (LXR), cholesterol-sensing nuclear 

receptors, reverses atherosclerosis through regulating lipid absorption, transport and 

metabolism and suppressing inflammatory response80. Both LXRα and LXRβ are expressed 

in macrophages 81. GW3965 is one of LXR agonists81, 82. Activation of LXR in lesion 

macrophages can enhance cholesterol efflux and inhibit inflammatory response80, 83, 84. 

ABCA1 promotes free cholesterol efflux from macrophages or foam cells to pre-beta-HDL 

(pre-β-HDL), which is composed of apolipoprotein AI (apoA-1) and phospholipids83, 85, 86. 

Lecithin cholesterol acyltransferase (LCAT) esterifies free cholesterol on pre-β-HDL into 

cholesteryl ester, which is then sequestered into the hydrophobic core of HDL87. After 

picking up more cholesterol from peripheral cells, increased cholesteryl ester accumulation 

enlarges the HDL size and converts it into a mature HDL87. Cholesteryl ester in the mature 

HDL is selectively taken up by liver cells through apoA-1-mediated binding to SR-B1 of 

hepatocytes88. Cholesteryl ester in hepatocytes can be used to synthesize bile acids, and 

cholesterol and bile acids can be excreted into the bile. If cholesterol and bile acid are not 

reabsorbed in the intestine, they are eliminated into feces. This process is called reverse 

cholesterol transport88. Even though LXR agonists can increase cholesterol efflux by 

upregulating ABCA1 and ABCG1 expression on intimal macrophages, they increase liver 

fat content resulting in a fatty liver disease, which limits the application of LXR agonists 

including free GW3965 in clinics. Iverson N et al. made a polymeric micelle, which surface 

amphiphilic macromolecules targeted to macrophage MSR1, resulting in less oxLDL 

binding and uptake by macrophages89. They also encapsulated GW3965 into the micelles, 

resulting in decreased inflammation and increased cholesterol efflux in macrophages, which 

was correlated with increased expression of ABCA1, apoA-1 and LXRα89. After 

administering them to Sprague Dawley rats with injured carotid arteries, they found 

significantly decreased intimal cholesterol content, and inhibited macrophage retention in 

the inflamed lesion89. Another research group encapsulated GW3965 into poly(lactide-co-

glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles90. Nanoencapsulated 

GW3965 had does advantage in inhibiting inflammatory factor expression in macrophages 

both in vitro and in vivo. After intravenous injection of those GW3965-encapsulated PLGA-

b-PEG nanoparticles into LDLr−/− mice for 2 weeks, the macrophage content in 

atherosclerotic lesions was dramatically decreased, but liver fat content and blood lipid 

profile were not changed. Therefore, nanoencapsulation decreased the side effects of free 

GW3965, and enhanced its therapeutic efficacy90.

Vascular Endothelial Cells

Endothelium is a continuous monolayer lining in the blood vessel wall91. The activation and 

dysfunction of endothelial cells can be triggered by oxidative stress, dyslipidemia, viral or 

bacterial infection, inflammation, turbulent blood flow and low shear stress, 

amongothers92, 93. The dysfunctional endothelial cells impact leukocyte adhesion and 

recruitment, platelet activation, and thrombus formation91, 94. Endothelium-targeted 
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nanoparticles in combination of medical imaging modalities including MRI, PET, and 

multiple-row detector computed tomography (MDCT) have been developed to visualize 

atherosclerotic endothelium wall structures and activities39, 95. Those nanoparticles can also 

prevent or treat atherosclerosis via targeted delivery of preventive or therapeutic agents to 

the activated or dysfunctional endothelial cells94, 96 (Table 3).

Adhesion molecules contribute to recruitment of inflammatory monocytes into the intimal 

layer where they differentiate into macrophages, and transform into lipid-laden foam cells, 

which features the early stage of atherosclerosis. Vascular cell adhesion molecule 1 

(VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin are major 

adhesion molecules expressed on endothelial cells97. VCAM-1 expression is increased on 

endothelial cells in both early and advanced atherosclerotic lesions, but it is also expressed 

on activated macrophages and smooth muscle cells98, VCAM-1 is a potential marker for 

vascular inflammation and dysfunctional endothelial cells. Tsourkas A et al. conjugated anti-

VCAM-1 antibodies on the magneto-optical nanoparticles99. The VCAM-1-targeted 

nanoparticles could detect VCAM-1 expression on the endothelial cells, and label the 

activated endothelium99. Non-targeted nanoparticles had low target specificity to the 

endothelium99. Many VCAM-1 targeting peptides have been selected using the phage 

display or other approaches100, 101. VHSPNKK-modified nanoparticles had 12-fold higher 

binding affinity to VCAM-1 than VCAM-1 antibodies100. Importantly, they had low binding 

affinity to macrophages100. The same research group identified another peptide VHPKQHR, 

which was used to develop VCAM-1 internalizing nanoparticles (VINP-28)101. In vitro 
experiments revealed a 20-fold higher cellular binding and internalization of VINP-28 by 

VCAM-1 expressing cells than the previous nanoparticles101. VINP-28 had high binding 

affinity to endothelial cells, but low binding affinity to macrophages and smooth muscle 

cells102. After intravenous injection into apoE−/− mice, VINP-28 co-localized with 

endothelial cells in atherosclerotic lesions, and they detected decreases in VCAM-1 

expression in the aortic root in statin-treated mice101. VINP-28 also detected endothelial 

cells and other VCAM-1 expression cells in resected human carotid artery lesion ex vivo101. 

Other VCAM-1 ligands have been conjugated to nanoparticles for imaging endothelial 

cells38, 39. Beside VCAM-1, ICAM-1, selectins, stabilin-2, interleukine-4 receptor and other 

membrane proteins on activated or dysfunctional endothelial cells have been used as targets 

for designing endothelium-targeted nanoparticles39, 103, 104.

After intravenous administration, nanoparticles contact endothelial cells of the blood vessel 

wall. The effects of nanoparticle exposure on endothelium structure, function, activity are 

gaining considerable attentions. It is crucial to understand endothelial cell functional 

changes and toxicity and underlying mechanisms upon nanoparticle exposure. Many metal 

nanoparticles including cobalt, titanium oxide105, silica106, zinc oxide107 and iron oxide108 

nanoparticles significantly upregulated the expression of MCP-1, IL-8 and adhesion 

molecules including ICAM-1, VCAM-1 and E-selectin on endothelial cells, which can 

increase endothelial inflammatory responses, result in endothelial activation and 

dysfunction, and induce atherosclerosis development108, 109. Superparamagnetic iron oxide 

nanoparticles change endothelial cell morphology by dramatically increasing intracellular 

reactive oxygen species concentrations110. These results suggest that some metal 

nanoparticles could potentially enhance endothelial inflammation and atherosclerosis.
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Angiogenesis

Neovascularization is a key feature of atherosclerosis development111. New microvessels 

developed in vasa vasorum, the adventitial layer, nurture the cells in atherosclerotic lesions, 

contribute to the lesion progression, and play an important role in lesion destabilization and 

rupture111–113. Integrin is composed of two transmembrane subunits (α and β) via 

noncovalent bonds, and plays an important role in interaction of cell to cell, and cell to 

extracellular matrix114. The αvβ3 integrin is widely expressed by monocytes, endothelial 

cells, vascular smooth muscle cells, and fibroblasts, and it involves in the regulation of many 

intracellular signaling pathways to modulate cell migration, recruitment and invasion during 

angiogenesis115–117. The αvβ3 integrin is upregulated in those cells, especially endothelial 

cells, when they are induced by the angiogenic stimuli112. Therefore, it becomes a common 

target for imaging neoangiogenesis (Table 3).

Winter et al. has developed an αvβ3 integrin-targeted paramagnetic nanoparticles. After 

intravenous injection of those nanoparticles to New Zealand White rabbits fed with high 

cholesterol diet, nanoparticles targeted new angiogenic vessels and detected neoangiogenesis 

in the early-stage of atherosclerotic lesions24. This group later developed theranostic 

nanoparticles, the previous αvβ3 integrin-targeted paramagnetic nanoparticles carrying 

fumagillin and atorvastatin118. Fumagillin can inhibit blood vessel formation119. 

Atorvastatin (Lipitor), a type of statin drugs, can decrease cholesterol biosynthesis via 

inhibiting the key enzyme, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA 

reductase)120. The theranostic nanoparticles allowed them to treat and visualize the 

improvement of atherosclerosis simultaneously. After the nanoparticles was administered to 

hyperlipidemic rabbits, the αvβ3 integrin-targeted fumagillin nanoparticles significantly 

decreased the neovascular signals by more than 50%, while the αvβ3 integrin-targeted 

fumagillin and atorvastatin nanoparticles exhibited higher and sustainable antianogenic 

effects118. The αvβ3 integrin-targeted nanoparticles can also be used for evaluating anti-

angiogenic therapeutic responses in patients with the peripheral vascular disease43.

Proteolysis, Apoptosis and Thrombosis

Proteases, mainly capsineses and matrix metalloproteinases (MMPs), are excreted from 

intimal macrophages and foam cells121. Increased expression of MMPs is associated with 

decreased thickness of the fibrous cap and increased lesion vulnerability. MMPs expression 

is induced by inflammatory factors, such as IL-1β and TNF-α. Hence, it is a functional 

marker of active inflammation and lesion vulnerability in atherosclerotic lesions6. 

Schellenberger E et al. synthesized a protease-specific iron oxide nanosensor that can 

berapidly switched to a high-relaxivity aggregated particle from a stable low-relaxivity 

stealth state after cleaved by proteases like MMP9122. The nanoparticles detected MMP9 

activity in vitro. Nahrendorf M et al. synthesized protease-specific polymeric nanosensors, 

and these polymers were cleavable by proteases123. After administering them to apoE−/− 

mice, they imaged the mice using combined fluorescence molecular tomography (FMT) and 

CT. Results indicated that these nanoparticles imaged protease activity in the atherosclerotic 

lesions, and robustly detected the therapeutic effects of the anti-inflammatory drug123 (Table 

4).
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Foam cells can die from apoptosis, a programmed cell death. Phosphatidylserine is located 

in the inner leaflet of the cell membrane in normal and healthy cells, but it is translocated to 

the outer leaflet of the cell membrane in apoptotic cells124. It has been used as a target to 

detect apoptotic cells in atherosclerotic lesions. Annexin A5 (Annexin V) is a 36 kDa 

protein with high binding affinity to phosphatidylserine125. Technetium-99m–labeled 

annexin A5 successfully detected apoptotic cells in atherosclerotic lesions in 11 human 

subjects using SPECT, and this modality may open the door to the detection of lesion 

vulnerability and to identify high risk patients126. Superparmagnetic iron oxide particles 

(SPIONs) conjugated with annexin A5 targeted to apoptotic foamy macrophages in 

atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits, and their target 

specificity was much higher than non-targeted SPIONs127. Annexin A5-conjugated micelles 

also targeted to apoptotic cells in atherosclerotic lesions of apoE−/− mice, and the targeted 

micelles had more than 100-fold dose advantage than non-targeted micelles128. Apoptotic 

cells have mitochondrial membrane potential collapse. In another study, synthetic HDL 

nanoparticles carrying quantum dots were decorated with apoA1 and triphenylphosphonium 

(TPP) cations, which were used for detecting mitochondrial membrane potential collapse 

and identifying apoptotic cells 129.

Thrombus formation and its subsequent blockage of blood circulation cause most of 

myocardial infarction or stroke. Thrombosis is the formation of a blood clot after activation 

of platelets and the clotting cascade130. Fibrin, platelets, erythrocytes, and leukocytes are 

major components of thrombi130. Many fibrin-targeted nanoparticles have been developed to 

detect thrombi by modifying the surface of nanoparticles with fibrin antibodies or binding 

peptides21, 131–134. Peter D et al. loaded anticoagulant drug hirulog into the fibrin-targeted 

micelles. The targeted micelles increased hirulog concentrations in the rupture-prone lesion 

areas and significantly decreased thrombin activity in the lesions133. Platelet-targeted 

nanoparticles were also developed by conjugating platelet antibodies on their surface, which 

may have a potential to inhibit thrombus formation via decreasing platelet activities135, 136.

LIPID LOWERING AND ANTI-INFLAMMATORY THERAPY

Lipoprotein-mediated Treatment

LDL, the cholesterol-rich lipoproteins, are derived from very low-density lipoproteins 

(VLDL). VLDL are triglyceride-rich lipoproteins. Triglyceride in VLDL is hydrolyzed by 

lipases and removed, making VLDL to turn into intermediate-density lipoproteins (IDL), 

which are in turn converted to LDL after triglyceride hydrolysis and removal. LDL can 

deposit cholesterol to peripheral tissues including the blood vessel wall. LDL can be taken 

up by the liver via binding to LDL receptor and LDL receptor-related protein (LRP) 

completing a process called the endogenous pathway of lipoprotein transport. ApoB100 is a 

signature apolipoprotein on VLDL, IDL and LDL, and is required for assembling VLDL in 

the liver. Decreasing apoB100 expression in the liver can reduce VLDL production, further 

decrease circulating LDL particle concentrations. ApoB-specific siRNA has been 

encapsulated into liposomes137. After intravenous administration of those liposomes into 

cynomolgus monkeys, they found significantly decreased liver apoB gene expression, lower 

serum concentrations of apoB100, total cholesterol and LDL-cholesterol in those non-human 
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primates. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine 

protease, and this enzyme can bind to LDL receptor to prevent it from being recycled back 

to the cell surface, and thus enhancing LDL receptor destruction in the cells, especially 

hepatocytes138. Decreased liver LDL receptor levels are associated with increased 

circulating LDL-cholesterol concentrations. Mutation or decreased expression of PCSK9 

correlates with lowered circulating LDL-cholesterol concentrations, and has vascular 

benefits139. Intravenous administration of the PCSK9 siRNA-loaded nanoparticles into 

different animal models including mouse, rat, non-human primate decreased levels of 

PCSK9 transcripts in the liver140. These nanoparticles also lowered plasma concentrations of 

PCSK9 protein and LDL-cholesterol, but had little effect on plasma concentrations of HDL-

cholesterol and triglyceride140.

HDL pick up cholesterol from intimal macrophages and other peripheral cells, and send it 

back to the liver for cholesterol elimination completing a process termed reverse cholesterol 

transport141, 142. ApoA1 is a signature apolipoprotein on HDL. Increased circulating HDL 

or apoA1 concentrations correlate with decreased risks of developing atherosclerosis143. 

Many rHDL or HDL-mimic nanoparticles are developed by using lipids and apoA-1 or its 

derived peptides144 (Table 5). ApoA1milano, a molecular variant of apoA-1, has many 

cardiovascular benefits including anti-atherogenic, anti-thrombotic, anti-platelet effects. 

Kaul S et al. made reconstituted HDL nanoparticles (rHDL) using ApoA1milano and 

phospholipid complex145. After intravenous administration of those nanoparticles into apoE

−/− mice, the aortic cholesterol content was decreased, and the function of endothelial cells 

was improved145. Luthi AJ et al. made a functional mimic of HDL (fmHDL) using a gold 

nanoparticle coating with a phospholipid bilayer and apoA-I146. They demonstrated that 

fmHDL accepted cholesterol from macrophages via ABCA1, ABCG1 and SR-B1146. Direct 

administration of rHDL can increase reverse cholesterol transport and subsequently decrease 

atherosclerosis risk147. Shaw JA et al. found that infusion of rHDL increased reverse 

cholesterol transport capacity, decreased macrophage number and lipid content in lesions, 

and reduced lesion volume in humans148. Duivenvoorden R et al. intravenously administered 

statin-loaded rHDL to apoE−/− mice and found that these nanoparticles delivered statin to 

the atherosclerotic lesions, decreased macrophage content in the lesions, lowered lesion 

inflammatory response. One-week of high dose treatment significantly decreased 

inflammation in advanced lesions, while three-month low dose treatment inhibited lesion 

inflammation progression149.

Anti-inflammatory Treatment

Atherosclerosis is a lipid-driven slowly progressing chronic inflammatory disorder of the 

arteries150. Treatment of atherosclerosis is still mainly focused on lowering blood lipid 

concentrations, which partially reduces the risk for cardiovascular disease151, 152. To further 

improve treatment of patients, targeting of inflammatory pathways is now believed to offer 

an additional benefit153. Dexamethasone (DXM), an anti-inflammatory steroid drug, can 

inhibit atherosclerosis development via decreasing intimal macrophage recruitment and 

foam cell formation154, 155. However, long-term administration of DXM has side effects 

including hypertension, weight gain and depression156. Chono S et al made DXM-loaded 

liposomes with different particle sizes (70, 200 and 500 nm), and intravenously administered 
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them into atherogenic mice156. As compared to free DXM and liposomes with other sizes, 

L200 (DXM-loaded liposomes with the size of 200 nm in diameter) significantly decreased 

aortic cholesterol content, which correlated with increased aortic uptake of DXM. L200 had 

a potent dose advantage as indicated by higher anti-atherogenic effects at 55 µg/kg body 

weight than free DXM at 550 µg/kg body weight156. Glucocorticoid is a potent anti-

inflammatory steroid drug, and has been studied for atherosclerosis treatment157. Due to its 

side effects and poor pharmacokinetic profile, glucocorticoid has not been used for 

atherosclerosis treatment in the clinic158. After giving a single intravenous administration of 

glucocorticoid-loaded liposomes at dose of 15 mg/kg into a rabbits model with 

atherosclerosis, Lobatto ME found a significant decrease in inflammatory response at day 2, 

and this inhibitory effect lasted for additional 5 days157. Importantly, the lowered 

inflammation correlated with decreased intimal macrophage content in the animals157. This 

group also developed a good manufacturing practice (GMP)-grade prednisolone phosphate 

(PLP)-loaded liposomes (L-PLP)159. Data from pharmacokinetics and toxicokinetics studies 

indicated that these liposomes had longer circulation half-life and less side effects than free 

PLP in rats159. Intravenous administration of these liposomes into hyperlipidemic New 

Zealand white rabbits decreased the inflammatory response in the artery wall159. Van der 

Valk FM et al. intravenously administered L-PLP to patients with iliofemoral 

atherosclerosis160. Compared to free PLP, L-PLP increased the drug’s half-life by 7- to 15-

fold, which was partially contributed to its increased accumulation in atherosclerotic lesion 

macrophages160. Although the long-circulating L-PLP have been successfully delivered to 

lesion macrophages, they did not decrease inflammatory responses in the artery walls of 

patients, who had atherosclerotic CVD160. The inconsistency between animal studies and 

the human trial could be due to insufficient dose of L-PLP, or a short treatment duration in 

the human trial157, 159, 160. Additionally, their effects on host defense in acute inflammatory 

situations are yet to be investigated161.

CONCLUDING REMARKS

Atherosclerosis is a silent, progressive disease, and it cannot be easily detected by the 

current imaging methods at its early stage. Current therapeutic approaches treat 

atherosclerosis systemically, not locally, which is often associated with decreased efficacy 

and increased side effects. Nanoparticle-mediated, targeted delivery of diagnostic agents or 

therapeutic compounds to specific molecules, cells, or tissues represents an innovative 

approach for the diagnosis and treatment of atherosclerosis. Nanoencapsulation in 

combination with targeted delivery may enhance stability and bioavailability of agents and 

drugs, improve their pharmacokinetics, increase detection sensitivity and therapeutic 

efficacy, and decrease unintended effects directed to the normal tissues. However, it should 

be pointed that the efficacy of nanoparticles is largely proved in the in vitro and animal 

model studies, and their movement to clinical phases still faces substantial challenges. 

Future studies are expected to not only address the translational value, but also further 

elucidate the working modes for more specifically targeted application. Another emerging 

direction is to develop multifunctional nanoparticles allowing multimodal imaging and 

targeted delivery of the therapeutic compounds, which are expected to have broader clinical 

application. Despite being still in the early stage, the steady progress has been made in both 
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basic research and application study in the field, which makes the diagnostic and therapeutic 

values of nanoparticle technology in atherosclerosis increasingly promising. We are 

optimistic in anticipating more breakthroughs to come along in a near future.
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Figure 1. Potential lesion targets for detection and treatment of atherosclerosis
Nanoparticles can target to the specific cells or processes in the atherosclerotic lesions. The 

molecular or functional targets include macrophage scavenger receptors, macrophage 

phagocytosis, reactive oxygen species, proteases, annexin V for apoptosis, αvβ3 for 

neoangiogenesis, adhesion molecules and others. (Figure adapted and reprinted with the 

permission from reference, page 35S).

(Libby P, DiCarli M, Weissleder R. The vascular biology of atherosclerosis and imaging 

targets. J Nucl Med. 2010 May 1;51 Suppl 1:33S-37S.)
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