Skip to main content
. 2016 Dec 2;10:586. doi: 10.3389/fnhum.2016.00586

Table 1.

Information and numeric results for each language that was annotated and analyzed.

Language specs Descriptive statistics Distances and Distributions Ideal Learner Predictions ARMA Modeling
Language Language family ISO References Number of nuclei Number of rhythmic phrases Median of distribution (ms) Normality nPVI Estimated LR-INI mean Estimated LR-INI variance Differential entropy (p,q) and differencing order of best ARMA Size of akaike set % Akaike weight taken up by d = 1
Arabic Afro-Asiatic ara Thelwall and Sa'Adeddin, 1990 211 15 173 0.07 38.6 0.02 0.25 0.72 (5,3),1 30 93.96%
Arrernte Pama–Nyungan aer Breen and Dobson, 2005 220 18 177 0.074 35.4 −0.02 0.23 0.70 (1,1),1 21 98.89%
Cantonese Sino-Tibetan yue Zee, 1991 123 20 144 0.076 26.8 0.06 0.11 0.35 (0,0),0 30 7.62%
Dutch Indo-European nld Gussenhoven, 1992 159 18 148 0.078 45.9 0.04 0.33 0.87 (2,3),1 19 99.12%
Georgian Kartvelian kat Shosted and Chikovani, 2006 173 18 164 0.113 47.8 0.01 0.41 0.98 (0,1),1 19 99.99%
Hindi Indo-European hin Ohala, 1994 211 23 179 0.033 33.8 0.00 0.19 0.59 (0,1),1 34 91.14%
Hungarian Uralic hun Szende, 1994 191 13 188 0.037 37.3 0.02 0.22 0.68 (0,1),1 50 65.05%
Igbo Niger–Congo ibo Ikekeonwu, 1991 159 23 194 0.139 39 0.01 0.25 0.74 (0,1),1 16 100.00%
Italian Indo-European ita Rogers and d'Arcangeli, 2004 185 20 185 0.056 41 0.04 0.27 0.76 (2,3),1 21 99.83%
Japanese Japonic jpn Okada, 1991 187 24 131 0.163 49.2 0.10 0.35 0.90 (0,1),1 21 100.00%
Kunama Nilo-Saharan kun Ashkaba and Hayward, 1999 185 41 196 0.078 41 0.09 0.28 0.80 (0,1),1 17 100.00%
Mapudungun Araucanian arn Sadowsky et al., 2013 161 24 211 0.109 38.1 −0.01 0.25 0.73 (2,3),1 21 99.94%
Nuuchahnulth Wakashan nuk Carlson et al., 2001 106 13 285 0.077 47.7 0.04 0.47 1.05 (0,1),1 21 99.99%
Spokane Salishan spo Carlson and Esling, 2000 92 11 364 0.11 42.3 0.01 0.34 0.88 (1,1),1 20 100.00%
Tena Quichua Quechuan quw O'Rourke and Swanson, 2013 238 36 249 0.112 42.3 −0.03 0.35 0.91 (0,3),1 22 98.43%
Thai Tai–Kadai tha Tingsabadh and Abramson, 1993 181 33 251 0.064 41 0.02 0.33 0.87 (3,2),1 21 99.99%
Turkish Turkic tur Zimmer and Orgun, 1992 169 14 159 0.055 32.9 0.00 0.17 0.54 (2,4),1 45 60.02%
Vietnamese Austroasiatic vie Kirby, 2011 121 19 214 0.086 36.8 0.07 0.24 0.71 (0,1),1 19 98.19%

The left side of the table includes ethnographic information about the languages and descriptive statistics of our sample in terms of syllable and phrase structure. The right side of the table provides results for each language. For the first analysis, the correlation between the Kolmogorov-Smirnov D and nPVI measures can be noticed. Next, we present measures about an ideal learner's inference of the LR-INI (the logarithm of the relative INI lengths; see section Analysis and Results: Distributional Statistics of Temporal Structure (Order 1)), and the last three columns present the raw results of the ARMA analyses, including both the single best-fitting model as well as the results of calculating the Akaike weights and sets. Results from higher-order models should be interpreted keeping in mind the low predictive power of ARMA models for small sample sizes.