
Introduction

The leading scientific journals, including the Korean Journal 
of Anesthesiology (KJA) are claiming that P value-dependent 
decision and description have spoiled scientific thinking. Null 
hypothesis significant testing (NHST) is deemed to be a core 
of statistical inference method that verifies an established null 
hypothesis according to the given significance level. The most 
critical problem of NHST is to provide a simple and dichoto-
mous decision in terms of a “yes” or a “no” [1]. This simplified 

interpretation produces an unsubstantiated expectation; the 
treatment applied by a researcher could have a sufficient effect 
in practice without the need to understand complex statistical 
inference procedures. In the real world, no disease or disastrous 
situation may be instantaneously overcome through a specific 
treatment. That is, the effect of a treatment should not be mea-
sured in terms of a simple “yes” or “no,” but in terms of a scale. It 
is unscientific to assert that the statistical results are significantly 
“yes” or “no” with a predetermined error rate. 

Statistics always begins with an inference, which carries un-
certainty. In fact, statistical inferences produce results that indi-
cate the probability of an impossible event in the real word. With 
this assumption, if you were to interpret the statistical results 
based solely on P values, you should explain the treatment effect 
to your patients as follows: “This treatment has a concrete effect 
with 95% probability. I hope that you will fall within that 95%.” 
Alternatively, for patients who experience only a small improve-
ment with the treatment, it is hard to claim that, “You are lucky! 
You are among the 95%!” The NHST results do not indicate the 
magnitude of the treatment effect nor the precision of measure-
ment [2]. Treatment effects of specific medication cannot be 
categorically assessed into “yes” or “no” decisions. Instead, sta-
tistical results should clearly describe the magnitude of expected 
effects from the treatment. By using CI and effect size (ES), it is 
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possible to explain the statistical results at some length.
This article contains the meanings of CI and ES, as well as the 

methods to compute and to interpret the computed CI and ES. 
The aim of this article is to provide readers with knowledge of 
the descriptions of statistical results using CIs and ESs, beyond 
the P values. Although this article does not cover all available 
ESs, it contains many equations. I hope that readers are able to 
understand and apply these equations to compute estimates, 
which may not be calculated automatically by statistical soft-
ware.

Confidence Intervals

A 95% CI of the mean calculated from a sample implies that 
if the samples originate from the same population with the same 
extraction method, 95% of their CI ranges would include the 
population mean. For example, when we calculate 95% CI of the 
mean from our data and repeat the same experiment a hundred 
times, of the one hundred 95% CIs so computed from the data, 
95 of them would include the population mean. This differs 
from the explanation that a 95% CI of the mean calculated from 
a single sample includes the population mean with a probability 
of 95%. We can ascertain that the latter interpretation is wrong 
from the estimating process for CIs. The 95% CI of the mean of 
a normally distributed sample is calculated using the point esti-
mate of the mean and its standard error of the mean (SEM), and 
the probability values of both ends corresponded to 2.5% each. 
That is, CI of the mean is calculated from a sampling distribu-
tion, which definitely differs from the population [3]. Hence, “a 
95% CI includes the population mean with a 95% probability” is 
an incorrect interpretation. The right interpretation is that “the 
population mean would be included within the ranges of 95% 
of the CIs of the mean calculated from repeatedly sampled data 
with a 95% probability.” At first glance, this seems to be similar 
to NHST, which uses P values for interpretation. However, by 
adding the 95% CI of the mean into the statistical results, we 
can obtain the magnitude of the treatment effect in addition to 
the “yes” or “no” response to the statistical significance of the 
treatment effect. Thus, if the 95% CI of the mean includes 0 or 
95% CI of the ratio includes 1, the statistical result would be 
non-significant. This is the same as P > 0.05 in NHST at the 5% 
significance level.

The extended interpretation of 95% CI of the mean as a range 
estimate is that the same treatment could produce an effect 
within an estimated range as long as the statistical significance 
is maintained. The interpretation using CI as a range estimate 
is more consistent with statistical hypotheses compared to that 
using a P value of NHST. Statistical results using CIs rather than 
P values are more reliable as CIs indicate the expected size of the 
effect. Fig. 1 presents the changes in CIs and significance limits 

Fig. 1. The changes in CI of the mean and alpha error values in accor
dance with sample size. All three data samples are randomly extracted 
using R system, under conditions of normal distribution with mean 
= 100, SD = 10. Each datum includes 10, 100, or 1000 samples. With 
the increase in sample size, the range of the 95% CI is considerably 
decreased from 8.8 for n = 10, 3.9 for n = 100 to 1.3 for n = 1000. The 
limits of 95% probability (5% alpha error limits) remains relatively 
unchanged as all three data samples were originated with the same 
mean and SD. This phenomenon implies that increase in sample size 
results in a more precise statistical inference (narrower CI) as well as 
increased statistical power. Critical values for alpha error probability 
are not much affected by increased sample size. These imaginary data 
are presented under the assumption of normal distribution with similar 
dispersions. SD: standard deviation, SEM: standard error of the mean.
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according to sample size, while keeping the mean and standard 
deviation (SD) constant. Based on the data, with an increase in 
sample size, the range of the CI became narrower while the lim-
its of significance remained relatively unchanged. For statistical 
results with the same P value, the estimated CIs become nar-
rower and the estimated effects could become more reliable with 
a larger sample size. 

For a continuous variable that is normally distributed, CI for 
a population mean may be calculated using the z critical values. 

CI: [mean − zα/2 × SEM, mean + zα/2 × SEM] 

(α: confidence level, SEM: standard error of the mean, zα/2: z 
critical value at confidence level of α, corresponding to two tailed 
areas of α)

When comparing two normally distributed population 
means, it is useful to use CIs. 

If two groups with small sample sizes fulfill the equal vari-
ance assumption, CIs may be calculated using t-statistics. In this 
situation, a pooled sample variance is applied into the CI calcu-
lation process [3,4].

  

 

(X
_

i, si, ni: Mean, SD, and sample size of group i, tα
df: t-critical 

value at confidence level of α and degree of freedom, df: degree of 
freedom)

Theoretically, the SD from the control group is the best es-
timate of SD of the population as the members of the control 
group are sampled from the population without any treatment. 
However, this presupposes that the control group has a very 
large sample size. Hence, it is often better to use a pooled vari-
ance to calculate effect size. The basic concept of pooled variance 
is the calculation of an average of both groups’ SD. This is differ-
ent from the SD of all the values across both groups. That is, the 
pooled estimate of variance reflects more sensitively the differ-
ences between means and SDs of the two groups. The only as-
sumption made when using pooled SD estimates is that the two 
groups originate from the same population. The sole difference 
between the two groups is the presence or absence of treatment. 
The pooled estimate of variance should not be used in statistical 

inference when this assumption does not hold. If samples have 
small sample sizes but do not fulfill the equal variance assump-
tion, then either the variances can be made similar using log 
transformations or we may consider non-parametric statistics.

A different estimation process called analysis of variance 
(ANOVA) should be used for comparisons between three or 
more groups. ANOVA is the method of comparing the varia-
tions resulting from a factor, which causes a change in the 
population, and level of factors. Doing so avoids the α inflation, 
which emerges when repetitive paired comparisons are made. 
CI based on mean and SD does not reflect the variations caused 
due to factor and level, making paired comparisons impossible. 
To overcome this limitation, ANOVA uses the mean square er-
ror (the sum of the squared error of each group divided by the 
degrees of freedom) to calculate the CIs of groups. 

(X
_

i: mean of group i, ni: sample size of group i, tα
ni–1: critical 

value of the t-distribution for the probability α and degrees of free-
dom ni–1, MSE: mean square error)

When the result of the ANOVA is significant, post hoc tests 
(multiple comparison tests) are usually performed to compare 
each pair of groups. There are two methods for post hoc tests: 
one is the method based on corrected significant levels (e.g., 
Tukey, Bonferroni, and Scheffé’s methods) and the other is the 
method of comparing pairs of groups based on the range of 
means (e.g., Duncan and Student-Newman-Keuls methods). To 
calculate CIs, the former applies a different method from that 
explained above. In case of Tukey’s method, CIs are calculated 
using studentized range or q distribution [5].

Effect Size

As mentioned above, results of NHST only inform us of sta-
tistical significance without providing any information on the 
magnitude of the treatment effect. While CIs certainly allevi-
ate this problem to some extent, they do not provide a definite 
answer but only a range of possibility. To readers who want to 
obtain information about the treatment, it is not useful to de-
scribe the expected results as “significant” or to state that “among 
100 trials, mean effect of the treatment could be encountered in 
95 trials.” The best method to resolve this issue is to use a stan-
dardized way of measuring the treatment effect. This is called 
the effect size [6-8]. The effect size ameliorates the discrepancies 
between measuring units and enables comparisons between the 
statistical results arising from different measuring methods and 
different measuring units.

There are many kinds of the effect sizes. The first one is pro-
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posed by Cohen [9]. Most prominently, Cohen’s d is one of the 
acclaimed effect sizes, Pearson’s correlation coefficient r, and 
odds ratio are also types of effect sizes.

Cohen’s d – effect size for the mean difference

When comparing two independent groups from a continu-
ous variable, the student’s t-test is usually used. If the result of 
NHST is significant, the magnitude of difference between the 
two groups may be simply expressed in terms of the difference 
between the means of the two groups. However, simple mean 
difference may be affected by measuring methods, units, and 
scales. When we assume that the variances of these groups are 
the same (this is the statistical assumption of equal variance), the 
amount of variation can be used to standardize mean difference. 
This is Cohen’s d, the standardized mean difference between two 
groups.

Cohen’s d  

(X
_

T, X
_

C: Mean for treatment and control groups)

SD refers to the population variance, which is never known. 
Hence, instead of applying the population’s SD, we must either 
estimate this from the control group or use pooled SD, which is 
the same as the one used for CI computations.

What is the exact meaning of effect size, especially Cohen’s d? 
Cohen’s d is the same as a “z-score” of a standard normal dis-

tribution. Using this score, Cohen’s d can be converted into a 
scale of percentiles between two compared groups. For example, 
Cohen’s d = 0.5 means that the mean of the treatment group 
is 0.5 SD above the mean of the control group. That is, 69% (a 
value of standard normal cumulative distribution function of 
0.5) samples of the control group would be below the mean of 
the treatment group [4]. Although t statistic is exactly same with 
Cohen’s d, we postulate that Cohen’s d is calculated under the as-
sumption of standard normal distribution. Thus, we can imagine 
the number of observations in the control group that are below 
the mean of the treatment group in terms of a percentile scale. 
Table 1 illustrates the expected percentiles at different Cohen’s d 
values.

If we were to create a dummy variable to represent group as-
signment, which takes on a value of 0 for the control group and 
1 for the treatment groups, this data could be analyzed using 
correlation tests. We may hypothesize that when a t-test result 
is significant, the correlation test results may also be significant. 
Based on this relationship, Cohen’s d can be easily converted into 
correlation coefficient r [10]. The interpretation of effect size 
using r is called binomial effect size display (BESD) [11]. The 
main concept of BESD is that “r” is the representative value of 
the difference between two groups when grouping variables are 
converted into one dichotomy and observed values into another, 
such as being above or below a specific value like a mean [12-14]. 
The interpretation of Pearson’s r is also easy (Table 2) [15]. 

Another simple method of interpreting effect size is follow-
ing the predetermined guide by Cohen (Table 1) [10]. However, 
this simple interpretation was criticized as it ignored the effec-
tiveness of the treatment, which is not related to effect size [16]. 
For example, consider an inexpensive and safe medicine, which 
shows small improvements in sugar control in diabetes patients. 
The value of this medicine is somewhat large even though the 
effect size is small when we consider the improvements in the 
patients’ economic and social conditions.

Confidence interval for Cohen’s d

Unfortunately, effect size is not omnipotent. While it con-
tains more information in comparison to P values, it is also an 
estimate, which is calculated from statistical inference. That is, 
an effect size that is estimated from a data of large sample size is 
likely to more accurate than one estimated from a data of small 

Table 1. Illustrative Interpretations of Cohen’s d

Estimated 
values

Proportion of control group  
which would be below the mean  

of the treatment group
Size of effect

0.0 50.0 Small effect
0.2 57.9
0.4 65.5 Medium effect
0.5 69.1
0.8 78.8 Large effect
1.2 88.5
1.6 94.5
2.0 97.7
2.6 99.5
3.0 99.9

Table 2. Estimated Pearson’s r Values and Corresponding Interpretations

Estimated values Size of effect Interpretations

0.10 Small effect The effect explains 1% of the total variation
0.30 Medium effect The effect explains 9% of the total variation
0.50 Large effect The effect explains 25% of the total variation
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sample size. Hence, the concepts of confidence intervals may 
be applied to quantify the error imposed on an effect size. That 
is, a 95% confidence interval for effect size means a 5% alpha 
error level for effect size. The interpretation of the confidence 
interval for effect size is the same as that in the case of the CI 
of the mean. For all hypothetically sampled data from the same 
population and using the same sampling method, an effect size 
of population would fall within 95% of calculated 95% CIs for 
effect size of these data. If this 95% CI contains “0,” it indicates 
“statistical non-significance.” Providing the effect size (point 
estimate) and CI (the precision of effects) are essential to under-
stand the magnitude of intended treatment effects. 

Most statistical software do not support the calculation of the 
effect size and the corresponding CI. We need to understand the 
concepts behind the CI for effect size in order to manually cal-
culate this CI using R system or other spreadsheet software. In 
the case of Cohen’s d, Hedge and Olkin [17] provided a formula 
for estimating CI for effect size, subject to the condition of nor-
mal distribution. 

 

95% CI for Cohen’s d: [d − 1.96 × σ(d), d + 1.96 × σ(d)]

(Ni: the sample size of group i)

Confidence Interval for Pearson’s r

Similar to other statistics, Pearson’s r has its own sampling 
distribution. This distribution is similar to the normal distribu-
tion when the correlation is small, and incrementally changes 
into a negatively skewed distribution as the correlation increase. 
This unique distribution may be converted into a normal distri-
bution by Fisher’s r-to-z transformation [18]. Using the equation 
z = 0.5 log([1 + r] / [1 − r]), r-to-z transformation is possible, 
z follows the normal distribution with an SD (σ)=√(1/(N − 3), 
where N is the number of pairs included in the correlation anal-
ysis. With this assumption, we first calculate a 95% CI of z and 
then convert this into r using the equation above.

95% CI for z: [z − 1.96 × σ, z + 1.96 × σ] 
Inverted form of r-to-z transformation: r = (e2z − 1) / (e2z + 1)

Variance-accounted-for effect size

The standardized mean difference is sufficient to compare 
the means of two groups. Apart from this, there are many other 
statistical inference methods and the effect size of these methods 
should be considered. When comparing three or more groups, 
the ANOVA is usually applied to compare the variations be-

tween groups. In the case of ANOVA, η2 is commonly used to 
represent effect size and is determined by the standardization of 
sum of squares, which are the representative values of data vari-
ability. 

(SSB: sum of squares between groups, refers to the variability of 
the individual group means about the overall mean. SST: total sum 
of squares of the observations about the overall mean)

Fortunately, all parametric analyses include the correlation 
between groups and originate from a General Linear Model 
(GLM) including t-test, ANOVA, ANCOVA (Analysis of covari-
ance), and MANOVA (multivariate analysis of variance) [18]. 
With respect to GLM, the same equation is used to calculate the 
Pearson r2 or regression coefficient R2 in multiple regression and 
these are considered the effect size of each method. These esti-
mates are interpreted in a similar manner. With a treatment as 
an independent variable, 10% of the variability of the outcome 
can be explained when the effect size, η2, is 0.1 [19]. 

Corrected variance-accounted-for effect size

Furthermore, if the statistical analysis is related to Ordinary 
Least Squares (OLS), the effect size is estimated by a model fit-
ting procedure. Effect size estimated by OLS such as multiple 
regression is more generalized when the sample data sufficiently 
reflects the population. However, this process is prone to natu-
rally occurring bias, arising from inter- and intra-individual 
variations. These biases are more significant when the sample 
size is small, the number of measured variables is large, and the 
population effect size is small [12]. In this respect, the Ezekiel 
correction is assumed and is applied to both the Pearson r2 or R2 
in multiple regression. The corrected effect size is termed cor-
rected R squared (R2*).

 

(p: number of independent variables)

For the ANOVA statistic, Hays’ ω2 is a corrected variance-
accounted-for effect size, which can be calculated as follows [17].

 

(SSB, SST, MSW: sum of squares of between subject, total sum of 
squares, and mean square within subject, k: levels of predictor) 
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Effect sizes for contingency tables

Odds ratio (OR) and relative risk (RR) are good examples 
of effect sizes for 2 × 2 contingency table analyses. CIs of OR or 
RR can be estimated using the log standard error, which is com-
puted using a type of Taylor series expansion called the Delta 
method [20,21]. Based on the data characteristics, either OR or 
RR is applied and its corresponding CI can be estimated.

Event (+) Event (-)

Treatment a b
Control c d

 
95% CI of OR: [OR · EF–1, OR · EF+1]

EF = e1.96×se(log[OR])

(EF: error factor, calculated using standard error of log [OR])

 

95% CI of RR:[RR · EF–1, RR · EF+1]

EF = e1.96×se(log[RR])

 

Cohen’s h is commonly used to compare two independent ra-
tios or probabilities. This requires arcsine transformation, which 
is a reversed function of sine. Through this transformation, 
ratios or probabilities between 0 to 1 are transformed into nega-
tive and positive infinite values, which enables the calculation 
of binomial proportion CI of the dependent variable expressed 
with 0 and 1 [22]. Cohen’s h can be calculated from the differ-
ence between two arcsine transformed ratios.

(p1, p2: two independent proportions)

Cohen’s h represents the size of difference and is expressed 
either as directional h to indicate which ratio is bigger between 
two ratios, or as non-directional h to represent only the size of 
the difference through the absolute value of Cohen’s h. Table 3 
illustrates the interpretation of Cohen’s h [23].

In the case of chi-square analysis, Φ(phi) coefficient is a good 
estimator of effect size for 2 × 2 contingency tables and reflects 
the magnitude of association between columns and rows.

 

(χ2: the chi-square statistic)

When the contingency table is larger than 2 × 2, Cramér’s 
V is frequently used to explain the strength of association from 
chi-square analyses.

 

(k: the smaller number of rows or columns)

Interpretations of Φ and Cramér’s V are illustrated in Table 4 
[24].

Statistical reporting with effect sizes and confidence 
intervals

A standardized statistical reporting template containing the 
effect sizes and corresponding CIs is not yet established. Several 
articles report statistical results using the effect sizes and CIs; 
some authors describe these in great detail [25], others only state 
the effect sizes and CIs [26]. 

In order to report statistical results with the effect sizes and 
CIs, the statistical assumptions such as normality test and equal 
variance test should be exactly described in statistical methods 
explanation sections in addition to the estimates of represen-
tative value and degree of variations, the significance level of 
NHST, and the effect sizes used. An example of the statistical 
results report using Student’s t-test is provided as per the follow-
ing.

Table 3. Simplified Interpretation of Cohen’s h

Estimated values Interpretation of correlation

0.20 Small effect
0.50 Medium effect
0.80 Large effect

Table 4. Interpretation of Φ in Chi-statistics or Cramér’s V

Estimated values Interpretation of association

0.00–0.10 Negligible
0.10–0.20 Weak
0.20–0.40 Moderate
0.40–0.60 Relatively strong
0.60–0.80 Strong
0.80–1.00 Very strong
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“A Student’s t-test indicated that plasma concentrations (ng/
dl) of propofol were significantly lower for group A (mean = 
0.123, SD = 0.041, n = 66) than for group B (mean = 0.221, SD = 
0.063, n = 67), a difference of −0.098 (95% CI: −0.116, −0.080), 
t(131) = −10.62, P < 0.001, Cohen’s d = 1.84 (95% CI for Co-
hen’s d: 1.44, 2.25).” 

This seems more complex than the results using P values 
only; it highlights the quantitative difference between groups by 
interpreting the effect size. That is, the statistical result described 
above indicates that the mean of group B is significantly larger 
than the mean of group A by approximately 0.1 ng/dl, such that 
the effect of the treatment is large enough to increase the blood 
concentration in group B. This is a detailed description of the 
statistical report. However, if all statistical results are described 
in detail, the results section may appear unfocused. Simplified 
descriptions are also possible.

“The plasma concentrations (ng/dl) of propofol were signifi-
cantly lower for group A (mean = 0.123, 95% CI: [0.113, 0.133]) 
than for group B (mean = 0.221, 95% CI: [0.206, 0.236]), P < 
0.001, Cohen’s d = 1.84).”

Either way, the explanation of the statistical significance and 
magnitude of difference should be provided.

Conclusion

The expression of statistical results with effect sizes and CIs 
provides a more comprehensive method of statistical results in-
terpretation not only in terms of statistical significance but also 
the size of treatment effects. A significant P value cannot explain 
the latter even when the P value is as small as zero. Although 
the treatment effects cannot be classified into a dichotomous 
result, most articles determine their intended treatment effects 
to be significant or not significant with NHST. In such situa-
tions, the result with P = 0.51 or P = 0.49 was interpreted using 
terms such as “possibility,” “trend,” and so on. A solution to this 
problem is to use the effect size and CIs for the statistical results 
description. There are many equations and complex concepts 
for CIs and effect sizes, we should understand the exact mean-
ings of these estimates and should use them appropriately when 
interpreting and describing statistical results. The results of a 
well-organized study contain statistical interpretations that can-
not explained through the P values of NHST [1]. Unfortunately, 
the best method to replace NHST has not been discovered. As 
such, it is recommended that the effect size and its correspond-
ing CI should also be included in order to enhance the statistical 
strength for the authors’ interpretation.
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