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Translational readthrough gives rise to C-terminally extended proteins,

thereby providing the cell with new protein isoforms. These may have differ-

ent properties from the parental proteins if the extensions contain functional

domains. While for most genes amino acid incorporation at the stop codon is

far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physio-

logically extended by translational readthrough and the actual ratio of

MDH1x (extended protein) to ‘normal’ MDH1 is dependent on the cell

type. In human cells, arginine and tryptophan are co-encoded by the

MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide

high-readthrough stop codon context without contribution of the sub-

sequent 50 nucleotides encoding the extension. All vertebrate MDH1x is

directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in

the readthrough extension, which is more highly conserved than the exten-

sion of lactate dehydrogenase B. The hidden PTS of non-mammalian

MDH1x evolved to be more efficient than the PTS of mammalian MDH1x.

These results provide insight into the genetic and functional co-evolution

of these dually localized dehydrogenases.
1. Introduction
Decoding of stop codons as sense codons is known as translational readthrough

or stop codon suppression and was first described in viruses [1–3]. Later, pro-

karyotic, eukaryotic and additional viral genes were discovered that are

naturally readthrough [4–7]. Bioinformatic approaches and ribosome

profiling in Drosophila identified genes displaying translational readthrough

[8–10], and readthrough in mammals was also reported for several singular

genes [5,6,8,9,11–17].

How readthrough is controlled at the ribosome is not clear, but the first

trans-acting factors interacting with the termination complex are being uncov-

ered [18,19]. On the level of the RNA, readthrough efficiency is determined

by the stop codon itself and by elements more distantly located on the

mRNA [12,20–24]. Moreover, the nucleotides surrounding the stop codon,

referred to here as the stop codon context (SCC), have an impact on read-

through efficiency [2,25–29]. Recently, we developed a linear regression

model for a genome-wide in silico readthrough analysis focusing on transla-

tional readthrough that depends on the SCC [15]. This model computes a

readthrough propensity (RTP) score for the SCC of every human transcript.

Using the regression coefficients of this model, we derived a consensus for

high-translational readthrough in mammals: UGA CUA (G) (stop codon
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underlined) [15]. This high-readthrough SCC raises the read-

through rate by at least one order of magnitude, from less

than 0.1% to more than 1% [14–16].

It is noteworthy that SCC-dependent readthrough can

be obtained without pharmacological modification of the ribo-

somal stop fidelity. Drug-induced increase in readthrough, on

the other hand, is considered a therapeutic option in some gen-

etic diseases that are caused by a premature stop codon

mutation [30,31]. Most of the drugs that are currently being

tested are aminoglycosides or their derivatives. These bind to

the small subunit of the ribosome and reduce discrimination

of near-cognate tRNAs [32].

Peroxisomes are cellular organelles involved in fatty acid

b-oxidation and degradation of hydrogen peroxide [33]. In

mammalian cells, peroxisomes degrade complex fatty acids

such as branched chain fatty acids and very long-chain

fatty acids, and also synthesize bile acids [34]. Most luminal

proteins contain a peroxisomal targeting signal type 1

(PTS1) at the very C-terminus, for example the canonical tri-

peptide serine-lysine-leucine (SKL) [35]. However, even the

classical SKL tripeptide is not always a PTS1 as more than

the three terminal amino acids are involved in the targeting

process [36]. The substrates themselves may or may not be

oligomers during import [37,38].

Functional translational readthrough gives rise to new

protein isoforms with biological functions distinct from that

of the original protein. Ribosomal readthrough in fungi, for

example, leads to peroxisomal targeting of some glycolytic

enzymes due to the presence of hidden targeting signals in

the readthrough extensions [39]. In our previous work, we

identified physiologically relevant genes regulated by transla-

tional readthrough by combining the RTP scores with a search

for PTS in the C-terminal extensions. LDHB, the heart subunit

of lactate dehydrogenase (LDH), was found to have the high-

est combined score, i.e. the highest combined score of RTP

value and probability of containing a PTS in the extension

[15]. Readthrough of the LDHB SCC and the full-length

gene was confirmed experimentally and it was shown that

the readthrough-extended isoform of LDHB is imported into

peroxisomes via the hidden PTS1 [15,16].

RTP prediction yielded 57 human readthrough candi-

dates with the high-readthrough consensus [15,17]. Malate

dehydrogenase 1 (MDH1) showed the highest RTP. MDH1

was also detected as a potential readthrough protein by phy-

logenetic analysis [14] and ribosome profiling in human

foreskin fibroblasts [8]. MDH1 mediates reversible conversion

of malate and NADþ to oxaloacetate and NADH and at least

two isoforms are present in eukaryotic cells. Mitochondrial

MDH1 is involved in the citric acid cycle, and the cytoplas-

mic form supports the malate–aspartate shuttle across the

mitochondrial inner membrane [40]. MDH1, like LDHB, is

extended by translational readthrough and transported into

peroxisomes via a hidden PTS1 [16]. Interestingly, earlier pro-

teomic analysis had already found MDH1 in mammalian

peroxisomes [41,42].

In this study, we analyse the stop codon readthrough of

MDH1. We show that readthrough is dependent on the

SCC, but not on the subsequent 50 nucleotides. By employing

a quantitative assay, we show that MDH1 readthrough is

tissue-specific and exceeds LDHB readthrough in all tested

cell types. We demonstrate that the MDH1x (extended

protein) stop codon encodes tryptophan and arginine. This

natural stop codon recoding, which is stimulated by the
SCC, constitutes a modification of the genetic code in

humans. Furthermore, we provide evidence that the higher

degree of conservation of MDH1 readthrough in comparison

to LDHB readthrough co-evolved with the targeting signal

strength of their respective PTS1.
2. Results
2.1. Analysis of the malate dehydrogenase stop codon

readthrough
In silico modelling of translational readthrough of SCCs

based on experimental readthrough data revealed a consen-

sus motif for the SCCs of genes containing high RTP values

[15]. MDH1 was the protein with the highest RTP score in

this model (electronic supplementary material, figure S1).

Ribosome profiling and genome searches for readthrough

genes also identified MDH1 [8,14,16]. To analyse the transla-

tional readthrough in detail, we expressed the SCC of MDH1
comprising 10 nucleotides upstream and downstream of the

stop codon in a dual reporter containing N-terminal Venus

and C-terminal humanized Renilla luciferase (hRLuc) tags

in HeLa cells. Luminescence indicated readthrough of the

SCCs, and Venus fluorescence served as an internal

expression control. As positive controls we used a vector

without any SCC (pDRVL) or the SCCs with the trypto-

phan-coding TGG instead of the TGA stop codon. The

background readthrough level was derived from a construct

containing two consecutive stop codons separating the

Venus and luciferase tags (figure 1a) [15]. Readthrough was

expressed as hRLuc luminescence divided by Venus fluor-

escence (in arbitrary units) and ratios were normalized to

the 100% controls. Readthrough of the MDH1 SCC was

4.34+ 0.51% (figure 1a). To analyse the influence of the

SCC on readthrough, we mutated the stop codon and/or

changed the trinucleotide sequence following the stop

codon (position þ4 to þ6). Mutation of the stop codon

itself or the C in position þ4 of the SCC (UGA CUA, position

þ4 underlined) reduced readthrough significantly to back-

ground level. Mutation of the nucleotides in position þ5

or þ6 (UGA CUA, positions þ5 and þ6 underlined) also

significantly decreased readthrough compared with the

wild-type SCC, but still showed levels between 0.4 and

0.8% (figure 1a). In conclusion, the readthrough motif confers

high readthrough to the MDH1 SCC and all tested nucleotide

changes in the consensus UGA CUA (stop codon underlined)

lead to a significant decrease in readthrough.

Readthrough of the (first) MDH1 stop codon is expected

to give rise to an MDH1 isoform with a 19 amino acid exten-

sion, including the amino acid encoded by the stop codon.

We term this isoform MDH1x for extended.

We now turn from the analysis of the SCC to the full-

length MDH1. To confirm the extension of the protein by

stop codon suppression, we expressed full-length MDH1

including the 57 nucleotides following the stop codon in a

dual-tagged vector containing an N-terminal HA-tag and a

C-terminal myc-tag replacing the second stop codon

(figure 1b). Expression was analysed by western blotting

and showed 4.3+0.82% full-length MDH1x (figure 1c),

which is in agreement with readthrough measured for the

MDH1 dual reporter construct. Readthrough of the MDH1

stop codon was inducible by the aminoglycoside geneticin
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Figure 1. Translational readthrough of human malate dehydrogenase. (a) The SCC of MDH1 promotes a high level of translational readthrough. Venus/hRluc dual
reporter assay with MDH1 wild-type and mutant SCCs in HeLa cells. Red line indicates background level of readthrough as observed with a construct containing two
consecutive UAA stop codons separating Venus and luciferase tags. Mutations are indicated in red. Alterations of the SCC dramatically reduce readthrough efficiency.
N ¼ 3; *p , 0.01, #p , 0.05 versus WT (UGA CUA) (Student’s t-test). (b) Full-length MDH1 is extended by readthrough. Geneticin (100 mg ml21) induces MDH1
readthrough. Western blot of MDH1x (UGA) or MDH1x-UGG (stop codon replaced by Trp codon UGG) containing an N-terminal HA- and a C-terminal myc-tag.
Molecular mass marker in kilodaltons; n.t., not transfected. (c) Quantification of (b). MDH1x readthrough is 4.3+ 0.82%, treatment with geneticin induced read-
through to 13.1+ 1.17% (IMAGEJ, N ¼ 3, *p ¼ 0.002). (d ) Dual reporter assay with MDH1x wild-type SCC (SCC0) and MDH1x SCC containing the complete (SCCx)
or 31/57 nucleotides (SCCxD26, deletion of the last 26 nucleotides) of the extension. Readthrough does not differ significantly between the constructs, suggesting
that the SCC is the main contributor to MDH1x readthrough. SCCxScr, MDH1 SCC with a scrambled sequence of the 50 nucleotides following the SCC. N ¼ 4. Error
bars, s.e.m.
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(G418) to 13.1+ 1.17% (figure 1c), reliably confirming that

the detected signal is consistent with readthrough.

The correspondence of the readthrough level measured

for the SCC and the stop codon of the full-length protein

suggests that the SCC is the main contributor to stop codon

readthrough of MDH1. To analyse the possible influence

of the nucleotides following the MDH1 SCC or of mRNA

secondary structures that are formed by this sequence on
readthrough in more detail, we expressed the MDH1 SCC

together with the full downstream stretch of 57 nucleotides

encoding the PTS1 (SCCx, full extension), the SCC with

only 18 nucleotides following the stop codon (SCCxD26, del-

etion of 26 nucleotides upstream of the second stop), or the

SCC alone (SCC0) in a dual reporter experiment. In addition,

we expressed the MDH1 SCC together with a scrambled

sequence of the 50 nucleotides following the SCC (SCCxScr).
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Figure 2. MDH1 readthrough in several cell types and in comparison to LDHB. (a) MDH1 stop codon readthrough in various mammalian cell lines. HeLa, U373 and
U118 cells were transfected with MDH1 and LDHB SCC reporter constructs and analysed by dual reporter assays. Readthrough is expressed as hRLuc/Venus signal.
MDH1 readthrough is significantly higher compared with LDHB readthrough in all cell lines (*p ¼ 0.001 (U373), p ¼ 0.002 (HeLa), p ¼ 0.001 (U118); Student’s t-
test). MDH1 and LDHB readthrough are highest in U118 cells. MDH1: #p ¼ 0.01 (U118 versus HeLa), p ¼ 0.01 (U118 versus U373). LDHB: p ¼ 3 � 1027 (U118
versus HeLa), p ¼ 8 � 1025 (U118 versus U373); Student’s t-test; N ¼ 5. (b) Geneticin (100 mg ml21) induces MDH1 readthrough in U373, HeLa and U118 cells.
N ¼ 3. MDH1 versus LDHB: p ¼ 0.002 (U373), 4 � 1026 (HeLa) and 0.01 (U118); Student’s t-test. Error bars, s.e.m.
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The scrambled sequence maintains the original length of the

extension but would not form the same secondary structure.

Measurement of reporter activity shows that readthrough effi-

ciency is not affected by the partial, the complete, or

the scrambled nucleotide sequence following the SCC

(figure 1c). RNA structure predictions of the MDH1 SCC

and the readthrough extension did not reveal conserved

structures (electronic supplementary material, figure S2).

Hence, we conclude that the 50 nucleotides downstream of

the MDH1 SCC appear to be dispensable for the modulation

of readthrough of the MDH1 stop codon; readthrough of the

MDH1 stop codon depends mostly on the SCC. It cannot be

excluded, however, that sequence elements downstream of

the second stop codon contribute to translational read-

through. Indeed, secondary structure prediction of aligned

mammalian MDH1 30UTRs revealed predicted hairpin

structures that may influence readthrough (electronic sup-

plementary material, figure S2c). These structural elements

are conserved in mammals (electronic supplementary

material, figure S3) but they were not found to be conserved

in the alignment of vertebrate MDH1 30UTRs.
2.2. Cell type specificity of MDH1 readthrough
When analysing the LDHB SCC in HeLa, HEK, COS-7 and

U118 cells using our reporter assay, readthrough was found

to be highest in the glioblastoma cell line U118 [15]. We there-

fore were curious to find out whether MDH1 readthrough

would differ in different cell lines. We performed the dual

reporter assay in HeLa cells and two glioblastoma cell lines,

U118 and U373, and compared MDH1 and LDHB read-

through. Readthrough of the MDH1 SCC was 4.91+0.74%

in U373 cells and reached 10.3+3.8% in U118 cells

(figure 2a,b). In all tested cell lines readthrough of the MDH1

SCC was more than twice the level of the LDHB SCC, and

both SCCs showed the highest readthrough in U118 cells

(figure 2a). As before, readthrough was inducible by geneticin.

Induction factors ranged between 2.6 in U373 and 3.7 in HeLa

cells (figure 2b). Under geneticin treatment readthrough of the

MDH1 SCC rose to 36+10% in U118 cells (figure 2b). These
results indicate that readthrough is dependent on and possibly

differentially regulated in different cell types.

2.3. The MDH1 stop codon encodes tryptophan and
arginine

Which amino acids are incorporated during readthrough

when the stop codon is at the A (aminoacyl-tRNA) site of the

ribosome? To answer this question, we expressed C-terminally

myc-tagged MDH1x in HeLa cells and immunoprecipitated the

fusion protein using anti-myc antibodies. The corresponding

construct with the sense codon TGG was used as a control

representing full readthrough with incorporation of trypto-

phan. Precipitated proteins were detected initially by western

blotting with anti-myc antibodies (insets in figure 3a,b). Regions

of interest were excised from a gel stained with colloidal

Coomassie and subjected to mass spectrometric protein identi-

fication (figure 3a,b and insets). The tryptophan-containing

tryptic peptide corresponding to the readthrough region was

readily identified by liquid chromatography coupled to mass

spectrometry (LC-MS) in the case of the control construct

(figure 3a,c). When analysing the MDH1x proteins, we also

detected tryptophan and additionally found arginine, cysteine,

glutamine and phenylalanine (electronic supplementary

material, table S1). Next, we applied a more stringent criterion

for mass spectrometric evidence: the detection of the intact pre-

cursor peptide with a high mass accuracy of 3 ppm relative

deviation in coincidence with fragment ion series covering

the readthrough position. Using this filter, we confirmed the

incorporation of tryptophan and arginine in place of the stop

codon (figure 3b,d; electronic supplementary material, table

S1). These data suggest that in the endogenous readthrough

of the human MDH1 stop codon, the stop codon can encode

tryptophan and arginine.

2.4. Conserved functional translational readthrough of
malate dehydrogenase

In our previous study, we searched for transcripts that com-

bined both a high RTP and a high probability of encoding a
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PTS1 in the readthrough extension [15]. In silico analysis of all

SCCs of the human genome revealed a high probability of a

hidden PTS1 in the readthrough extension of MDH1x. The

distribution of RTPþ (positively scaled and normalized

RTP) � PTS1 product scores over all human transcripts indi-

cates that MDH1x is one of the transcripts containing high

RTP and high PTS1 probability (electronic supplementary

material, figure S4). Furthermore, MDH1x is targeted to the

peroxisome via translational readthrough resulting in

expression of the hidden targeting signal [16]. To analyse

the endogenous peroxisomal localization of MDH1, we

stained endogenous MDH1 and the peroxisomal markers

Pex14 or PMP70 in HeLa and HEK cells. As expected, we

found that MDH1 is mainly localized in the cytoplasm

(figure 4a,b). To identify the peroxisomal MDH1, we washed

out the cytosol with phosphate buffered saline (PBS) after

cell permeabilization by digitonin. After cytosol removal,

endogenous MDH1 was readily detected in peroxisomes

(figure 4a,b). To be able to test whether the hidden targeting

signal in the MDH1x extension is responsible for peroxisome

targeting, we transfected HeLa cells with YFP-tagged

MDH1x. The fusion protein could be detected in the peroxi-

somes after removal of the cytosol (figure 4c). To prove that

targeting of MDH1x to the peroxisomes is dependent on the

type of the stop codon, we mutated the stop codon UGA to

the more efficient stop codon UAA. This tighter stop codon

reduced the peroxisomal targeting of MDH1x (figure 4d).
When the stop codon was mutated to a sense codon (UGG,

tryptophan-coding), peroxisomal localization of MDH1x was

strongly increased and obvious even without washing out

the cytosol (electronic supplementary material, figure S5a).

To show that peroxisomal targeting of MDH1x is dependent

on the hidden PTS1 in the extension, we mutated the PTS1

in the extension by deletion of the leucine residue (DL) in

the CRL-terminus. This mutation blocks import of MDH1x

into peroxisomes (electronic supplementary material,

figure S5b), indicating that expression of the PTS1 in the

extension is necessary for peroxisomal targeting of MDH1x.

Furthermore, to test whether functional readthrough of

the MDH1 stop codon is a general property, we stained

endogenous MDH1 in two glioblastoma cell lines, U118 and

U373, and in murine cardiomyocytes. Immunofluorescence

with antibodies directed against MDH1 and the peroxisomal

membrane proteins PMP70 and Pex14 showed mainly cyto-

plasmic localization of the endogenous MDH1 (electronic

supplementary material, figure S6a). After removal of the

cytosol, we found that MDH1 is localized to peroxisomes in

all cell types tested (electronic supplementary material,

figure S6a). In cardiomyocytes, endogenous MDH1 is already

detectable without removal of cytosol (electronic supplemen-

tary material, figure S6b). This indicates that the readthrough-

extended isoform of MDH1 is imported into peroxisomes in

various cell types and further substantiates the evolutionary

conservation of peroxisomal requirement of MDH1.



H
E

K

anti-Pex14 mergeanti-MDH1 anti-PMP70anti-MDH1 merge

-CYT

H
eL

a

YFP-MDH1×_UAA anti-Pex14 mergeYFP-MDH1x anti-Pex14 merge

-CYT-CYT

-CYT

(a)

(c) (d )

(b)

Figure 4. Functional translational readthrough of MDH1. Immunofluorescence with anti-MDH1 and anti-Pex14 in untransfected HeLa (a) and HEK (b) cells. Endogen-
ous MDH1 shows mainly cytosolic localization. Removal of cytosol (-CYT) after digitonin treatment reveals colocalization of MDH1 with the peroxisomal markers
Pex14 and PMP70. (c) Peroxisomal targeting of MDH1x depends on the stop codon. Direct immunofluorescence microscopy of transfected HeLa cells: MDH1 localizes
mainly to the cytosol. Removal of cytosol (-CYT) after digitonin permeabilization reveals peroxisomal localization of MDH1. (d ) Exchange of UGA with the tighter stop
codon UAA strongly reduces the amount of MDH1x in the peroxisome pre and post removal of cytosol (-CYT). Scale bars, 10 mm.

rsob.royalsocietypublishing.org
Open

Biol.6:160246

6

To assess whether MDH1 readthrough and the hidden

PTS1 are a common feature in mammals and vertebrates,

we performed a phylogenetic analysis on MDH1 transcript

sequences of a wide range of vertebrate species. The multiple

alignment of potential readthrough extensions of MDH1x

orthologues in mammalian and non-mammalian vertebrates

illustrates that the extension including the hidden PTS1 is

conserved among these species (figure 5a), supporting the

notion that the hidden PTS1 is functional in all vertebrates.

All mammalian MDH1x PTS1 contain the terminal tripeptide

CRL, and all non-mammalian PTS1 contain SRL.

Next, we calculated PTS1 prediction scores for the

MDH1x proteins of the alignment (figure 5a). We found

that the non-mammalian signal (SRL) is predicted to be the

more efficient PTS1 when compared with the hidden PTS1

found in mammalian MDH1x (CRL) (figure 5a). This

coincides with the exclusive presence of LDHBx in mammals.

To prove the functionality of these putative PTS1 motifs,

we transfected HeLa cells with a Venus-tagged construct

expressing the last 10 amino acids from the human MDH1x

(terminating tripeptide CRL) and from zebra finch

(Taeniopygia guttata) MDH1x (terminating tripeptide SRL).

The Venus-tagged PTS1 derived from the peroxisomal matrix

protein ACOX3 was used as a positive control. Cells were co-

stained with anti-Pex14 antibody. Both human and zebra

finch Venus-MDH1-PTS1 localize to peroxisomes in HeLa

cells (figure 5b). This indicates that both zebra finch and
human MDH1x PTS1 are functional and that both SRL and

CRL are good targeting signals for peroxisomal import. To

evaluate the differences in mammalian and non-mammalian

MDH1x peroxisomal targeting, we compared the targeting effi-

ciencies of zebra finch and human PTS1 quantitatively. To

analyse the relative targeting efficiency fluorescence signals

of the cells before and after removal of cytosol were analysed

and the ratio of peroxisomal versus total signal of the PTS1 con-

structs was calculated. We found that 43% more of zebra finch

MDH1x PTS1 was localized to the peroxisomes compared with

the human MDH1x PTS1. This indicates that the zebra finch

PTS1 terminating in SRL is a more efficient targeting signal

than the human CRL PTS1 (figure 5d ).
3. Discussion
3.1. Functional translational readthrough generates

MDH1x
Translational readthrough has only recently been identified

and systematically analysed in mammals [17]. Three systems

biology approaches, ribosome profiling, phylogenetic analy-

sis, and regression modelling, are being used to search for

new protein isoforms arising from stop codon readthrough

[17]. MDH1x is the only protein that has been identified by

all three approaches [8,14–17]. In this and our previous
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study on LDHBx, we used the SCC regression model to

characterize endogenous stop codon readthrough [15]. The

SCC motif [14–16] responsible for high readthrough levels

is found in 57 human translational readthrough candidates.

Of those, MDH1 has the highest RTP.
Readthrough of the MDH1 stop codon is dependent on

the SCC motif UGA CUA (stop codon underlined). At this

point, there is no general agreement whether readthrough

is mainly influenced by the SCC or whether cis-acting

mRNA elements downstream of the stop codon promote
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readthrough. We addressed this question by using a quanti-

tative assay that enabled us to compare readthrough levels

of different SCCs, and to analyse readthrough in different

cell lines. We show here that the mRNA sequence down-

stream of the MDH1 SCC is not required to obtain the 4%

readthrough that is already sponsored by the SCC alone.

The predicted mRNA structure of the MDH1 extension is

not conserved, which is in agreement with our finding that

translational readthrough of MDH1 is not dependent on the

full extension but rather on the SCC alone. Nevertheless,

these findings do not preclude a role of the extension in gen-

eral, such as for RNA stability, or a contribution of the mRNA

elements downstream of the second stop codon.

MDH1 readthrough was present in all cell types analysed

in our study, and was found to be highest in U118 glioblas-

toma cells. The different readthrough properties of these

cell lines could be due to different levels of metabolic dysre-

gulation following the oncogenic transformation of these cells

that could manifest in different tRNA or release factor

concentrations.

In agreement with the higher RTP value of MDH1, read-

through intensity of MDH1 exceeded LDHB readthrough

more than twofold in all tissues tested. LDHB readthrough

was also highest in U118 cells, suggesting an overall increase

in readthrough probability in these cells that is possibly due

to the different metabolic regulation.

MDH1 is also known to contain a functional hidden PTS1

in the extension [16] and endogenous MDH1 is present in the

peroxisomes of HeLa cells, HEK cells, glioblastoma cell lines

and murine cardiomyocytes.
3.2. Translational readthrough constitutes a
modification of the genetic code in humans

The fidelity of amino acid incorporation at the ribosome

is controlled by selection of the tRNA and by kinetic proof-

reading after GTP hydrolysis by the elongation factor [43].

Compared with cognate and near-cognate tRNAs, non-cognate

tRNAs are not able to induce GTP hydrolysis. Structural analysis

of ribosomes revealed that the shape of the base pairs, and not

numbers or types of hydrogen bonds, determines tRNA selec-

tion [44], and that ‘geometrical mimicry’ by non-standard base

pairings can lead to incorporation of near-cognate tRNAs [45].

In this study, we show amino acid incorporation during

endogenous readthrough of a human protein in the absence

of pharmacological induction or other readthrough-

enhancing conditions. Mass spectrometric analysis provided

evidence of predominant incorporation of tryptophan

(codon UGG) and arginine (codons CGX, AGR; X ¼ A,G,C,

or U; R ¼ A or G) at the UGA stop codon of human MDH1x.

This finding suggests that readthrough of stop codons results

from stop codon recognition by near-cognate tRNAs, as they

can form at least two out of the three pairings with the stop

codon. Our results support the observation that the second

position of the stop codon is crucial for acceptance of a tRNA

at the A-site of the ribosome [46], and that mispairing occurs

at the first or third position of the stop codon.

The first systematic mass spectrometric analysis of the

amino acids incorporated at stop codons was undertaken

recently in Saccharomyces cerevisiae using the high read-

through strain [PSIþ] [46]. Glutamine, lysine and tyrosine

were found to be incorporated at UAA and UAG stop
codons, and tryptophan, arginine and cysteine at the UGA

stop codon. Endogenous readthrough of premature ter-

mination codons in yeast leads to insertion of tryptophan,

arginine and cysteine [47]. These results in yeast agree with

the identification of the corresponding suppressor tRNAs

using in vitro expression systems or E. coli infected with

RNA phage Qb [3,5,48–50].

Using an in vitro expression system, mass spectrometric

analysis of amino acid incorporation in rabbit b-globin also

found tryptophan, arginine, cysteine and, additionally,

serine at the UGA stop codon [11]. In vitro expression of the

murine leukemia virus pol gene leads to formation of a

fusion protein due to readthrough of the UGA stop codon.

During this process, tryptophan, arginine and cysteine are

integrated at this stop codon [51].

Whether the other nucleotides of the SCC influence

amino acid incorporation during the readthrough process is

still not known. On the one hand, it was suggested that the

surrounding nucleotides have no influence on amino acid

incorporation [46], but another study in yeast shows that

the UGA stop codon followed by A is preferentially read-

through by Trp-tRNA, whereas it is readthrough by Cys-

tRNAs when followed by G or C [52].

Moreover, it would be helpful to determine whether the

amino acid profile changes when readthrough is induced

pharmacologically. Recent work in yeast indicates that the

same amino acids are incorporated at the UGA stop codon,

but with different insertion frequencies [47].
3.3. Potential roles of a peroxisomal malate
dehydrogenase

Malate dehydrogenase is universally present in peroxisomes

and employs a surprising variety of targeting strategies: plants

contain two peroxisome-specific MDH genes which are targe-

ted to the peroxisome via PTS type 2 [53–57]. Saccharomyces
cerevisiae has three MDH isoforms: mitochondrial MDH1, cyto-

plasmatic MDH2 and peroxisomal MDH3. The latter uses a

dedicated PTS1 [58–63]. In Yarrowia lipolytica, a peroxisome-

specific MDH isoform results from alternative splicing, creating

an mRNA containing a PTS1 [64]. Proteomic analyses addition-

ally found MDH1 in mammalian peroxisomes [41,42]. Taken

together, these findings suggest the evolutionary conservation

of MDH1 requirement in peroxisomes.

In S. cerevisiae, peroxisomal b-oxidation is blocked when

the MDH3 gene is disrupted [59]. Peroxisomal b-oxidation of

fatty acids requires a peroxisomal pool of NADþ, which is

reduced to NADH in this process. However, neither NADþ

nor NADH are able to cross the peroxisomal membrane

[59,65,66]. NADþ, therefore, has to be recycled from NADH

within the peroxisome. As MDH catalyses the conversion of

oxaloacetate and NADH to malate and NADþ, it was hypoth-

esized that MDH3 is involved in this process [59]. The

identification of MDH1x provides a mechanistic explanation

for MDH1 import into peroxisomes of vertebrate cells and

suggests that in all cell types, MDH is potentially involved

in regeneration of redox equivalents in the peroxisomal matrix.

The universal presence of MDH in peroxisomes may

suggest a malate shuttle across the peroxisomal membrane

of vertebrate cells resembling the aspartate–malate shuttle

of the mitochondrial membrane that was first identified in

rat heart [67,68]. Like the peroxisomal membrane, the
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mitochondrial membrane is impermeable to NADþ and

NADH [69] and, therefore, NADH has to be generated by

mitochondrial MDH. The oxoglutarate : malate antiporter

imports malate into the mitochondrial matrix where it is con-

verted to oxaloacetate. Oxaloacetate is then converted to

aspartate and shuttled back to the cytoplasm where oxaloace-

tate is regenerated, which is the substrate of the cytoplasmic

MDH. Strikingly, in yeast the cytoplasmic MDH2 is requi-

red for peroxisome function [70] lending support to our

hypothesis of a universal peroxisomal malate shuttle.

Mitochondrial and cytoplasmic aspartate aminotransferases

catalyse the interconversion of aspartate and oxaloacetate.

Remarkably, this protein was also found in peroxisomes of

S. cerevisiae and various plant species [71–73], which supports

the hypothesis of a malate/aspartate shuttle across the peroxiso-

mal membrane. However, disruption of the peroxisomal

aspartate aminotransferase in S. cerevisiae did not lead to a

b-oxidation defect, and mutants were able to grow normally

on oleate, thus indicating that the peroxisomal aspartate

aminotransferase is not essential for peroxisomal function [73].
3.4. The antiquity of peroxisomal malate
dehydrogenase

LDHB can be readthrough-extended to form LDHBx and is

transported into the peroxisome by an otherwise hidden PTS1

[15]. The non-extended subunits of LDH, LDHA and LDHB,

can be transported into the peroxisome via piggyback transport

so that LDH tetramers are present inside peroxisomes [15,38].

The LDHBx extension including the hidden targeting signal is

conserved in mammals but it is not present in non-mammalian

species (bird gap). On the other hand, the MDH1x extension

and the hidden PTS1 are conserved in mammalian and non-

mammalian vertebrates, indicating evolutionarily conserved

peroxisomal targeting. Of note, all mammalian MDH1x

encode a PTS1 terminating with the tripeptide CRL. The PTS1

tripeptide of the non-mammalian vertebrates (excluding amphi-

bia) is SRL, which is predicted to be a more efficient PTS1 and we

proved that PTS1 targeting of zebra finch PTS1 (SRL) is more

efficient than targeting of human PTS1 (CRL). We therefore

suggest that peroxisomal import of all non-mammalian ver-

tebrate MDH1x is more efficient compared with the MDH1x

import in mammals. Mammals, however, (also) have LDHBx.

We further hypothesize that the role which is shared between

peroxisomal LDH and MDH1x in mammals is carried out by

MDH1x alone in non-mammalian vertebrates. It is plausible

that the evolution of LDHBx in the mammalian clade was the

precondition for the weakening of the MDH1x PTS1.

LDHB and MDH1 are closely related, with MDH being the

evolutionarily older enzyme [74]. The amino acid sequence of

the halobacterial MDH, for example, shows greater sequence

similarity to other LDHs than to other MDHs [75], and its

X-ray structure is more similar to LDH than to other MDHs

[76]. Exchange of only one amino acid can convert bacterial

LDH substrate specificity from lactate to malate [77]. MDH

substrate specificity can also be changed from oxaloacetate to

pyruvate by one amino acid change [75]. These findings under-

line the close relation of both enzymes and thus support the

hypothesis that both exert similar functions in the peroxisome.

In the light of the common ancestry of MDH and LDH, it is

intriguing that both enzymes have adopted a modification

of the genetic code and harness the coding potential of the
30 end of their transcripts. Functional translational readthrough,

therefore, expands the human proteome and the options of

its intracellular targeting.
4. Material and methods
4.1. DNA cloning
Plasmids used in this study are listed in the electronic sup-

plementary material, table S2. Oligonucleotides used are

listed in the electronic supplementary material, table S3. Dual

reporter constructs were cloned based on pDRVL (PST1360)

encoding an N-terminal Venus tag and a C-terminal hRluc

tag [15]. For dual reporter constructs PST1521, 1523, 1581–82,

1525–26, 1473, 1474, 1475, 1476, 1479, 1480, 1481 and 1502,

oligonucleotides JH 77–78, JH 105, 106, 109, 110, 113, 114,

137–140, 161–164 and OST1463–1470 and 1475–1480 were

annealed and inserted into BspEI and BstEII sites of pDRVL.

For cloning of pEYFP-MDH1x (PST1436) the MDH1 open read-

ing frame including the stop codon and the 57 nucleotide 30

extension was PCR-amplified from human cDNA using pri-

mers OST1192 and 1193 and inserted into EcoRI and BamHI

sites of pEYFP-C1. The stop codon variants pEYFP-MDH1xTGG

(PST1514) and pEYFP-MDH1xTAA (PST1535) were created by

amplifying MDH1x from PST1436 using primers OST1231 and

1232, and JH103 and 104. Similarly, the deletion of the last

amino acid in the cryptic PTS1 CRL, pEYFP-MDH1TGGxDL

(PST1536 deletion of the last amino acid in the cryptic PTS1

CRL) was created from PST1514 using primers OST1192 and

JH102. Full-length dual reporter construct pcDNA3.1-HA-

MDH1x-myc (PST1443) was cloned by amplification of

MDH1xfromPST1436withprimersOST1204and1205andinser-

tion into NheI and BamHI sites of pcDNA3.1/Myc-His(2)A.

The stop codon mutant pcDNA3.1-HA-MDH1TGG-myc

(PST1508) was generated by site-directed mutagenesis using

primers OST1231 and 1232. pEXP-N-Venus-PTS1-human

(PST1482) and pEXP-N-Venus-PTS1-zebra-finch (1483) were

cloned using Gateway technology (Invitrogen). After anneal-

ing of primers OST1245 and 1246, and OST1247 and 1248,

they were inserted into the entry vector pENTR/D-TOPO by

TOPO-D cloning reaction. Inserts were then transferred to

pEXP-N-Venus by site-specific recombination using the LR

reaction. All plasmids were confirmed by DNA sequencing.

4.2. Cell culture
HeLa cells were maintained in low glucose Dulbecco’s minimal

essential medium (DMEM), and HEK, U118 and U373 cells in

high glucose DMEM. Culture media were supplemented with

1% glutamine, 5–10% heat-inactivated fetal calf serum (FCS),

100 units ml21 penicillin and 100 mg ml21 streptomycin. For

U118 and U373 cells, 1% non-essential amino acids and 1%

pyruvate were added to the media. Cells were transfected

using Effectene transfection reagent (Qiagen) as described by

the manufacturer. Six hours after transfection, transfection

reagent was removed and, as indicated, 100 mg ml21 geneticin

(G418) was added.

4.3. Dual reporter assays and readthrough calculation
For dual reporter assay, approximately 6500 cells were seeded

per well in a 96-well plate and transfected as indicated; 24 h
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after transfection Venus fluorescence and hRluc luminescence

were measured by the Renilla Luciferase Assay System

(Promega) and the Synergy Mx plate reader (Biotek). Cells

were washed with PBS and lysed in 30 ml Renilla Luciferase

Assay Lysis Buffer (Promega) according to the manufacturer’s

manual. Cells were loosened from the surface using a pipette

tip and were incubated on a shaker for 15 min at room tempera-

ture. For fluorescence measurement 50 ml Renilla Luciferase

Assay Reagent without substrate was added per well and the

lysates were analysed at 485 nm excitation, 530 nm emission

(sensitivity: 130) in the plate reader. For hRluc luminescence

measurement, 50 ml Assay Reagent containing 2� substrate

was added to the lysates using an automated injector. Lumines-

cence was read 2 s after injection and integrated over 10 s

(sensitivity 150). Renilla Luciferase Assay Reagent plus PBS

was used as a blank control for both measurements. Each con-

struct was analysed in three to seven biological replicates.

The readthrough rates were calculated as explained [15]. Briefly,

the ratio of hRluc/Venus fluorescence was calculated, and the

construct ratios of pDRVL were set to 100%. For measurement

of SCCx, SCCxScr and SCCxD26, pDRVL containing the same

insert with TGG mutation of the stop codon was used as

100% control. Arithmetic mean and standard error of the

mean (s.e.m.) were calculated for each construct from its

biological replicates.
4.4. Immunofluorescence and microscopy
Transfected MDH1 constructs and endogenous MDH1 were

detected in HeLa cells by combined direct/immunofluores-

cence experiments. Approximately 105 cells were seeded on

coverslips and transfected as indicated by Effectene Transfec-

tion Reagent as described above. Coverslips were coated with

laminin (Sigma) for U118 cells and with poly-L-lysine (Sigma)

for HEK cells. For removal of cytosol, cells were treated with

0.02% digitonin (Invitrogen) for 5 min at room temperature.

Cells were fixed with 10% formaldehyde for 20 min, and per-

meabilized using 0.5% Triton X-100 in PBS for 5 min. After

blocking for 20 min at 378C with 10% BSA in PBS, antigens

were labelled with primary antibodies at 378C for 1 h. Pri-

mary antibody dilutions in blocking buffer were 1 : 200

rabbit anti-PEX14 (ProteinTech), 1 : 100 mouse anti-MDH1

(Abcam), 1 : 100 rabbit anti-MDH1 rabbit (Sigma) and 1 : 500

mouse anti-PMP70 (Sigma). Secondary labelling was

done for 1 h with antibodies (1 : 200) conjugated to Cy3

or Alexa647 (Jackson Immuno Research), or Alexa488

(MoBiTech). Coverslips were mounted with Vectashield

mounting medium with DAPI (Vector Laboratories). Isolation

of mouse cardiomyocytes was done by Langendorff perfusion

and collagenase type II (2 mg ml21, Worthington Biochemical

Corporation) digestion. Jonas Peper isolated cardiomyocytes

using published protocols [78,79]. Freshly isolated cardiomyo-

cytes were seeded on laminin-coated coverslips for 60 min.

Cells were fixed with 4% paraformaldehyde for 10 min and

incubated in blocking solution (10% FCS, 0.2% Triton X-100

in PBS) for 1 h. Primary and secondary antibodies were

diluted as mentioned above in blocking buffer and incubated

overnight at 48C. Fluorescence microscopy was done using a

100� oil objective (1.3 NA) with a Zeiss Imager M1 fluor-

escence wide field microscope equipped with a Zeiss

AxiocamHRm Camera and Zeiss AXIOVISION 4.8 acquisition

software. z-Stacks with 20 images and 0.2 mm spacing were
recorded and subjected to deconvolution. Linear contrast

enhancements were applied using AXIOVISION software.

4.5. Cell lysis, western blot analysis
Cells were lysed in RIPA lysis buffer (20 mM Tris–HCl, pH

7.4, 150 mM sodium chloride, 2 mM EDTA, 1% NP40,

1 mM DTT, 0.1 mM PMSF, Complete protease inhibitors

(Roche)), 24 h after transfection. Proteins were separated by

SDS-PAGE on a 12% gel, transferred to a nitrocellulose mem-

brane and probed with primary and secondary antibodies.

The following antibodies were used at a 1 : 1000 dilution:

rabbit polyclonal anti-HA (Abcam), mouse monoclonal

anti-myc (Cell Signaling), and mouse monoclonal anti-tubu-

lin (Sigma). HRP-conjugated goat anti-rabbit IgG and

donkey anti-mouse IgG (Jackson Immuno Research) were

used as secondary antibodies at 1 : 5000. Reactive bands

were revealed with Lumi-light and Lumi-light plus western

blotting substrate (Roche). Luminescence was recorded

using luminescent image analyser LAS 4000 (Fuji). Densito-

metric analysis was done using IMAGEJ. Readthrough was

expressed as ratio of: intensity of MDH1x band (readthrough

band)/intensity of MDH1x band þ intensity of MDH band.

4.6. Immunoprecipitation and mass spectrometric
analysis

HeLa cells were seeded in a 10 cm-plate and transfected with

C-terminally myc-tagged MDH1x and MDH1TGGx con-

structs (PST1443 and PST1508); 24 h after transfection, cells

were harvested and lysed in 200 ml Cellytic buffer (Sigma)

with 1 mM DTT, 1 mM EDTA and Complete protease inhibi-

tors (Roche) for 30 min on ice. After centrifugation, 3 ml anti-

myc-antibody (Cell signaling) was added to the supernatant

and the mixture was incubated for 1 h at 48C on a rotating

wheel, then 20 ml PBS-washed protein G agarose beads

(Thermo Scientific) were added for 3 h at 48C. Beads were

washed 3� with Cellytic and 3� with PBS. Bound proteins

were eluted with 4� Roti-Load2 (Roth). IP efficiency was ana-

lysed by western blot using 1/4 of the sample, and 3/4 were

used for mass spectrometric analysis. For this purpose,

proteins were separated on precast TG PRiME Tris/glycine

8–16% gradient gels (Serva) and visualized by colloidal

Coomassie staining. Gel regions of interest were excised

manually and subjected to automated in-gel digestion with

trypsin as described previously [80]. Nanoscale reversed-

phase UPLC separation of tryptic peptides (peptides resulting

from trypsin digestion) was performed with a nanoAcquity

UPLC system equipped with a Symmetry C18 5 mm, 180

mm � 20 mm trap column and a BEH C18 1.7 mm, 75 mm �
100 mm analytical column (Waters Corporation). Peptides

were separated over 60 min at a flow rate of 300 nl min21

with a linear gradient of 1–45% mobile phase B (acetonitrile

containing 0.1% formic acid) while mobile phase A was

water containing 0.1% formic acid. Mass spectrometric analy-

sis of tryptic peptides was performed using a Synapt G2-S

quadrupole time-of-flight mass spectrometer equipped with

ion mobility option (Waters Corporation). Positive ions in

the mass range m/z 50–2000 were acquired with a typical res-

olution of at least 20 000 FWHM (full width at half maximum)

and data were lock mass corrected post-acquisition. Data

acquisition and processing was performed as described [81].
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For identification of the myc-tagged MDH1 constructs, data

were searched against a custom database with 21 entries,

which was compiled on the basis of the construct sequence

by introducing each of the proteinogenic amino acids or a

one-residue gap in the readthrough position. Precursor and

fragment ion mass tolerances were typically below 5 ppm

for precursor ions and below 10 ppm (root mean square)

for fragment ions. Carbamidomethylation of cysteine and oxi-

dation of methionine were specified as variable modifications.

One missed trypsin cleavage was allowed.

4.7. In vivo measurement of peroxisomal protein import
efficiency

HeLa cells were seeded in 6-well plates on coverslips, trans-

fected with Venus-tagged MDH1 targeting signals (last 10

amino acids from zebra finch and human MDH1x) and trans-

ferred into a live imaging chamber. Cells were maintained in

physiological buffer (in mM: 140 NaCl, 2.5 KCl, 1.8 CaCl2,

1.0 MgCl2, 20 glucose, 20 HEPES, pH 7.4) and were imaged

using a Zeiss Imager M1 fluorescence wide field microscope

equipped with a Zeiss AxiocamHRm Camera and Zeiss

AXIOVISION 4.8 acquisition software. The buffer was then

exchanged with buffer containing 0.006% digitonin (Sigma) to

permeabilize the cells and remove the cytoplasm. Fluorescence

was measured each minute for 12 min in total. After 12 min the

chamber was washed again with fresh buffer to remove remain-

ing cytoplasmic fluorescence. Mean fluorescence intensity of

100 cells of the 0 min-image and the image after the last wash

were measured using IMAGEJ. After background subtraction,
the ratio of fluorescence pre and post digitonin wash was

calculated to analyse import efficiency.

4.8. Statistics
Statistical analysis was done with EXCEL using the Student’s

t-test for repeated measurements. Data were presented as

means+ s.e.m. (standard error of the mean). p-values , 0.05

were considered statistically significant.
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18. Beznosková P, Cuchalová L, Wagner S, Shoemaker
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