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Heart failure is a serious conditionwith highprevalence (about 2% in the adult population indeveloped countries,
andmore than8% inpatients older than75 years). About 3–5%of hospital admissions are linkedwith heart failure
incidents. Heart failure is the first cause of admission by healthcare professionals in their clinical practice. The
costs are very high, reaching up to 2% of the total health costs in the developed countries. Building an effective
diseasemanagement strategy requires analysis of large amount of data, early detection of the disease, assessment
of the severity and early prediction of adverse events. Thiswill inhibit the progression of the disease,will improve
the quality of life of the patients and will reduce the associated medical costs. Toward this direction machine
learning techniques have been employed. The aim of this paper is to present the state-of-the-art of the machine
learning methodologies applied for the assessment of heart failure. More specifically, models predicting the
presence, estimating the subtype, assessing the severity of heart failure and predicting the presence of adverse
events, such as destabilizations, re-hospitalizations, and mortality are presented. According to the authors'
knowledge, it is the first time that such a comprehensive review, focusing on all aspects of the management of
heart failure, is presented.
© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.

0/).
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1. Introduction

Heart failure (HF) is a complex clinical syndromeandnot a disease. It
prevents the heart from fulfilling the circulatory demands of the body,
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since it impairs the ability of the ventricle to fill or eject blood. It is
characterized by symptoms, such as breathlessness, ankle swelling
and fatigue that may be accompanied by signs, for example elevated
jugular venous pressure, pulmonary crackles, and peripheral edema,
caused by structural and/or functional cardiac or non-cardiac abnormal-
ities. HF is a serious condition associated with high morbidity and mor-
tality rates. According to the European Society of Cardiology (ESC), 26
million adults globally are diagnosed with HF, while 3.6 million are
newly diagnosed every year. 17–45% of the patients suffering from HF
diewithin the first year and the remaining die within 5 years. The relat-
ed to HF management costs are approximately 1–2% of all healthcare
expenditure, with most of them linked with recurrent hospital admis-
sions [1–3].

The increased prevalence, the escalated healthcare costs, the repeat-
ed hospitalizations, the reduced quality of life (QoL) and the early
mortality have transformedHF to an epidemic in Europe andworldwide
and highlight the need for early diagnosis (detection of the presence of
HF and estimation of its severity) and effective treatment. In clinical
practice, medical diagnosis, including carefully history and physical
examination, is supported by ancillary tests, such as blood tests, chest
radiography, electrocardiography and echocardiography [4]. The com-
bination of data produced by the above procedure of diagnosis resulted
in the formulation of several criteria (e.g. Framingham, Boston, the
Gothenburg and the ESC criteria) determining the presence of HF [5].
Once the diagnosis of HF is established, the experts classify the severity
of HF using either the New York Heart Association (NYHA) or the
American College of Cardiology/American Heart Association (ACC/AHA)
Guidelines classification systems, since this classification allows them to
determine the most appropriate treatment (medication treatment,
guidelines regarding nutrition and physical activity exercising) to be
followed [6].

Although there is a significant progress in understanding the
complex pathophysiology of HF, the quantity and complexity of data
and information to be analyzed and managed convert the accurate
and efficient diagnosis of HF and the assessment of therapeutic regi-
mens to quite challenging and complicated tasks. Those factors, in com-
bination with the positive effects of early diagnosis of HF (which allows
experts to design an effective and possibly successful treatment plan,
prevents condition worsening, affects positively the patient's health,
improves patient's QoL and contributes to decrease of medical costs)
are the reasons behind the enormous increase of the application of
machine learning techniques to analyze, predict and classify medical
Fig. 1. Overview of studies on h
data. Classification methods are among the data mining techniques
that have gained the interest of research groups. Accurate classification
of disease stage or etiology or subtypes allows treatments and interven-
tions to be delivered in an efficient and targeted way and permits
assessment of the patient's progress.

Focusing on HF, different data mining techniques have been
employed to differentiate the patients with HF from controls, to recog-
nize the different HF subtypes (e.g. HF with reduced ejection fraction,
HF with preserved ejection fraction) and to estimate the severity of
HF (NYHA class) (Fig. 1). Additionally, data mining techniques can be
advantageous even if HF is being diagnosed at a late stage, where the
therapeutic benefits of interventions and the prospect of survival are
limited, since they allow the timely prediction of mortality, morbidity
and risk of readmission. Data recorded in the subjects' health record,
expressing demographic information, clinical history information,
presenting symptoms, physical examination results, laboratory data,
electrocardiogram (ECG) analysis results, are employed. An extended
review of the studies reported in the literature addressing the above
mentioned issues (HF detection, severity estimation, prediction of
adverse events) through the utilization of machine learning techniques
is presented in this paper.

The systematic literature review was based on sources like
i) PubMeD, ii) Scopus, iii) ScienceDirect, iv) Google Scholar, v) Web
of Science (WoS) using as keywords the phrases “detection of HF”,
“severity estimation of HF”, “HF subtypes classification”, “prediction
of HF destabilizations”, “prediction of HF relapses”, “prediction of HF
mortality”, “prediction of HF re-hospitalizations”.

The studies reported in the literature were selected based on the
following criteria: i) focus on heart failure and no any other heart
disease, ii) are written in English language, iii) are published from
2000 (inclusive) until present, iv) cover different geographical loca-
tions, v) are employing machine learning techniques, vi) employ
Electronic Health Records, published databases, observational, trial,
etc. for the development and validation, vii) provide information
regarding the evaluation measures and the validation method that
was followed and, viii) the response feature is either differentiation
of subjects to normal and HF or differentiation of subjects to different
HF subtypes or estimation of the severity of HF or estimation of
the destabilization or estimation of re-admission or estimation of
mortality. There is no restriction regarding the time frame of the
prediction. Furthermore, studies addressing both aspects of HF man-
agement (e.g. detection and severity estimation of HF) were also
eart failure management.

Image of Fig. 1


1 http://physionet.org/physiobank/database/mitdb/.
2 http://archive.ics.uci.edu/ml/datasets/Heart+Disease.
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included in this review. Studies not fulfilling more than one of the
above mentioned criteria were excluded.

2. Detection of HF

According to the ESC guidelines [1], the algorithm to diagnoseHF in a
non-acute setting is the following. First the probability of HF based on
prior clinical history of the patient, the presenting symptoms, physical
examination, and resting ECG is estimated. If all elements are normal,
HF is highly unlikely. If at least one element is abnormal, plasma
Natriuretic Peptides should be measured. This measurement allows
the experts to identify those patients who need echocardiography. The
process of diagnosis of HF can be: (i) less time consuming, (ii) supported
and (iii) performed with the same accuracy by the applications of
machine learning techniques on the available data. More specifically,
the detection of HF is expressed as a two class classification problem
where the output of the classifiers is the presence or not of HF.

Most of the studies reported in the literature focus on the uti-
lization of heart rate variability (HRV) that is a measure to classi-
fy a subject as normal or as patient with HF. Those methods are
presented in Table 1. The main difference between those
methods is related to the HRV features which are employed to de-
tect HF.

Yang et al. 2010 [19] proposed a scoring model which allows the
detection of HF and the assessment of its severity. More specifically,
two Support Vector Machines (SVM) models were built. The first
model detects the presence or not of HF (Non-HF group vs. HF
group). In case the subject belongs to the non- HF group, the second
model classifies the patients to a Healthy group or to a HF-prone
group. The output of the SVM models was mapped to a score value
(it is described in Section 4 since the study focuses in the severity
estimation of HF). If the score value, produced by mapping the output
of the first model (Score 1), is lower than 4 (score interval: 0–4), then
the subject belongs to the non-HF group. If Score 1 is N4 (score interval:
4–5.9), then the subject has HF (HF group). If the Score 1 is lower than
4 and the Score 2 (score produced bymapping the output of the second
SVM model) is lower than 2 (score interval: 0–2), then the patient
belongs to the Healthy group. If Score 1 is lower than 4 and the
Score 2 is N2 (score interval: 2–4), then the subject belongs to
HF-prone group (Fig. 2).

Gharehchopogh et al. 2011 [20] utilized neural networks (NN) and a
set of 40 subjects in order to detect HF. For each subject, gender, age,
blood pressure, smoking habit and its annotation as normal or patient
were available. 38 out of 40 subjects were correctly classified resulting
thus to True Positive Rate 95.00%, False Positive Rate 9.00%, Precision
95.00%, Recall 95.00%, F-measure 94.00% and Area Under Curve (AUC)
95%.

Son et al. 2012 [4] studied the discrimination power of 72 variables
in differentiating congestive heart failure (CHF) patients from those
with dyspnea, and the risk factor Pro Brain Natriuretic Peptides
(Pro-BNP). Rough sets and logistic regression were employed
for the reduction of the feature space. Then a decision tree
based classification was applied to the produced by the previous
step feature set. The experimental results showed that the rough
sets based decision-making model had accuracy 97.5%, sensitivi-
ty 97.2%, specificity 97.7%, positive predictive value 97.2%, nega-
tive predictive value 97.7%, and area under ROC curve 97.5%,
while the corresponding values for the logistic regression
decision-making model were accuracy 88.7%, sensitivity 90.1%,
specificity 87.5%, positive predictive value 85.3%, negative pre-
dictive value 91.7%, and area under receiver operating character-
istic (ROC) curve 88.8%.

Masetic et al. 2016 [21] applied Random Forests algorithm to long-
term ECG time series in order to detect CHF. ECG signals were acquired
from the Beth Israel Deaconess Medical Center (BIDMC) Congestive
Heart Failure and the PTB Diagnostic ECG databases, both freely
available on PhysioNet [22], while normal heartbeats were taken from
13 subjects fromMIT–BIHArrhythmia database.1 Featureswere extract-
ed from ECG using the autoregressive Burg method. Besides Random
Forests, the authors evaluated, on the same dataset, C4.5, SVM, Artificial
Neural Networks (ANN) and k-Nearest Neighbors (k-NN) classifiers and
the performance of the classifiers in terms of sensitivity, specificity,
accuracy, F-measure and ROC curve were recorded and compared. The
authors have chosen Random Forests due to its very good accuracy in
classifying a subject as normal or CHF.

Wu et al. 2010 [23] and Aljaaf et al. 2015 [2] move one step forward
and attempt to predict the presence of HF. Wu et al. 2010 [23] modeled
detection of HF more than 6 months before the actual date of clinical
diagnosis. In order this to be achieved, data from electronic health
records of the Geisinger Clinic were employed. The electronic health
records included data representing demographic, health behavior, use
of care, clinical diagnosis, clinical measures, laboratory data, and pre-
scription orders for anti-hypertensive information. The information
was expressed by 179 independent variables. The authors compared
SVM, Boosting, and logistic regression models for their ability to early
predict the HF. Before the application of classifiers, feature selection
was performed. A different selection procedure was followed depend-
ing on the classifier. For logistic regression, variable selection was
based on minimizing the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC), while the L1-norm variable selec-
tion technique was used in the case of SVM. AUCwasmeasured and the
results indicated that the AUCs were similar for logistic regression and
Boosting. The highest median AUC (77.00%) was observed for logistic
regression with BIC and Boosting with less strict cut off.

Aljaaf et al. 2015 [2] proposed amulti-level risk assessment of devel-
oping HF. The proposedmodel could predict five risk levels of HF (1: No
risk, 2: Low risk, 3: Moderate risk, 4: High risk, 5: Extremely high risk)
using C4.5 decision tree classifier. The Cleveland Clinic Foundation
heart disease dataset2 was used. The authors enhance the dataset with
three new attributes - risk factors, namely obesity, physical activity
and smoking. The dataset included 160 instances of risk level 1, 35
instances of risk level 2, 54 instances of risk level 3, 35 instances of
risk level 4 and 13 instances of risk level 5. For the evaluation of the
C4.5 classifier a 10-fold cross-validation procedure was followed. The
overall precision of the proposed approach is 86.30%, while the preci-
sion for predicting each one of the above mentioned risk levels is
89.00, 86.50, 72.00, 90.90 and 100.00%, respectively.

Zheng et al. 2015 [24] proposed a computer assisted system for the
diagnosis of CHF. The computer assisted system employs Least Squares
SVM (LS-SVM) and it is trained and tested utilizing heart sound and
cardiac reverse features. The results of the LS-SVM classifier were
compared with those produced by ANN and Hidden Markov Models
indicating thus the superiority of LS-SVM approach.

A short presentation of the above mentioned studies is provided in
Table 2.
3. HF Subtypes Classification

Once HF is detected, the etiology or the subtypes of HF can be esti-
mated. According to HF guidelines, the etiology of HF is diverse within
and among world regions. There is no agreed single classification
system for the causes of HF, with much overlap between potential cate-
gories. HF manifests at least two major subtypes, which are commonly
distinguished based on themeasurement of the left ventricular ejection
fraction (LVEF) [25]. Patients with LVEF larger or equal to 50% are char-
acterized as patients with HF with preserved ejection fraction (HFpEF),
while patients with LVEF lower than 40% are characterized as patients
with HF with reduced ejection fraction (HFrEF). When the LVEF lies

http://physionet.org/physiobank/database/mitdb/
http://archive.ics.uci.edu/ml/datasets/Heart+isease


Table 1
HF detection methods using HRV measures - review of the literature.

Authors Method Data Features Evaluation measures

Asyali et al.
2003 [7]

Linear discriminant
analysis
Bayesian classifier

No. of data
54 normal subjects
29 patients with CHF

Predictor features
Long-term HRV measures

Observed Agreement Rate:93.24%,
Sensitivity (true positive):81.82%
Specificity (true negative): 98.08%
kappa statistics: 0.832 (95%
confidence interval: 0.689–0.974)

Source of data
RR interval databases at PhysioBank include beat
annotation files for long-term (∼24 h) ECG
recordings

Response feature
Normal
CHF

Validation
n/a

Isler et al.
2007 [8]

Feature selection
(genetic algorithm)
Minmax
Normalization
k-NN

No. of data
54 normal subjects
29 CHF subjects

Predictor features
Short-term HRV measures+
Wavelet entropy measures

k = 5
Sensitivity:96.43%
Specificity:96.36%
Accuracy: 96.39%
k = 7
Sensitivity:100%
Specificity:94.74%
Accuracy: 96.39%

Source of data
RR interval records at the MIT/BIH database include
beat annotation files for long-term (∼24 h) ECG
recordings

Response feature
Normal
CHF

Validation
Leave-one-out cross-validation

Thuraisingham
2009 [9]

Features from
difference plot second
order (SODP)
k-NN

No. of data
36 normal subjects
36 CHF subjects

Predictor features
Central tendency measure standard
deviation of the RR intervals
D (distance)

Success rate: 100%

Source of data
The RR interval data was obtained from MIT-BIH
Normal Sinus Rhythm database, BIDMC congestive
Heart Failure database, and congestive heart failure
RR interval database

Response feature
Normal
CHF

Validation
n/a

Elfadil et al.
2011 [10]

Supervised
Multi-layer
perceptron

No. of data
Training
53 Normal sinus rhythm (NSR) & 17 CHF recordings
Testing
12 CHF and 12 normal subjects

Predictor features
Power spectral density R1 (band 1),
R2 (bands: 2 to 3), R3 (bands: 4 to 10),
R4 (bands: 11 to 16), R5 (bands: 17 to 24),
R6 (bands: 25 to 32).

Sensitivity: 85.30%
Specificity: 82.00%
Accuracy: 83.65%

Source of data
Data randomly simulated from Massachusetts
Institute of Technology (MIT) database

Response feature
Normal
CHF

Validation
Testing
12 CHF and 12 normal subjects

Unsupervised
Normalization
Self-organizing map

No. of data
Training
1000 CHF &1000 normal simulated randomly from
17CHF and 53 normal subjects
Testing
1000 CHF &1000 normal simulated randomly from
12 CHF and 12 normal subjects

Predictor features
Power spectral density R1 (band 1),
R2 (bands: 2 to 3), R3 (bands: 4 to 10),
R4 (bands: 11 to 16), R5 (bands: 17 to 24),
R6 (bands: 25 to 32).

Sensitivity: 89.10%
Specificity: 96.70%
Accuracy: 92.90%

Source of data
Massachusetts Institute of Technology (MIT)
database

Response feature
Normal
CHF

Validation
Testing
1000 CHF &1000 normal
simulated randomly from 12 CHF
and 12 normal subjects

Pecchia et al.
2011 [11]

CART with feature
selection

No. of data
54 normal subjects
29 CHF subjects

Predictor features
Short-term HRV measures

Sensitivity: 89.70%
Specificity: 100.00%

Source of data
Normal subjects was retrieved from the Normal
Sinus Rhythm RR Interval Database
CHF group was retrieved from the Congestive Heart
Failure RR Interval Database

Response feature
Normal
CHF

Validation
Leave-one-out cross-validation

Mellilo et al.
2011 [12]

CART with feature
selection

No. of data
72 normal subjects
44 CHF subjects

Predictor features
Long-term HRV measures

Sensitivity: 89.74%
Specificity: 100.00%

Source of data
Normal subjects were retrieved from the Normal
Sinus Rhythm RR Interval Database and from the
MIT-BIH Normal Sinus Rhythm Database
The data for the CHF group were retrieved from
the Congestive Heart Failure RR Interval Database
and from the BIDMC Congestive Heart Failure
Database

Response feature
Normal
CHF

Validation
10 fold-cross-validation

Jovic et al.
2011 [13]

SVM, MLP, C4.5,
Bayesian classifiers

No. of data
25 normal subjects
25 CHF subjects

Predictor features
Correlation dimension, Spatial filling
index, Central tendency measure,
Approximate entropy (four features),
Standard deviation of the NN (or R-R)

SVM
Sensitivity: 77.2%
Specificity: 87.4%
MLP
Sensitivity: 96.6%

(continued on next page)
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Table 1 (continued)

Authors Method Data Features Evaluation measures

interval – SDNN, root of the mean squared
differences of N successive R-R intervals –
RMSSD, ratio of the number of interval
differences of successive R-R intervals that
are greater than 20 ms and the total,
number of R-R intervals - pNN20, HRV
triangular index

Specificity: 97.8%
C4.5
Sensitivity: 99.2%
Specificity: 98.4%
Bayesian
Sensitivity: 98.4%
Specificity: 99.2%
Validation

Source of data
BIDMC congestive heart failure database
MIT-BIH normal sinus rhythm database
Normal sinus rhythm RR interval database

Response feature
Normal
CHF

10 × 10-fold-cross-validation

Yu et al. 2012
[14]

Feature selection
(UCIMFS, MIFS,
CMIFS, mRMR)
SVM

No. of data
54 normal subjects
29 CHF subjects

Predictor features
Long-term HRV measures+
Age and Gender

All features
Sensitivity: 93.10%
Specificity: 98.14%
Accuracy: 96.38%
UCMIFS
Sensitivity: 96.55%
Specificity: 98.14%
Accuracy: 97.59%
MIFS
Sensitivity: 93.10%
Specificity: 98.14%
Accuracy: 96.38%
CMIFS
Sensitivity: 93.10%
Specificity: 100.00%
Accuracy: 97.59%
mRMR
Sensitivity: 93.10%
Specificity: 98.14%
Accuracy: 96.38%

Source of data
Congestive heart failure (CHF) and normal sinus
rhythm (NSR) database, both of which were
available on the PhysioNet

Response feature
Normal
CHF

Validation
Leave-one-out cross-validation

Yu et al. 2012
[15]

Feature selection by
Genetic Algorithm
(GA)
SVM

No. of data
54 Normal subjects
29 CHF subjects

Predictor features
Bispectral analysis based features

RBF kernel
Sensitivity: 95.55%
Specificity: 100%
Linear kernel
Sensitivity: 93.10%
Specificity: 98.14%

Source of data
Data for the research were provided by the
congestive heart failure (CHF) database (chf2db)
and normal sinus rhythm (NSR) database (nsr2db),
both of which are available on the PhysioNet

Response feature
Normal
CHF

Validation
Leave-one-out cross validation

Liu et al. 2014
[16]

Feature selection
Feature normalization
Feature combination
SVM & k-NN

No. of data
30 normal subjects
17 CHF subjects

Predictor features
Short-term HRV measures

SVM
Accuracy: 100.00%
Precision: 100.00%
Sensitivity: 100.00%
k-NN
Accuracy: 91.49%
Precision: 94.12%
Sensitivity: 84.21%

Source of data
Normal subjects was retrieved from the Normal
Sinus Rhythm RR Interval Database
CHF group was retrieved from the Congestive
Heart Failure RR Interval Database

Response feature
Normal
CHF

Validation
Cross-validation

Narin et al.
2014 [17]

Filter based backward
elimination feature
selection
SVM, k-NN, LDA,
MLP, RBF classifier

No. of data
54 normal subjects
29 CHF subjects

Predictor features
Short term HRV measures+
Wavelet transform measures

SVM
Sensitivity: 82.75%
Specificity: 96.29%
Accuracy: 91.56%
k-NN k = 5
Sensitivity: 65.51%
Specificity: 96.29%
Accuracy: 85.54%
Polynomial LDA
Sensitivity: 75.86%
Specificity: 90.74%
Accuracy: 85.54%
MLP
Sensitivity: 82.75%
Specificity: 92.59%
Accuracy: 89.15%
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Table 1 (continued)

Authors Method Data Features Evaluation measures

RBF
Sensitivity: 58.62%
Specificity: 96.29%
Accuracy: 93.13%

Source of data
The data used in this study were obtained from the
normal sinus rhythm and congestive heart failure
RR interval databases from the MIT/BIH database
in PhysioNET

Response feature
Normal
CHF

Validation
Leave-One-Out cross-validation

Heinze et al.
2014 [18]

Feature extraction by
Power spectral
density(PSD)
Conventional spectral
analysis
Ordinal patterns
Learning Vector
Quantization (LVQ)
classifier

No. of data
54 Normal subjects
29 CHF subjects

Predictors features
HRV measures

PSD features
13.6% error at 50 min
Conventional analysis features
17.5% error at 60 min
Ordinal patterns
18% error at 45 min

Source of data
Normal sinus rhythm and congestive heart failure
RR interval databases from the MIT/BIH database
in PhysioNET

Response feature
Normal
CHF

Validation
Multiple-hold-out validation
(80% training data, 20% testing data)
with 50 repetitions

CHF: Congestive Heart Failure, CART: Classification and Regression Tree, UCMIFS: Uniform Conditional Mutual Information Feature Selection CMIFS: Conditional Mutual Information
Feature Selection, MIFS: Mutual Information Feature Selection, mRMR: min-redundancy max-relevance, SVM: Support Vector Machines, k-NN: k Nearest Neighbors, RBF: Radial Basis
Function, MLP: Multi-Layer Perceptron, LDA: Linear Discriminant Analysis, HRV: Heart Rate Variability.
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between 40 and 49% the patient belongs to so called “gray zone”, which
is defined as HF with mid-range ejection fraction (HFmrEF).

Machine learning techniques have been applied to classify HF
subtypes. This approach of classification of HF subtypes started the
last 3 years. Austin et al. 2013 [26] classified HF patients according to
two disease subtypes (HFpEF vs. HFrEF) using different classification
methods. More specifically, classification trees, bagged classification
trees, Random Forests, boosted classification trees and SVM were
employed. The training of the classifiers was performed using the
EFFECT-1 sample of Enhanced Feedback for Cardiac Treatment (EFFECT)
study, while for the validation of the classifiers the EFFECT-2 sample
was used. The two samples consist of 9.943 and 8.339 patients hospital-
ized with a diagnosis of HF, respectively. Removing subjects with
missing values and subjects whom ejection fraction could not be deter-
mined, 3.697 patients for training and 4.515 patients for testing were
finally employed. For each patient, 34 variables were recorded express-
ing information regarding demographic characteristics, vital signs, pre-
senting signs and symptoms, laboratory data and previous medical
history. The results indicate that patients can be classified into one of
the two mutually exclusive subtypes with 69.6% positive predictive
value using the Random Forests classifier.

Betanzos et al. 2015 [25] applied machine learning techniques to
classify HF subtypes using the concept of Volume Regulation Graph
(VRG) domain rather than by the single use of ejection fraction (EF).
More specifically, they used both the metric EF and the basic variables
that define the EF, namely end systolic volume (ESV) and end diastolic
volume (EDV). This approach allowed them to overcome the limitations
inherent to the use of EF which neglects the importance of left ventric-
ular cavity volume. From those data, the end systolic volume index
(ESVI) was computed and through the application of machine learning
techniques, the validity of ESVI as an index for discriminating between
the HFpEF and the HFrEF patients was examined. Both supervised
Fig. 2. Flow chart of the score model p
and unsupervised techniques were applied. K-means using Euclidean
distance, Expectation - Maximization (EM) and sequential Information
Bottleneck algorithm (sIB) were used to perform discrimination
in an unsupervised manner. Supervised classifiers, such as SVM,
SVMPEGASOS, Nearest Neighbors (IB1) and NNGE, which is a nearest
neighbor-like algorithm using non nested generalized exemplars, rule
based algorithm OneR, C4.5, PART, and Naive Bayes classifier, were
tested and compared. The authors employed two datasets for the eval-
uation of the above mentioned machine learning techniques. The first
dataset included data from 48 real patients (35 belong to the class
HFpEF and 13 to the class HFrEF), while the second dataset includes
simulated data, generated using Monte Carlo simulation approach,
that correspond to 63 instances (34 from class HFpEF and 29 from
class HFrEF). The results of the unsupervisedmethods revealed interest-
ing dividing patterns of the two subtypes, while the SVM PEGASOS
algorithm was opted for the classification of the patients, since it pro-
duced the best results in terms of training and test error. Based on
those results, Betanzos et al. 2015 [25] concentrated on SVMPEGASOS
algorithm toward examining how the results are differentiated when
patients belonging to the “gray zone” are included. They set different
cutoff points (EF at 40, 45, 50, and 55%). The SVM PEGASOS model
was trained using the first dataset described previously and it was
tested on a new dataset including simulated data corresponding to
403 instances, among which 150 refer to class HFpEF, 137 refer to
class HFrEF and 116 refer to HFmrEF. The utilization of the different
cutoff points differentiate the number of samples belonging to the two
classes. The results indicated that ESV can act as a discriminator even
when patients with HFmrEF are included.

Isler 2016 [27] performed a heart rate variability analysis in order to
distinguish patients with systolic CHF from patients with diastolic CHF.
More specifically, short-term HRV measures were given as input to
nearest neighbors andmulti-layer perceptron classifiers. Eight different
roposed by Yang et al. 2010 [14].

Image of Fig. 2


Table 2
HF detection methods not using HRV measures - review of the literature.

Authors Method Data Features Evaluation measures

Yang et al.
2010 [19]

Scoring model using
SVM

No. of data
153 subjects
65 HF subjects,
30 HF-prone subjects
58 healthy subjects

Predictor features
parameters are selected from clinical tests, i.e., blood
test, heart rate variability test, echocardiography
test, electrocardiography test, chest radiography
test, 6 min
walk distance test and physical test

SVM model 1
Sensitivity: 75%
Specificity: 94%
Youden's index: 69%
SVM model 2
Sensitivity: 100%
Specificity: 80%
Youden's index: 80%

Source of data
Data collected at Zhejiang Hospital

Response feature
Non-HF group (Healhty group or HF-prone group)
HF group

Validation
90 subjects used as test cases

Gharehchopogh
et al. 2011
[20]

Neural networks No. of data
40 subjects
26 normal subjects
14 HF subjects

Predictor features
Gender, age, blood pressure, smoking habit

Training set
True positive rate: 95.00%,
False positive rate: 9.00%,
Precision: 95.00%,
Recall: 95.00%,
F-measure: 94.00%
AUC: 95%.
Testing set
Percentage prediction: 85%

Source of data
Data collected at referral health
center in one of region in Tabriz

Response feature
HF yes
HF no

Validation
Testing set

Son et al.
2012 [4]

Rough sets based
decision model
Logistic regression
based decision
model

No. of data
159 subjects
71 CHF subjects
88 normal subjects

Predictor features
Laboratory findings

Rough sets based decision model
Accuracy: 97.5%
Sensitivity: 97.2%
Specificity: 97.7%
Positive predictive value: 97.2%
Negative predictive value: 97.7%
Area under ROC curve: 97.5%
Logistic regression based decision model
Accuracy: 88.7%
Sensitivity: 90.1%
Specificity: 87.5%
Positive predictive value: 85.3%
Negative predictive value: 91.7%
Area under ROC curve: 88.8%

Source of data
Data collected at the emergency
medical center of Keimyung
University Dongsan Hospital

Response features
Normal
CHF

Validation
10-fold-cross-validation

Masetic et al.
2016 [21]

Random Forests
SVM
C4.5
ANN
k-NN

No. of data
15 CHF subjects
13 normal subjects

Predictor features
Features extracted by raw ECG using Burg
method for autoregressive

BIDMC congestive heart failure + MIT
BIH Arrhythmia databases
ROC area: 100%
F-measure: 100%
Accuracy: 100%
PTB Diagnostic ECG + MIT BIH
Arrhythmia databases
ROC area: 100%
F-measure: 100%
Accuracy: 100%

Source of data
Beth Israel Deaconess Medical Center
(BIDMC) Congestive Heart Failure
PTB Diagnostic ECG

Normal heartbeats were taken from
MIT–BIH Arrhythmia database

Response features
Normal
CHF

Validation
10-fold cross-validation

Zheng et al.
2015 [24]

Wavelet Transform
for Heart Sound
signals
Least Square
Support Vector
Machine (LS-SVM)
Neural Network
Hidden Markov
model

No. of data
64 CHF subjects
88 healthy volunteers

Predictor features
Heart Sound and Cardiac Reserve features
The ratio of diastolic to systolic duration.
The ratio of the amplitude of the first heart sound
to that of the second heart sound.
The width of multifractal spectrum.
The frequency corresponding to the maximum
peak of the normalized PSD curve.
Adaptive sub-band energy fraction shown.

LS-SVM
Accuracy: 95.39%
Sensitivity: 96.59%
Specificity: 93.75%

Source of data
Chongqing University and the First
and the Second Affiliated Hospitals of
Chongqing University of Medical
Sciences

Response feature
Normal
CHF

Validation
The double-fold cross-validation

SVM: Support VectorMachines, HF: Heart Failure, CHF: CongestiveHeart Failure, ANN: Artificial Neural Networks, ROC: Receiver Operating Characteristic, AUC:AreaUnder Curve, LS-SVM:
Least Square Support Vector Machine, k-NN: k-Nearest Neighbors.
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configurations were applied (No heart rate normalization and no
MINMAX normalization, heart rate normalization and no MINMAX
normalization, No heart rate normalization and MINMAX normaliza-
tion, Heart rate normalization andMINMAX normalization). 18 patients
with systolic and 12 patient with diastolic CHF were enrolled in the
study. Leave-one-out cross validation method was followed and the
best accuracy was achieved using multi-layer neural network.

Shah et al. 2015 [28] focused on the distinction of HFpEF subtypes.
They employed 397HFpEF patients and performed detailed clinical, lab-
oratory, electrocardiographic phenotyping of the participating patients.
The extracted 67 continuous variables were given as input to statistical
learning algorithms (e.g. unbiased hierarchical cluster analysis) and
penalized model-based clustering. The analysis revealed 3 distinct
pheno-groups in terms of clinical characteristics, cardiac structure and
function, hemodynamics and outcomes.

A short presentation of the methods for HF subtype classification is
presented in Table 3.

4. Severity Estimation of HF

Due to the fact that HF is asymptomatic in its first stages, early
assessment of the severity of HF becomes a crucial task. The most
commonly employed classifications for HF severity are NYHA and
ACC/AHA stages of HF. NYHA is based on symptoms and physical
activity, while ACC/AHA describes HF stages based on structural changes
and symptoms [6]. The two assessment methods provide useful and
complementary information about the presence and severity of HF.
More specifically, ACC/AHA stages of HF emphasize the development
Table 3
Short presentation of the studies reported in the literature addressing HF subtypes classificatio

Authors Method Data F

Austin et al.
2013 [26]

Random
Forests

No. of data
3.697 patients for training
4.515 patients for testing

P
D
s
r
a

Source of data
Data collected during the Enhanced Feedback for
Effective Cardiac Treatment (EFFECT) study

R
H
H

Betanzos
et al. 2015
[25]

SVM
PEGASOS

No. of data
48 real patients (35 HFpEF and 13 HFrEF) for training
63 Monte Carlo simulated instances
(34 HFpEF and 29 HFrEF) for testing

P
E

Source of data
Clinical study conducted at Cardiovascular Center,
OLV Clinic, Aalst, in Belgium

R
H
H

SVM
PEGASOS

No. of data
48 real patients (35 HFpEF and 13 HFrEF) for training
403 Monte Carlo simulated instances
(150 HFpEF, 137 HFrEF, 116 HFmrEF) for testing

P
E

Source of data
Clinical study conducted at Cardiovascular Center,
OLV Clinic, Aalst, in Belgium

R
H
H
I
“

Isler 2016
[27]

Min-Max
Normalization
k-NN, MLP

No. of data
18 patients with systolic CHF
12 patients with diastolic CHF

P
S

Source of data
Holter ECG data used in this study were obtained from
the Faculty of Medicine in Dokuz Eylul University

R
p
w
d

PPV: Positive Predictive Value, NPV: Negative Predictive Value, MLP: Multi-Layer Perceptron,
HF: Heart Failure, CHF: Congestive Heart Failure, HRV: Heart Rate Variability, HFpEF: Heart Fail
AUC: Area Under Curve.
and progression of HF, whereas NYHA focus on exercise capacity of the
patient and the symptomatic status of the disease [1].

NYHA classification has been criticized due to the fact that it is based
on subjective evaluation and thus intra-observer variability can be
introduced [29]. According to the HF guidelines, an objective evaluation
of the severity of HF can be provided by the combination of a 2-D ECG
with Doppler flow [1]. For the estimation of the severity of HF in the
acute setting after myocardial infarction, KILLIP classification can be
utilized [1].

Studies reported in the literature, address HF severity estimation
through the utilization of machine learning techniques. Specifically, HF
severity estimation is expressed either as a 2 or 3 class classification
problem, depending on the merge of the NYHA class that has been
performed. Akinyokun et al. 2009 [30] proposed a neuro-fuzzy expert
system for the severity estimation of HF. A multilayered feed -forward
neural network was trained taking as input data from patients from
three hospitals in Nigeria. For each patient, seventeen variables were
recorded. A measure of significance of each input variable to the output
is computed in order redundant information to be removed. Through
this procedure six variables, expressing signs and symptoms of HF,
were retained and the neural network was retrained using the selected
variables. Fuzzy rules were then extracted from the trained datasets.
The fuzzy-logic system employs the root mean square error method
for drawing inference. The output of the neuro-fuzzy engine is given
as input to the decision support engine aiming to optimize the final
decision value. The decision support engine carries out the cognitive
and emotional filter that corresponds to the objective and subjective
feelings, respectively, of the practitioner supporting him/her to make
n.

eatures Evaluation measures

redictor features
emographic characteristics, vital
igns, presenting signs and symptoms,
esults of laboratory investigations,
nd previous medical history

Sensitivity: 37.8% PPV: 69.6%
Specificity: 89.7% NPV: 69.7%

esponse feature
FpEF
FrEF

Validation
Testing set of 8.339 subjects

redictor features
nd Systolic Volume Index

Training error %:
2.08

Test error %: 4.76

esponse feature
FpEF
FrEF

Validation
Testing set of 63 instances
10-fold cross-validation

redictor features
nd Systolic Volume Index

True Positive Rate 40% 45% 50% 55%
HFpEF 100% 91% 98% 99%
HFrEF 87% 96% 97% 98%

esponse feature
FpEF
FrEF
ncluding patients belonging to
gray zone”

Validation
Testing set of 403 instances

redictor features
hort term HRV measures

MPL
Sensitivity: 93.75%
Specificity: 100%
Accuracy: 96.43%
k-NN
Sensitivity: 87.50%
Specificity: 91.67%
Accuracy: 89.29%

esponse feature
atients
ith systolic CHF patients with
iastolic CHF

Validation
Leave-one-out cross-validation

k-NN: k Nearest Neighbors, SVM: Support Vector Machines, LS-SVM: Least Square SVM,
ure with preserved Ejection Fraction, HFrEF: Heart Failure with reduced Ejection Fraction,
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judgments and take decisions regarding the final diagnosis. The cogni-
tive filter average value is added to the neuro-fuzzy values and the
decision support intermediate value (DSIV) is computed. The DSIV
is then added to the emotional filter average value and the decision
support final value (DSFV) is extracted. If DSFV is lower than 0.2, then
no HF is presented. If DSFV is N0.2 and lower or equal to 0.4, then the
patient is characterized as mild HF. If DFSV is N0.4 and lower or equal
to 0.7, then the degree of severity is considered to be moderate. In
order the patient to be classified to the severe HF class, the DFSV must
be between 0.7 and 1. Finally, in case DFSV is N1, the patient's status is
in a very severe condition.

Guidi et al. 2012 [31] developed a computer aided telecare system
aiming to assist in the clinical decision of non-specialist personnel
involved in the management of HF patients. Among the functionalities
of the telecare system is the characterization of patients asmild, moder-
ate or severe. In order this to be achieved, NN, SVM, decision tree and
fuzzy expert system classifiers were employed. The classifiers were
trained and tested using anamnestic (age, gender, NYHA class) and
instrumental data (weight, systolic blood pressure, diastolic blood pres-
sure, EF, BNP, heart rate, ECG parameters (atrial fibrillation, left bundle
branch block, ventricular tachycardia))corresponding to 100 (training
set) and 36 (testing set) patients, respectively. The distribution of patients
to the three severity classes is 35 mild, 31 moderate and 34 severe in the
training phase and 15mild, 8moderate and 13 severe in the test phase. A
10-fold cross-validation procedurewas applied. According to the present-
ed results NN can classify patients with 86.1% accuracy.

Two years later, the same research team [32] enhanced the “pool” of
classifiers that were evaluated, with classification and regression tree
(CART) and Random Forests. Data from 136 patients, treated by the
Cardiology Department of the St. Maria Nuova Hospital (Florence,
Italy) were distributed to the three prediction types as follow, 51 mild,
37 moderate and 48 severe. For the evaluation of the classifiers the
authors followed a subject based cross validation approach to address
the fact that the dataset included cluster-correlated data (baseline and
follow-up data of the same patient). More specifically, follow-up data
of the same patient were grouped within the same fold. In this way,
their assumption that follow-up data spread in a large time period can
be considered as separate instances of the dataset, does not affect the
independence of the folds. Random Forests outperformed the other
methods for the automatic severity assessment. However, the standard
deviation was very high. This is due to the fact that in some folds the
accuracy was N90%, while in some others the accuracy was lower than
50%. These folds probably include patients with moderate HF, revealing
thus the difficulty of the proposed system in classifying those patients.
Although the classification results produced by the CART classifier is
1% lower than those produced by Random Forests, CART algorithm
gains the preference of researchers since it can be easily transformed
to a set of rules that can be analyzed by medical experts.

Recently the authors of [33] proposed a multi-layer monitoring
system for clinical management of CHF. The three layers include the
following monitor activities: a) scheduled visits to a hospital following
up the presence of a HF event, b) home monitoring visits by nurses,
and c) patient's self-monitoring at home through the utilization of
specialized equipment. For the activities of the first two layers, a
decision support systemwas developed providing prediction of decom-
pensations and assessment of the HF severity. Random Forests algo-
rithm was employed based on its performance in the studies reported
previously. It was evaluated in terms of accuracy, sensitivity and
specificity for each class versus all the other classes in a 10-fold cross
validation. The obtained accuracy was 81.3%, while the sensitivity and
specificity were87 and 95%, respectively for class 3 (severe HF vs.
other). Class 1 (mild HF vs. other) was identified with 75% sensitivity
and 84% specificity and class 2 (moderate HF vs. other) was identified
with 67% sensitivity and 80% specificity.

Taking into consideration the fact that ECG provides an objective
evaluation of the severity of HF, researchers studied the relationship of
long and short-term HRV measures with NYHA class [34–38] and their
discrimination power for HF detection [11–12]. Pecchia et al. 2011
[39] presented a remote health monitoring system for HF, which
provides estimation of HF severity through the utilization of a CART
method. HRV measures, extracted from ECG signals, were utilized in
order the subject detected with HF to be classified as mild (NYHA I
or II) or severe (NYHA III). Different trees were trained using different
combinations of the short-term HRV measures. The achieved accuracy,
sensitivity, specificity and precision was79.31, 82.35, 75.00 and
82.35%, respectively. The dataset included 83 subjects, 54 control and
29 patients. The 29 patients were distributed to the two classes as
follow: 12 were mild and 17 severe.

Two years later, Mellilo et al. 2013 [40] based on the long-term HRV
measures and the CART algorithm in order to individuate severity of
HF. The classifier separated low risk patients (NYHA I or II) from high
risk patients (NYHA III or IV). The HRV measures were extracted from
two Holter monitor databases (Congestive Heart Failure RR Interval
Database and BIDMC Congestive Heart Failure Database) [17] and
corresponded to 12 low risk and 34 high risk patients. However, only
11 low risk and 30 high risk patients were enrolled in the study. The
CART algorithmwasmodified in order to incorporate a feature selection
algorithm addressing the issues of small and unbalanced dataset. The
results of their method were compared with the results of other classi-
fiers, such as simple CART, C4.5, and Random Forests. All the algorithms
were evaluated with and without the application of SMOTE algorithm.
The accuracy, precision, sensitivity and specificity of the proposed
CART algorithm was 85.40, 87.50, 93.30 and 63.60%, respectively. As
mentioned previously, the tree that is created by the CART algorithm
can be easily transformed to rules, in the specific case rules for severity
estimation. According to the authors the extracted ruleswere consistent
with previous findings. Shahbazi et al. 2015 [41] exploited long- erm
HRV measures to estimate the severity of HF and more specifically to
classify patients to low risk and high risk. Generalized Discriminant
Analysis was applied for reducing the number of features, as well as to
overcome overlapping of the samples of two classes in the feature
space. The selected features were given as input to a k-NN classifier
providing classification accuracy 97.43% in the case when both linear
and nonlinear features were utilized and 100% accuracy in the case
when only nonlinear features were utilized.

Yang et al. 2010 [19] proposed a scoringmodel allowing classification
of a subject to three groups; health group (without cardiac dysfunction),
HF-prone group (asymptomatic stages of cardiac dysfunction) and HF
group (symptomatic stages of cardiac dysfunction). SVM was employed
and the total accuracywas 74.40%. The accuracy for each one of the three
groups was 78.79% for healthy group, 87.50% for HF-prone group and
65.85% for the HF group. In total, 289 subjects participated in the study
among which 70 were healthy, 59 belonged to HF-prone group (NYHA
I, ACC/AHA B-C) and 160 belonged to HF group (NYHA II-III, ACC/AHA
C-D). In order imputation of missing values to be achieved, the Bayesian
principal components analysis was employed [42]. The decision value of
SVM (v) [43] is mapped to a specific range in order a definite score to be
produced. For this purpose a tan-sigmoid function is applied given by:

y ¼ 4= 1þ exp −4 � vð Þ−2ð Þ; ð1Þ

where y is the mapped value. The determination of the cutoff points is
achieved using Youden's index [44].

Sideris et al. 2015 [45] proposed a data driven methodology for the
estimation of the severity of HF that relies on a clustering-based, feature
extraction approach. The authors exploited disease diagnostic informa-
tion and extracted features. In order to reduce the dimensions of diag-
nostic codes they identified the disease groups with high frequency of
co-occurrence. The extracted clusters were utilized as features for the
estimation of severity of the condition of HF patients by employing an
SVM classifier. The results were compared with those produced giving
as input to the SVM classifier the cluster-based feature set enhanced
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with the Charlson comorbidity score and an accuracy improvement of
up to 14% in the predictability of the severity of conditionwas achieved.
The procedure was applied for each one of the extracted six daily
threshold-based outcome variables (I1–I6) labeling the severity of the
condition, especially in the context of remote health monitoring.

A short review of themethods addressingHF severity estimation are
presented in Table 4.

It must be mentioned that according to the authors knowledge, the
HF severity estimation has not been addressed in the past as a four
class classification problem (NYHA I, NYHA II, NYHA III, NYHA IV).

5. Prediction of Adverse Events

As already mentioned in the Introduction section, HF is a major
health problem associated with the presence of serious adverse events,
such as mortality, morbidity, destabilizations, re-hospitalizations,
affecting both the individuals (e.g. reduced quality of life) and the
society (e.g. increased healthcare costs). The early prediction of those
events will allow experts to achieve effective risk stratification of
patients and to assist in clinical decisionmaking. Prognostic information
could guide the appropriate application of monitoring and treatment,
resulting in improvements in the quality of care that is provided, as
well as in the outcome of patients hospitalized with HF.

Toward this direction the prediction ability of different factors relat-
ed to HF morbidity, mortality, destabilizations and re-hospitalizations
had been studied. Furthermore, models taking into account simulta-
neously multiple factors have been reported in the literature using
statistical methods (e.g. multi-variable Cox regression models). This
multi-variable statistical analysis lead to the formation of scores
used in clinical practice, providing estimation of risk for mortality
(e.g. Heart Failure Survival Score [46], Get With the guidelines score
[47], Seattle Heart Failure Model [48], EFFECT [49]), re-hospitalizations
[50] and morbidity [51].

5.1. Destabilizations

Although HF is a chronic syndrome, its evolution does not happen
gradually. Alternating periods of relative stability and acute destabiliza-
tions exist. The goal of the experts is to predict and prevent destabiliza-
tions and death of the HF patient during a stable phase.

Candelieri et al. 2008 [52] adopted Knowledge Discovery (KD)
approaches to predict if a patient with CHF in stable phase will further
decompensate. A group of 49 CHF patients recurrently visited by
cardiologists, every two weeks, was used for the evaluation of the
KD approaches. A set of different clinical parameters, selected from
guidelines and clinical evidence-based knowledge were evaluated by
the cardiologist during the visit, general information and monitored
parameters were measured for each patient. Decision trees, Decision
Lists, SVM and Radial Basis Function Networks were employed and
the leave-patient-out approach was followed to evaluate the perfor-
mance of the generated models. Decision trees outperformed the
other approaches. It provided prediction accuracy 92.03%, sensitivity
63.64%, and False Positive Rate 6.90%. In 2009 Candelieri et al. [53]
examined how decision trees and SVM, developed in their previous
work, perform on an independent testing set. The results indicated
that SVM are more reliable in predicting new decompensation events.
The value of evaluation measures is 97.37% accuracy, 100.00% sensi-
tivity, and 2.78% False Positive Rate. Based on this observation they
further extended their research activity, by proposing the SVM hyper-
solution framework [54]. The term “hyper-solution” is used to describe
SVM based on meta-heuristics (Tabu-Search and Genetic Algorithm)
searching for the most reliable hyper-classifier (SVM with a basic ker-
nel, SVM with a combination of kernel, and ensemble of SVMs), and
for its optimal configuration. The Genetic Algorithm-based framework
has been provenmore accurate onminority class than the Tabu-Search.
The prediction of the destabilization of HF patients was also
addressed by Guidi et al. 2014 [32] and Guidi et al. 2015 [33]. They
made a prediction of the frequency (none, rare or frequent) of CHF
decompensation during the year after the first visit using five machine
learning techniques (NN, SVM, Fuzzy -Genetic Expert System, Random
Forests and CART). In Guidi et al. 2014 [32], CART algorithm produced
the best classification results (87.6% accuracy). However, in terms of
critical error the best results were produced by the Random Forest algo-
rithm. In Guidi et al. 2015 [33], the prediction was addressed as three
different classification problems, none vs. all, rare vs. all and frequent
vs. all, employing the Random Forests algorithm. The overall accuracy
produced by the 10-fold cross-validation procedure is 71.90%, while
the sensitivity and specificity for each case that was studied is 57% and
79% for the first case, 65% and 60% for the second case and 59% and
96% for the third case.

A short review of the methods addressing prediction of destabiliza-
tions are provided in Table 5.

5.2. Re-Hospitalizations

Re-hospitalizations gain the interest of researchers due to their neg-
ative impacts on healthcare systems' budgets and patient loads. Thus,
the development of predictive modeling solutions for risk prediction is
extremely challenging. Prediction of re-hospitalizations was addressed
by Zolfaghar et al. 2013 [55], Vedomske et al. 2013 [56], Shah et al.
2015 [28], Roy et al. 2015 [57], Koulaouzidis et al. 2016 [58], Tugerman
et al. 2016 [59], and Kang et al. 2016 [60].

Zolfaghar et al. 2013 [55] studied big data driven solutions to predict
risk of readmission for CHFwithin a period of 30-days. Predictive factors
were first extracted from the National Inpatient Dataset (NIS) and aug-
mented with the Multicare Health System (MHS) patient dataset. Data
mining models, such as logistic regression and Random Forests, were
then applied. The best prediction accuracy is 78.00%. The dataset
where the prediction models were evaluated contained 15,696 records.
In order the authors to examine how the application of big data frame-
work outperforms the traditional systems, when the size of the training
set increases, they scaled up the original data linearly several times. Five
scenarios of data size were created and the Random Forests algorithm
was employed. Among the scenarios, the best prediction accuracy was
87.12%.

Vedomske et al. 2013 [56] applied Random Forests to administrative
claims data in order to predict readmissions for CHF patients within
30 day. The data were retrieved from the University of Virginia Clinical
Database Repository (CDR) maintained by the Department of Public
Health Sciences Clinical Informatics Division. Different variations of
the Random Forests classifier were developed depending on the input.
More specifically, datasets including procedure data, diagnosis data, a
combination of both, and basic demographic data were extracted. The
procedure was applied two times; one without prior weighting on the
response variable and then with prior weighting aiming to address the
issue of imbalanced classes. The discriminative power of the models
was measured with the AUC after randomly splitting the datasets into
2/3 training set and 1/3 testing set.

Shah et al. 2015 [28], as previously described (Section 3), detected
three HFpEF pheno-groups. Furthermore they studied the association
of those groups with adverse outcomes (HF hospitalization, cardiovas-
cular hospitalization, death and combined outcome of cardiovascular
hospitalization or death). The results indicated that the created
pheno-groups with differential risk profiles provided better discrimina-
tion compared to clinical parameters (e.g., the MAGGIC risk score) and
B-type Natriuretic Peptide. Additionally, they utilized SVM to predict
clinical outcome. Each outcomewas coded as binary and 46 phenotypic
predictors were included. Radial and sigmoid basis functions were eval-
uated. The tuning of the values of the gamma and cost parameters was
achieved using a derivation cohort of 420 patients, and the evaluation of
the performancewas performed using a validation cohort including 107



Table 4
Short presentation of the studies reported in the literature addressing HF severity estimation.

Authors Method Data Features Evaluation measures

Akinyokun
et al.
2009
[30]

Neuro-fuzzy expert system No. of data
30 subjects

Predictor features
Signs and symptoms of heart
failure: chest pain, dyspnea
(shortness of breath),
orthopnea, palpitation, cough,
fatigue, tachycardia, cyanosis,
edema, nocturia, high blood
pressure, low blood pressure,
heart rate, rales, (crackles in
lungs), elevated neck veins,
hepamegaly, wheeze, heart
sound, alteration in thought
process, changes in level of
consciousness, absence of
emotion, heart murmur,
pleural effusion, pulmonary
edema, cardio thoracic ratio,
upper zone flow distribution
and echocardiogram.

Training set
Mean Square Error: 0.021,
High Standard Deviation: 0.036,
Average minimum normalized mean Square Error: 0.026,
Correlation coefficient: 0.988
Overall percentage error: 1.24%,
Akaiike Information Criteria (AIC): 171.288
Minimum Description Length: 129.107.

Source of data
Data collected at three
hospital of Nigeria

Response feature
Mild HF
Moderate HF
Severe HF

Validation
70% of the datasets were used for training,
20% were employed as testing datasets
10% were used as cross validation datasets.

Guidi et al.
2012
[31]

Computer aided telecare system
NN/SVM/Fuzzy-Genetic/Decision Tree

No. of data
136 subjects
51 mild, 37 moderate, 48
severe

Predictor features
Anamnestic data (age, gender,
NYHA class)
Instrumental data (weight,
systolic blood pressure,
diastolic blood pressure, EF,
BNP, heart rate, ECG
parameters (atrial fibrillation,
left bundle branch block,
ventricular tachycardia))

Accuracy
NN 86.10%
SVM 69.40%
FG 72.20%
DT 77.80%

Source of data
Data collected at the
Cardiology Department of
the St. Maria Nuova
Hospital (Florence, Italy)

Response feature
Mild HF
Moderate HF
Severe HF

Validation
100 subjects for training
36 subjects for testing

Guidi et
al.2014
[32]

NN/SVM/Fuzzy-Genetic/CART/Random
Forests

No. of data
136 subjects
51 mild, 37 moderate, 48
severe

Predictor features
Anamnestic data (age, gender,
NYHA class)
Instrumental data (weight,
systolic blood pressure,
diastolic blood pressure,
Ejection Fraction (EF), BNP,
heart rate, ECG parameters
(atrial fibrillation, left bundle
branch block, ventricular
tachycardia))

Accuracy Std Critical errors
NN 77.80% 7.4 0
SVM 80.30% 9.4 3
FG 69.90% 9.9 1
CART 81.80% 8.9 2
RF 83.30% 7.5 1

Source of data
Data collected at the
Cardiology Department of
the St. Maria Nuova
Hospital (Florence, Italy)

Response feature
Mild HF
Moderate HF
Severe HF

Validation
A person independent ten-fold cross validation

Guidi et al.
2015
[33]

Multi-layer monitoring system for
clinical management of CHF
Random Forests

No. of data
250 patients
93 mild, 92 moderate,
65severe

Predictor features
Height and weight (Body Mass
Index)
Systolic and diastolic blood
pressure
Heart rate
Oxygen saturation
Ejection fraction (EF)
BNP or NT-proBNP
Bioelectrical impedance vector
(BIVA) parameters
NYHA class
12-lead EKG report (e.g.,
presence of bundle branch
block, tachycardia, atrial
fibrillation, etc.)
Etiology
Comorbidity
Current therapy,
pharmaceutical and surgical
(pacemaker or ICD ICD/CRT)

Accuracy: 81.30%
“Mild” vs. all
Sensitivity: 75.00% Specificity: 84.00%
“Moderate” vs. all
Sens: 67.00% Spec: 80.00%
“Severe” vs. all
Sensitivity: 87.00% Specificity: 95.00%
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Source of data
Clinical study data
collected through home
visits and follow up

Response feature
Mild HF
Moderate HF
Severe HF

Validation
10-fold cross-validation

Pecchia et
al. 2011
[39]

Remote health monitoring system for
HF
CART
Mild, Severe

No. of data
54 controls
29 patients
12 mild, 17 severe

Predictor features
HRV measures

Accuracy: 79.31%
Sensitivity: 82.35%
Specificity: 75.00%
Precision: 82.35%

Source of data
Normal subjects was
retrieved from the Normal
Sinus Rhythm RR Interval
Database
CHF group was retrieved
from the Congestive Heart
Failure RR Interval
Database

Response feature
Mild (NYHA class I or II)
Severe (NYHA class III)

Validation
Cross-validation

Mellilo et
al. 2013
[40]

1. Proposed CART/ 2. CART/ 3. CART
with SMOTE/ 4. C4.5/5. C4.5 with
SMOTE/6. RF/7. RF with SMOTE
Low risk (NYHA I or II), High risk
(NYHA III or IV)

No. of data
11 low risk
30 high risk

Predictor features
Long-term HRV measures

Accuracy Sens Spec Precision
1 85.40% 93.30% 63.60% 87.50%
2 73.20% 100.00% 0.0% 73.20%
3 75.00% 73.30% 77.30% 81.50%
4 65.90% 73.30% 45.50% 78.60%
5 84.60% 93.30% 86.40% 89.30%
6 73.20% 86.70% 36.40% 78.80%
7 82.70% 83.30% 81.80% 86.20%

Source of data
Congestive Heart Failure
RR Interval Database
BIDMC Congestive
Heart Failure Database

Response feature
Low risk (NYHA class I and II)
High risk (NYHA class III and
IV)

Validation
10-fold cross-validation

Yang et
al.2010
[19]

Scoring model
SVM
Healthy group, HF-prone group, HF
group

No. of data
153 subjects
65 HF subjects,
30 HF-prone subjects
58 healthy subjects

Predictor features
parameters are selected from
clinical tests, i.e., blood test,
heart rate variability test,
echocardiography test,
electrocardiography test, chest
radiography test, six minutes
walk distance test and physical
test

Total accuracy: 74.40%
Accuracy for the healthy group:78.79%
Accuracy for the HF-prone group: 87.50%
Accuracy for the HF group: 65.85%

Source of data
Data collected at Zhejiang
Hospital

Response feature
Healthy group
HF-prone group
HF group

Validation
90 subjects used as test cases

Shahbazi
et al.
2015
[41]

Feature extraction with Generalized
Discriminant Analysis (GDA)
k-NN

No. of data
12 low risk HF subjects
32 high risk HF subjects

Predictor features
Long-term HRV measures

Linear + nonlinear features + GDA
Accuracy: 97,43%
Precision: 96,66%
Sensitivity: 100%
Specificity: 90%
Nonlinear features + GDA
Accuracy: 100%
Precision: 100%
Sensitivity: 100%
Specificity: 100%

Source of data
Congestive Heart Failure
RR intervals Database
with patients suffering
from CHF (NYHA classes
I–III)
BIDMC Congestive Heart
Failure Database with
patients suffering from
severe CHF (NYHA class III
and IV).

Response feature
Low risk HF
High risk HF

Validation
Leave-one-out cross-validation

Sideris et
al. 2015
[45]

Feature extraction with
Hierarchical clustering
SVM

No. of data
7 million discharge
records
3041 patients

Predictor features
Demographics (gender, age,
race), diagnostic information
encoded in ICD-9-CM and
hospitalization specific
information including blood
test results and discharge
diagnoses coded as ICD-9-CM
codes.

Alert Accuracy (%) TPR (%) TNR (%)
I1 70.72 66.18 64.21 59.74 77.24 72.63
I2 58.57 51.63 52.65 53.06 64.49 50.20
I3 73.15 70.73 67.31 64.31 79.00 77.15
I4 65.48 63.97 71.78 72.74 59.18 55.21
I5 69.39 69.15 63.66 61.10 75.12 77.20
I6 67.87 63.16 54.71 52.94 81.03 73.38

Source of data
Training

Response feature
Low risk

Validation
10-fold cross-validation

(continued on next page)
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2012 National Inpatient
Sample (NIS), Healthcare
Cost and Utilization
Project (HCUP) which
contains 7 million
discharge records and
ICD-9-CM codes
Testing
Ronald Reagan UCLA
Medical Center Electronic
Health Records (EHR)
from 3041 patients

High risk

NN:Neural Networks, SVM: Support VectorMachines, FG: Fuzzy-Genetic, DT: Decision Tree, RF: RandomForests, Std: Standard deviation, TPR: True Positive Rate, TNR: TrueNegative Rate,
Sens: Sensitivity, Spec: Specificity, HF: Heart Failure, NYHA:NewYorkHeart Association, CART: Classification and regression tree, GDA:GeneralizedDiscriminant Analysis, k-NN: kNearest
Neighbors, SMOTE: Synthetic Minority Over-sampling Technique
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patients. Area under the receiver operating characteristic curve
(AUROC), sensitivity, mean specificity, and mean precision were the
evaluation measures employed.

Roy et al. 2015 [57] addressed the problem of estimation of
readmission risk as a binary classification task. The objective was to
identify patients with CHF who are likely to be readmitted within
30 days of discharge (30 days = 1 patient will be readmitted,
30 days = 0 patient will not be readmitted). A dynamic hierarchical
classification was followed. The prediction problemwas divided in sev-
eral stages or layers, creating thus a hierarchy of classification models.
At each stage-layer the risk of readmissionwas predictedwithin certain
days (cutoffs). Thus at each stage-layer a binary classification problem
was addressed. The output from each layer was combined in order the
overall 30-day risk of readmission to be predicted. The method was
evaluated on the Washington State Inpatient Dataset3 and the Heart
Failure cohort data fromMulti Care Health Systems (MHS).4Logistic re-
gression, Random Forests, Adaboost, Naïve Bayes and SVM classifiers
were tested at each layer of dynamic hierarchical classification frame-
work. The best classifier at each stage was determined through a 10-
fold cross-validation procedure on training set.

Koulaouzidis et al. 2016 [58] used daily collected physiological data
such as blood pressure, heart rate, weight, while the patients were
at their home and predicted HF patients' re-hospitalization through
a Naive Bayes classifier. They assessed, by employing an analysis of
vectors, the predictive value of each of the monitored signals and their
combinations. They observed that the best predictive results were
obtained with the combined use of weight and diastolic blood pressure
received during a time period of 8 days (8-day telemonitoring data).
The achieved AUROCwas 0.82±0.02) allowing the authors to conclude
that the telemonitoring has high potential in the detection of HF decom-
pensation, however, the validity of the proposed approach in the clinical
management of patients should be examined through a large-scale
prospective study.

Kang et al. 2016 [60] like Koulaouzidis et al. 2016 [58] worked with
data from telemonitored patients aiming to predict first re-
hospitalization during the 60-day home healthcare episode. They uti-
lized the OASIS-C dataset and they employed bivariate analysis for
selecting the variables that can act as predictors and lead to thedevelop-
ment of the best decision tree model. The J48, using 10-fold cross-
validation procedure, was used to create the decision tree. 67% of the
dataset was used for the construction of the tree, while 33% was used
for its validation. True Positive Rate, the False Positive Rate and the
AUROC are employed as evaluation measures.

Tugerman et al. 2016 [59], in order to predict hospital readmissions
within 30 days following discharge, combined the C5.0 and SVM
3 http://www.hcup-us.ahrq.gov/sidoverview.jsp.
4 https://www.multicare.org/.
classifiers controlling thus the trade-off between reasoning transparen-
cy and predictive accuracy. Once they optimized the two classifiers, the
optimization of themixedmodel was followed. In order the twomodels
(C5.0 and SVM) to be combined a tree confidence threshold was
predefined. Records that are predicted with tree confidence below the
predefined one are further classified by SVM. The performance of the
mixed model was measured in terms of sensitivity, specificity, F1
score, positive predictive values (PPV), negative predictive values
(NPV). Different threshold values were employed for the testing and
training set.

Table 6 presents a short review of the literature regarding prediction
of re-hospitalizations.
5.3. Mortality

HF is one of the leading causes of death worldwide. Accurate HF sur-
vival predictionmodels can provide benefits both to patients and physi-
cians, with the most important being the prevention of such an adverse
event.

Besides Shah et al. 2015 [28], Fonarrow et al. 2005 [61] estimated
mortality risk in patients hospitalized with acute decompensated
heart failure (ADHF), Bohacik et al. 2013 [62] applied an alternating
decision tree to predict risk of mortality within six months for heart
failure patients and two years later [63] they present a model based
on fuzzy logic, Panahiazar et al. 2015 [64] exploited data from electronic
health records of the Mayo Clinic and they performed HF survival anal-
ysis using machine learning techniques. One year later, the same
research team [65] applied Contrast Pattern Aided Logistic Regression
(CPXR(Log)) with the probabilistic loss function to the same dataset,
developing and validating prognostic risk models to predict 1, 2, and
5 year survival in HF. Austin et al. 2012 [66] and Subramanian et al.
2011 [67] predicted 30 day and 1 year mortality, respectively by
employing ensemble classifiers. Finally, Ramirez et al. 2015 [68]
addressed the problem of mortality prediction as a classification prob-
lem where the classes are Sudden cardiac death (SCD), Pump failure
Death (PFD) and Non cardiac death, survivors. The following classifica-
tion problems were studied: i) SCD vs. the rest, ii) PFD vs. the rest and
iii) SCD victims, PFD victims and others (non-CD and survivors).

Fonarrow et al. 2005 [61] developed a risk stratification model for
predicting in-hospital mortality exploiting the Acute Decompensate
Heart Failure National Registry (ADHERE) of patients hospitalized
with a primary diagnosis of ADHF in 263 hospitals in the United States
[69] and utilizing the CART classification algorithm. The data included
in the ADHERE registry were divided in two cohorts. More specifically,
the first 33,046 hospitalizations (derivation cohort) were analyzed to
develop themodel, while data from 32,229 subsequent hospitalizations
(validation cohort) were employed in order the validity of themodel to
be tested. From 39 variables, selected out of 80 included in the ADHERE

http://www.hcup-us.ahrq.gov/sidoverview.jsp
https://www.multicare.org/


Table 5
Prediction of destabilizations - short review of the literature.

Authors Method Data Features Evaluation measures

Candelieri et al.
2008 [52]

Decision trees No. of data
49 patient with CHF

Predictor features
Systolic Blood Pressure (SBP),
Heart Rate (HR),
Respiratory Rate (RR),
Body Weight (weight),
Body Temperature (BT)
Total Body Water (TBW).
Patient condition evaluated by the cardiologist during
the visit, Gender, Age, NYHA class, Alcohol use Smoking

Accuracy: 92.03%
Sensitivity: 63.64%
False Positive Rate: 6.90%

Source of data
Data collected at the Cardiovascular
Diseases Division, Department of
Experimental and Clinical Medicine,
Faculty of Medicine, University
“Magna Graecia” of Catanzaro, Italy.

Response feature
No risk
Risk
For destabilizations within 2 week

Validation
Leave-patient-out
validation

Candelieri et al.
2009 [53]

SVM No. of data
49 patient with CHF

Predictor features
Systolic Blood Pressure (SBP),
Heart Rate (HR),
Respiratory Rate (RR),
Body Weight (weight),
Body Temperature (BT)
Total Body Water (TBW).
Patient condition evaluated by the cardiologist during
the visit, Gender, Age, NYHA class, Alcohol use Smoking

Leave-patient-out
Accuracy: 82.06%
Sensitivity: 63.64%
False Positive Rate: 16.90%

Testing set
Accuracy: 97.37%
Sensitivity: 100.00%
False Positive Rate: 2.78%

Source of data
Data collected at the Cardiovascular
Diseases Division, Department of
Experimental and Clinical Medicine,
Faculty of Medicine, University
“Magna Graecia” of Catanzaro, Italy.

Response feature
No risk
Risk
For destabilizations within 2 week

Validation
Leave-patient-out
validation

Testing set

Candelieri et al.
2010 [54]

SVM hyper solution
framework
(Genetic Algorithm)

No. of data
301 instances

Predictor features
Systolic Blood Pressure, Heart Rate, Respiratory Rate,
Body Weight, Body Temperature, Total Body Water),
Patient health conditions, with respect to stable or
decompensated status

Accuracy: 87.35%
Sensitivity: 90.91%
False Positive Rate: 16.21%

Source of data
Clinical study data collected through
frequent follow ups

Response feature
No risk
Risk
For destabilizations within 2 week

Validation
Stratified 10-fold
cross-validation

Guidi et al.
2014 [32]

CART
Random Forests

No. of data
136 subjects
110 stable
14 rare
12 frequent

Predictor features
Anamnestic data (age, gender, NYHA class)

Instrumental data (weight, systolic blood pressure, diastolic
blood pressure, EF, BNP, heart rate, ECG parameters (atrial
fibrillation, left bundle branch block, ventricular tachycardia))

CART
Accuracy: 87.60%
Critical errors: 9
Random Forests
Accuracy: 85.60%
Critical errors: 5

Source of data
Data collected from the Cardiology
Department of the St. Maria Nuova
Hospital (Florence, Italy)

Response feature
Stable
Rare
Frequent within one year after the first visit

Validation
A person independent
ten-fold cross validation

Guidi et al.
2015 [33]

Random Forests No. of data
250 subjects
160 none
55 rare
64 frequent

Predictor features
Height and weight (Body Mass Index)
Systolic and diastolic blood pressure
Heart rate
Oxygen saturation
Ejection fraction (EF)
BNP or NT-proBNP
Bioelectrical impedance vector (BIVA) parameters
NYHA class
12-lead EKG report (e.g., presence of bundle branch block,
tachycardia, atrial fibrillation, etc.)
Etiology
Comorbidity
Current therapy, pharmaceutical and surgical
(pacemaker or ICD ICD/CRT)

Overall accuracy: 71.90%

None vs. all
Sensitivity: 57.00%
Specificity: 79.00%

Rare vs. all
Sensitivity: 65.00%
Specificity: 60.00%

Frequent vs. all
Sensitivity: 59.00%
Specificity: 96.00%

Source of data
Clinical study data collected through
home visits and follow up

Response features
Stable
Rare
Frequent
within one year after the first visit

Validation
10-fold cross-validation

SVM: Support Vector Machines, CHF: Congestive Heart Failure, CART: Classification and regression tree.
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registry, blood urea nitrogen, systolic blood pressure, levels of serumare
identified as predictors for in hospital mortality. The CART tree was able
to stratify patients into high, intermediate and low risk.
Bohacik et al. 2013 [62] classified 2023 patients diagnosed with HF
into two possible predictions, alive or dead. Nine features describe the
instance of patients expressing information regarding pulse rate, NT-



Table 6
Prediction of re-hospitalizations - review of the literature.

Authors Method Data Features Evaluation measures

Zolfaghar
et al. 2013
[55]

Logistic
regression
Random
Forests

No. of data
A: 15,696 records

B: 1.665.866 records (linear scale up)

Predictor features
Socio demographic, vital signs, laboratory tests,
discharge disposition, medical comorbidity and
other cost related factors, like length of stay

Logistic regression + A
Accuracy: 78.03%
Precision: 33.00%
Recall: 0.08%
F-measure: 0.17%
AUC: 59.72%
Random Forests + B
Accuracy: 87.12%
Precision: 99.88%
Recall: 40.60%
F-measure: 57.37%

Source of data
National Inpatient Dataset (NIS) augment it
with our patient dataset from Multicare Health
System (MHS)

Response feature
30-day risk of re-admission
Readmission = yes (class 1)
(hospitalization within 30 days of discharge or of
an earlier index of hospitalization due to CHF)
Readmission = no (class 0)

Validation
70% of the dataset train
30% of the dataset test

Vedomske
et al. 2013
[56]

Random
Forests

No. of data
1.000.000 patients
Virginia Clinical Database Repository (CDR)
Study cohort with 19.189 inpatient visits
2.749 HF diagnoses
1814 procedures

Predictor features
Procedure data, diagnosis data, demographic data

With prior weighting
AUC: 80%

Without prior weighting
AUC: 84%

Source of data
University of Virginia Clinical Database
Repository (CDR) maintained by the
Department of Public Health Sciences Clinical
Informatics Division

Response feature
Readmission within 30 days

Validation
2/3 of the dataset used for training
1/3 of the dataset used for testing

Shah et al.
2015 [28]

SVM No. of data
527 patients

Predictors features
Phenotypic data

Area under the receiver operating
characteristic curve (AUROC): 70.40%
Sensitivity: 63.10%
mean Specificity: 57.20%
mean Precision: 63.60%

Source of data
Data collected at the outpatient clinic of the
Northwestern University HFpEF Program as part
of a systematic observational study of HFpEF
(ClinicalTrials.gov identifier #NCT01030991)

Response feature
HF hospitalization yes
HF hospitalization no

Validation
Validation set of 107 patents

Roy et al.
2015 [57]

Dynamic
Hierarchical
Classification

No. of data
Washington State Inpatient Dataset and the
Heart Failure cohort data from Multi Care Health
Systems (MHS)

Predictors features
Clinical. Data
Socio-demographic
Important data pertinent to CHF (ejection fraction,
blood pressure, primary and secondary diagnosis
indicating comorbidities, and APR-DRG codes for
severity of illness and risk of mortality), Information
about Discharges (discharge status, discharge
destination, length of stay and follow-up plans)
Cardiovascular and comorbidity attributes.

Accuracy: 69.20%
Precision: 24.80%
Recall:53.60%
AUC:69.60%

Source of data
Washington State Inpatient Dataset and the
Heart Failure cohort data from Multi Care Health
Systems (MHS)

Response feature
Readmission b 30 days
Readmission N 30 days

Validation
At each stage the best classifier was
determined using a
10-fold-cross-validation procedure
on training set

Koulaouzidis
et al. 2016
[58]

Naïve Bayes
classifier

No. of data
n/a

Predictors features
Blood pressure, heart rate, weight

AUC: 82%

Source of data
Kingston-upon-Hull, home telemonitoring for
patients with chronic HF

Response feature
High risk of HF hospitalization
Low risk of HF hospitalization

Validation
10-fold cross-validation

Kang et al.
2016 [60]

Feature
selection with
Bivariate
analysis

J48 Decision
tree

No. of data
552 telemonitored HF patients

Predictors features
Patient Overall status
Patient living situation
Severe pain experiences
Frequency of activity-limiting pain
Presence of skin issues
Ability to dress lower body
Therapy needed

AUC (c-statistic): 59%
True positive rate: 65%
False positive rate: 49%

Source of data
OASIS-C dataset

Response feature
Likely to be hospitalized
Not likely to be hospitalized

Validation
10-fold cross-validation

Tugerman
et al. 2016
[59]

Ensemble
model with
Boosted C5.0
tree and SVM

No. of data
20.231 inpatient admissions
4.840 CHF patients

Predictors features
Comorbidities, lab values, vitals, demographics and
historical

Sensitivity: 0.258
Specificity: 0.912
PPV: 0.260
NPV: 0.911
Accuracy: 0.842
F1 score: 0.259

Source of data Response feature Validation
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Veterans Health Administration (VHA) Pittsburg
Hospitals

Readmission within30 days following discharge
No readmission within30 days following discharge

The data set was separated into a
training set of 15,481 admissions
(75%), and test (holdout/validation)
set of 4840 admissions (25%).

SVM: Support Vector Machines, Sens: Sensitivity, Spec: Specificity, AUC: Area Under Curve.
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proBNP level, blood sodium level, blood uric acid level, blood creatinine
level, weight, height, gender and age. In order classification to be
achieved an alternating decision tree, which maps each HF patient to a
real valuedprediction,was utilized. The prediction is the sumof the pre-
dictions of the base rules in its set, while the classification is the sign of
the prediction. The achieved sensitivity is 37.31%, specificity is 91.53%,
positive predictive value is 60.25%, negative predictive value is 80.94%
and accuracy is 77.66%.

Two years later, Bochacik et al. 2015 [63] presented a model for the
estimation of risk mortality within 6 months employing ambiguity and
notions of fuzzy logic. The model stores knowledge for the patients in
the form of fuzzy rules and classifies a patient to dead or alive using
those rules. The authors compared the results of the proposed classifier
with those produced by the application of a Bayesian network classifier,
a nearest neighbor classifier, multilayer neural network, 1R classifier, a
decision list, and a logistic regression model. Furthermore, the authors
evaluated the interpretability usingmeasures expressing the complexi-
ty of the fuzzy rules (average rule length, average number of rules, and
average, minimal and maximal number of assignments in the condi-
tions of rules).

Panahiazar et al. 2015 [64] applied decision trees, Random Forests,
Adaboost, SVMand logistic regression to a dataset produced by the elec-
tronic health records of the Mayo Clinic. The dataset initially included
119,749 patients admitted to the Mayo Clinic from 1993 to 2013. 842
patient records were excluded due to incomplete and missing data
and some others because they did not met the criteria defined by the
experts. Thus, a final cohort with 5044 HF patients was used. For each
patient 43 predictor variables, expressing demographic data, vital
measurements, lab results, medication and co-morbidities, were
recorded. The class variable corresponded to mortality status, conse-
quently three versions of the dataset were created, each one corre-
sponding to survival period (1-year, 2-year, 5-year). 1560 instances
out of 5044 were used for training and the rest 3484 instances for
testing. The predictor variables were divided into two sets, one includ-
ing the same variables with those used in Seattle Heart Failure Model
(baseline set) and one including the predictors of the first set plus race,
ethnicity, body mass index, calcium channel blocker and 26 different co-
morbidities (extended set). The abovementioned classifierswere applied
to baseline and extended the set for 1-year, 2-years and 5-years predic-
tion models. The authors observed that logistic regression and Random
Forests were more accurate models compared to others, as well as that
the incorporation of the 26 co-morbidities improves the results.

Taslimitehrani et al. 2016 [65] employed the CPXR(Log) classifi-
cation algorithm with the probabilistic loss function to the cohort
of 5044 patients described previously. The authors compared the re-
sults of CPXR(Log) classification algorithmwith the results produced
by decision trees, Random Forests, Adaboost, SVM and logistic re-
gression. The CPXR(Log) classification algorithm outperformed the
other classifiers and the prediction accuracy was 93.70% for 1 year
mortality, 83.00% for the 2 years mortality and 78.60% for the
5 years mortality. The CPXR algorithm uses a pattern as logical character-
ization of a subgroup of data, and a local regression model characterizing
the relationship between predictor and response for data of that
subgroup. In case the patient's data match to one of the patterns, then
the local model was built for the specific group of patients instead of the
baselinemodel that was built for thewhole population is used. According
to the authors, the analysis of those patterns revealed the heterogeneity of
HF between the patients. In order this heterogeneity to be taken into con-
sideration for the survival prediction, the utilizations of the local models
and different patterns is recommended.

Subramanian et al. 2011 [67] focused on predicting the mortality
within 1 year by building logistic regression models and ensemble
models that incorporate time-series measurements of biomarkers
such as cytokine. More specifically, three logistic regression models
were built to predict survival beyond 52 weeks after entry into the
trial. Themodels are differentiated depending on the input they receive.
The first model uses standard baseline measurements, allowing the
experts to compare their results with those reported in the literature,
the second model incorporates baseline measurements and baseline
cytokine evaluating thus the contribution of cytokines to the prediction
of survival and the third model includes cytokine measurements up to
week 24 to the second set of predictor variables assessing thus the util-
ity of serial follow-up measurement to predict survival. The ensemble
model was built by combining the three models previously described.
The final classification of the subjects as a survivor or non-survivor is
determined through a majority voting procedure.

Austin et al. 2012 [66] reduced the prediction horizon ofmortality to
one month. In order the prediction to be achieved ensemble-based
methods, including bootstrap aggregation (bagging) of regression
trees, random forests, and boosted regression trees were employed.
The method was evaluated in two large cohorts of patients hospitalized
with either acute myocardial infarction (16.230 subjects) or congestive
heart failure (15.848 subjects) and the best results were produced by
logistic regression trees.

Ramirez et al. [68] employed the SVM classifier and holter ECG
recordings for 597 CHF patients with sinus rhythm enrolled in the
MUSIC study to classify them to sudden cardiac death victims, pump
failure death victims and other (the latter including survivors and vic-
tims of non-cardiac causes). According to the specific study, the ECG
risk marker quantifying the slope of the T-peak-to-end/RR regression,
T-wave alternans and heart rate turbulence slope can act as discrimina-
tors of the classes mentioned above.

Table 7 presents a short review of the literature regarding prediction
of mortality.

6. Summary and Outlook

HF is a chronic disease characterized by a variety of unpleasant out-
comes, such as poor QoL, recurrent hospitalization, high mortality and
significant cost burden. A significant deterrent of the above mentioned
serious consequences is early diagnosis of HF (detection of HF, estima-
tion of the etiology and severity of HF), as well as early prediction of ad-
verse events. Toward this direction the application of machine learning
techniques contributed significantly. Researchers applied data mining
techniques in order to address issues concerningmanagement of HF ei-
ther separately or in combination. More specifically, detection of HF is
based mainly on the utilization of HRV measures in combination with
classifiers such as SVM, CART and k-NN. The studies either utilize
short-term HRV measures or long-term HRV measures. None of the
studies has attempted to compare or combine short- and long-term
HRVmeasures. However, there are studies that incorporate, in the clas-
sification process, data expressing the results of clinical examination,



Table 7
Prediction of mortality - review of the literature.

Authors Method Data Features Evaluation measures

Shah et al.
2015 [28]

SVM No. of data
527 patients

Predictor features
Phenotypic data

Area under the receiver operating
characteristic curve (AUROC): 71.80%
Sensitivity: 64.00%
mean Specificity: 57.70%
mean Precision: 60.90%

Source of data
Data collected at the outpatient clinic of the
Northwestern University HFpEF Program as part
of a systematic observational study of HFpEF
(ClinicalTrials.gov identifier #NCT01030991)

Response features
Death yes
Death no

Validation
Validation set of 107 patents

Fonarrow
et al. 2005
[61]

CART No. of datas
33,046 instances (derivation cohort)
32,229 instances (validation cohort)

Predictor features
Demographic information, medical history,
baseline clinical characteristics, initial
evaluation, treatment received, procedures
performed, hospital course, patient disposition

The odds ratio for mortality between
patients identified as high and low
risk was 12.9

Source of data
Acute Decompensated Heart Failure National
Registry (ADHERE) of patients

Response features
Low risk
Intermediate risk 1
Intermediate risk 2
Intermediate risk 3
High risk

Validation
Validation set of 32,229 instances

Bohacik et al.
2013 [62]

Alternating
decision tree

No. of data
2032 patients

Predictor features
Pulse rate, NT-proBNP level, blood sodium level,
blood uric acid level, blood creatinine level,
weight, height, gender, age.

Sensitivity: 37.31%,
Specificity: 91.53%,
PPV: 60.25%,
NPV: 80.94%
Accuracy: 77.66%

Source of data Hull LifeLab - a large,
epidemiologically representative,
information-rich clinical database

Response features
1 year
2 years
5 years survival

Validation
10-fold cross-validation

Panahiazar
et al. 2015
[64]

Logistic
regression
Random Forests

No. of data
5044 HF patients

Predictor features
Demographic variables,
Laboratory results,
Medications,
26 major chronic conditions (ICD-9 code) as
comorbidities as defined by the U.S. Department
of Health and Human Services.

1-year
Logistic Regression
AUC: 68.00% (baseline set)
81.00% (extended set)
Random Forests
AUC: 62.00% (baseline set)
80.00% (extended set)
2-years
Logistic Regression
AUC: 70.00% (baseline set)
74.00% (extended set)
Random Forests
AUC: 65.00% (baseline set)
72.00% (extended set)
5-years
Logistic Regression
AUC: 61.00% (baseline set)
73.00% (extended set)
Random Forests
AUC: 62.00% (baseline set)
72.00% (extended set)

Source of data
Electronic health records of the Mayo Clinic

Response features
1 year
2 years
5 years survival

Validation
Testing set of 3484 patients

Taslimitehrani
et al. 2016
[65]

CPXR(Log) No. of data
5044 patients

Predictor features Demographics,
Vitals,
Lab results,
Medications,
24 major chronic conditions as co-morbidities.

1-year
Precision: 82.00%
Recall: 78.20%
Accuracy: 91.40%
2-years
Precision: 78.00%
Recall: 76.00%
Accuracy: 83.00%
5-years
Precision: 72.10%
Recall: 61.50%
Accuracy: 80.90%

Source of data
Electronic health records of the Mayo Clinic

Response features
1 year
2 years
5 years survival

Validation
Testing set of 3484 patients

Austin et al.
2012 [66]

Logistic
regression model
(cubic smoothing
splines)

No. of data
EFFECT baseline (9945 HF patients) utilized 8240
EFFECT follow up (8339 HF patients) utilized
7608

Predictor features
Demographic characteristics, vital signs, presenting
signs and symptoms, results of laboratory
investigations, and previous medical history

Logistic regression model -Splines
AUC: 79%
R2: 0.203
Brier's score: 0.119
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Table 7 (continued)

Authors Method Data Features Evaluation measures

Boosted
regression trees

Age, systolic blood pressure, respiratory rate,
sodium, urea, history of stroke or transient
ischemic attack, dementia, chronic obstructive
pulmonary disease, cirrhosis of the liver, and
cancer. In the CHF sample

Boosted regression trees
(depth four)
AUC: 78%
R2: 0.18
Brier's score: 0.107

Source of data
Enhanced Feedback for Effective Cardiac
Treatment (EFFECT) Study

Response feature
30-day mortality binary variable denoting
whether the patient died within
30 days of hospital admission

Validation
EFFECT Follow-up sample was used
as the validation.

Bochacik et al.
2015 [63]

Fuzzy model No. of data
n/a

Predictor features
Blood Creatinine Level, Height, Blood Uric Acid
Level, Age, Blood Sodium Level, Sex, Weight,
NT-proBNP
Level, Pulse Rate

Fuzzy model
Sensitivity: 63.27%
Specificity: 65.54%

Source of data
Hull LifeLab
2032 instances (HF patients)

Response feature
Class attribute (patient status) classifies the
patients into alive (patients being alive six and
more months after the data collection) and dead
(patients passing away within six months after
data collection).

Validation
10-fold cross-validation

Ramirez et al.
2015 [68]

Dichotomization
thresholds
Exhaustive
feature selection
C-SVM classifier

No. of data
597 Chronic Heart Failure patients
134 died
(49 SCD victims
62 PFD victims
23 non CD victims)
463 survivors

Predictor features
Δα, an index potentially related to dispersion in
repolarization restitution

IAA, an index reflecting the average TWA activity
during a 24-h period
TS, a parameter measuring the turbulence slope
of HRT

SCD vs. the rest
Sensitivity: 55%
Specificity: 68%
Kappa: 0.10
PFD vs. the rest
Sensitivity: 79%
Specificity: 57%
Kappa: 0.14
Three-class classification
SCD
Sensitivity: 18%
Specificity: 79%
Kappa: 0.11
PFD
Sensitivity: 14%
Specificity: 81%
Kappa: 0.11

Source of data
MUSIC (MUerte Súbita en Insuficiencia Cardiaca)
study

Response feature
Sudden cardiac death (SCD)
Pump failure Death (PFD)
Non cardiac death
Survivors

Validation
5-fold cross-validation

Subramanian
et al. 2011
[67]

Ensemble
Logistic
regression with
boosting

No. of data
963 patients

Predictor features
Standard clinical variables and time-series
of cytokine and cytokine receptor levels

AUC(c-statistic): 84%

Source of data
Vesnarinone Evaluation of Survival Trial (VEST)

Response feature
1 year mortality

Validation
10-fold cross-validation

SVM: Support Vector Machines, AUC: Area Under Curve, HF: Heart Failure, PPV: Positive Predictive Values, NPV: Negative Predictive Value, CART: Classification and regression tree, CHF:
Congestive Heart Failure, SCD: Sudden cardiac death, PFD: Pump failure Death, CD: Cardiac Death, CA: Classification Ambiguity, CIE: Cumulative Information Estimation.
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presenting symptoms, lab tests etc.The utilization of different sources of
data in each one of these studies limits their comparison, unlike the
methods that detect HF, by utilizing HRV measures, that is applied to
publicly available datasets commonly used in all studies. After the
detection of HF, the estimation of the etiology or the characterization
of the type of HF follows. Different classifiers were applied in order to
classify a patient into one of the two major HF subtypes (HFpEF vs.
HFrEF). All the studies addressed the issue as a two class classification
problem and did not take into consideration the patients belonging
to the so called “gray zone” (HFmrEF). Only Betanzos et al. 2015 [19]
included in their study this group of patients. However, they did not
consider patientswithHFmrEF as a separate group (3 class classification
problem) but included them in one of the twomajor HF types by setting
different cutoff points. The next step in themanagement of HF concerns
the estimation of its severity. According to the studies reported in
the literature, the problem of HF severity estimation is transformed
to a two or three class classification problem. The patient's status is
characterized as mild, moderate or severe. The definition of those
characterizations is differentiated between the studies. For exam-
ple, in some studies the characterization “severe” refers to patients
belonging to NYHA class III or IV, while in some other only patients
belonging to NYHA class IV are included. Furthermore, according to
the authors' knowledge, no one have tried to classify the patients
into 4 NYHA classes. Finally, prediction of adverse events has been
attempted by the researchers. Models predicting destabilizations,
re-hospitalizations, and mortality have been presented in the liter-
ature. The time frame of prediction depends on the adverse events.
However, the interest of the researchers has turned to the predic-
tion of HF since the earlier HF is detected, the more likely change
health outcomes for people can be achieved. Wu et al. 2010 [18]
and Aljaaf et al. 2015 [2] presented their work regarding the specif-
ic issue, with the work of Aljaaf et al. 2015 [2] achieving the best
prediction accuracy. Recently a research team from Sutter Health,
a Northern California not-for-profit health system, and the
Georgia Institute of Technology, have proposed a method that ac-
cording to the authors has the potential to reduce HF rates and pos-
sibly save lives since it can predict disease onset nine months
before doctors can now deliver the diagnosis.5 The method employs

http://arxiv.org/abs/1602.03686


Table 8
Advantages and disadvantages of the proposed method.

Authors Advantages Disadvantages

Detection of Heart
Failure

Asyali et al. 2003 [7] Discrimination power of 9 long-term HRV measures were
examined and finally only one feature SDNN is selected for the
detection of HF with higher sensitivity and specificity.
SDNN strong indicator for the presence of HF.

The comparison with short-term measures is limited since
information regarding physical activity and sleep is not
included
High risk of overfitting.
Neither cross-validation approach nor independent test
set is used.

Isler et al. 2007 [8] Standard HRV measures were combined with wavelet entropy
measures leading to higher discrimination power.

k-NN utilized by the authors lacks the property of the
interpretability of induced knowledge.

Thuraisingham 2009 [9] Utilization of the probabilistic loss function in the CPXR(Log)
algorithm.
Handling of the high dimensionality and complexity of EHR data.
Incorporation of information regarding comorbidities.

Information regarding the validation of the method is not
provided.

Elfadil et al. 2011 [10] Unsupervised approach.
No labeling of the dataset is needed.

Data randomly simulated are utilized for testing.

Pecchia et al. 2011 [11] Provides a set of rules fully understandable by cardiologists
expressed as “if … then”.

The performance depends on parameter values.
Methodology addressing the fact of unbalance dataset is
not applied.

Mellilo et al. 2011 [12] Interpretability,
No overfitting.

Dataset is small and unbalanced.
The method is designated to cooperate with a specific
classifier in the feature selection process.

Jovic et al. 2011 [13] HRV statistical, geometric and nonlinear measures are employed Carefully selected collection of periods T is needed.
Yu et al. 2012 [14] Utilization of five category features in combination with the

utilization of UCMIFS algorithm.
The value of parameter β is not determined automatically
and affects the performance of the feature selector.

Yu et al. 2012 [15] Novel features calculated from the bispectrum are utilized. –
Liu et al. 2014 [16] New nonstandard HRV measures are utilized –
Narin et al. 2014 [17] Inclusion of nonlinear HRV measures and wavelet-based

measures.
Unbalance dataset.
Information for comorbid conditions and medication
intake are not employed.

Heinze et al. 2014 [18] Ordinal patterns provide insight into distinctive
RR interval dynamic differences.
Automated relevance determination is applied in order to
identify the deciding RR interval features for the discrimination
between CHF and healthy subjects.

–

Yang et al. 2010 [19] Reliable estimation of missing values. For the evaluation of Bayesian principal component
analysis used for imputation of missing values artificial
missing data are introduced to complete samples.

Gharehchopogh et al.
2011 [20]

– Limited number of features.
Demographics, Blood Pressure and Smoking are utilized.

Son et al. 2012 [4] Takes into account the feature dependencies
and their collective contribution.

No information regarding clinical histories, symptoms, or
electrocardiogram results was exploited.
The number of patients with CHF and with
non-cardiogenic dyspnea was relatively small, a fact that
produced variations when determining the
risk factors and decision rules.

Masetic et al. 2016 [21] Combination of autoregressive Burg method with RF classifier. -
Zheng et al. 2015 [24] The predictor features consist of cardiac reserve indexes and

heart sound characteristics.
The physiological significance corresponding to the
changes of indexes should be explored in depth.

Heart Failure
subtypes
classification

Austin et al. 2013 [26] Boosted trees, bagged trees, and random forests do not offer an
advantage over conventional logistic regression.
Conventional logistic regression should remain a standard tool.

No optimization of the parameters.

Betanzos et al. 2015 [25] Patients belonging to “gray zone” (HFmrEF) are included in the
study.

The cut-off criterion to distinguish HFpEF from HFrEF
should take into consideration other information
(medication, age, gender etc.)

Isler 2016 [27] HR normalization also improves the statistical significances in
time-domain and non-linear HRV measures.

More patient data is needed to enhance the validity of this
study.

Authors Advantages Disadvantages
Severity
estimation of
Heart Failure

Akinyokun et al.
2009 [30]

The emotional and cognitive filters further refine the diagnosis
results by taking care of the contextual elements of medical
diagnosis.

Further information regarding the architecture of the
neural networks are missing.

Guidi et al. 2012 [31] - No justification of the selection of training (100 subjects)
and testing set (36 subjects).

Guidi et al.2014 [32] CART provides a humanly understandable decision-making process. Generalization of the findings is not permitted due to the
small sample size.

Guidi et al. 2015 [33] Proposed a collaborative system for the comprehensive care of
congestive heart failure.

Severity estimation of HF as mild, moderate, severe is not
addressed as a three class classification problems but as a
two class classification problem.

Pecchia et al. 2011 [39] Define mild and severe in terms of NYHA class. No information regarding the cross-validation approach
(leave-one-out, k-fold) is provided.

Mellilo et al. 2013 [40] Modification of the CART algorithm is proposed in order issue of
imbalanced dataset to be addressed.

A larger dataset will confirm the generalization of the findings.
The different extraction procedures of NN intervals.
It is not clarified if the oversampling approach was applied
on the construction of the tree or also to the validation.

Yang et al.2010 [19] Reliable estimation of missing values. For the evaluation of Bayesian principal component
analysis used for imputation of missing values artificial
missing data are introduced to complete samples.
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Table 8 (continued)

Authors Advantages Disadvantages

Shahbazi et al. 2015 [41] Combination of linear and non-linear long-term HRV measures in
combination with generalized discriminant analysis.

The fact that the dataset is small and unbalanced was
addressed through the leave-one-out cross-validation
performance estimates.
The generalization of the results is not possible due to the
above mentioned fact.
The sampling frequency of ECG recordings are not equal.
The procedures of extracting NN intervals are not the same.

Sideris et al. 2015 [45] A novel data-driven framework to extract predictive features
from disease and symptom diagnostic codes is proposed.
Number of cluster-based features is automatically determined
through a greedy optimization methodology.

Further information regarding the definition of
the six daily threshold-based outcome
variables is needed (why only heart rate and systolic blood
pressure is included, does the ranges of these measures
are differentiated depending on the patient)

Prediction of
adverse events

Destabilization

Candelieri et al. 2008 [52] Presented a decision tree which was evaluated in terms of
predictive performance (accuracy and sensitivity) through a
suitable validation technique and it was checked by clinical
experts in terms of plausibility.

Low sensitivity.

Candelieri et al. 2009 [53] – Only 1 of the 4 patients belonging to testing set but not to
training set, have presented a decompensation.

Candelieri et al. 2010 [54] SVM hyper solution framework performing, at the same time,
Model Selection, Multiple Kernel Learning and Ensemble
Learning with the aim to identify the best hyper-classifier is
proposed.

–

Guidi et al.2014 [32] CART provides a humanly understandable decision-making
process.

Generalization of the findings is not permitted due to the
small sample size.

Guidi et al. 2015 [33] Proposed a collaborative system for the comprehensive care of
congestive heart failure.

–

Authors Advantages Disadvantages
Prediction of
adverse events

Re-hospitalizations

Zolfaghar et al. 2013 [55] A big data solution for predicting the 30-day risk of readmission
for the CHF patients is proposed.

–

Vedomske et al.
2013 [56]

Incorporation of billing information in the prediction of
re-hospitalizations. Data from a single hospital are employed.

Visits which contained no data for readmissions were
excluded.

Shah et al. 2015 [28] Relationship between the pheno-groups and adverse outcomes. Further demonstration of generalizability is needed.
Roy et al. 2015 [57] Hierarchical classification technique for risk of readmission,

dividing the prediction problem in several layers, is proposed.

Algorithmic layering capability is trained and tested over two real
world datasets and is currently integrated into the clinical
decision support.

–

Koulaouzidis et al.
2016 [58]

Telemonitoring data are employed. Small number of predictor features.
Utilization of different classifiers.
No information regarding the sample size.

Kang et al. 2016 [60] It provides a preliminary understanding of the characteristics of
telehomecare patients that were associated with
re-hospitalization.
It provides a visual depiction of the associations among risk
factors, allowing a more complete exploration of the profile of
patients at high risk for re-hospitalization among all patients who
used telehomecare.

Input variables does not include (bio)markers or
characteristics of medication noncompliance that may
affect re-hospitalization.

Tugerman et al.
2016 [59]

A mixed-ensemble model for predicting hospital readmission is
proposed.
An optimization approach, which takes into account the degree of
correlation between the models, the distance of the minority
instances to the decision boundaries of the SVM, the penalty for
misclassification errors for patients who were actually
readmitted (positive readmission instances), and generalization
power is proposed.

The dataset is highly imbalanced.

Prediction of
adverse events

Mortality

Shah et al. 2015 [28] Relationship between the pheno-groups and adverse outcomes. Further demonstration of generalizability is needed.
Fonarrow et al. 2005 [61] 5 levels of risk are estimated. Each patient's actual risk may be influenced by many

factors not measured or considered in this model.
Bohacik et al. 2013 [62] Alternating decision trees allows the estimation of the

contribution of each decision node in isolation.
Low sensitivity.

Panahiazar et al. 2015 [64] Hazard Ratio (HR) is calculated based on real world EHR data. -
Taslimitehrani et al.
2016 [65]

CPXR(Log) is used allowing effectively building of
highly accurate prediction models on datasets with diverse
predictor–
response relationships

The selection of the parameters values affecting
CPXR(Log) is not justified.

Austin et al. 2012 [66] - Utilization of other classifiers is not employed.
Regression models did not include shrinkage or penalized
estimation methods

Bochacik et al. 2015 [63] Interpretability was evaluated using quantitative measures.
An algorithmic model using computations of ambiguity and
utilizing notions of fuzzy logic is proposed.

-

(continued on next page)
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Table 8 (continued)

Authors Advantages Disadvantages

Ramirez et al. 2015 [68] Different etiologies of mortality are predicted. The utilization of fully automated ECG measurements may
induce imprecision.
The number of SCD and PFD victims was relatively low in
comparison with survivors.

Subramanian et al.
2011 [67]

A multivariate logistic regression model using baseline and serial
measurements of cytokine and cytokine receptors levels up to
24 weeks predicts 1-year mortality.

-
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deep learning, a branch of machine learning based on learning represen-
tations of data. Deep learning has been applied to problems such as com-
puter vision and speech understanding. In the future the application of
deep learning to personalized prescriptions, therapy recommendation,
clinical trial recruitment, tasks involving prediction and detection of
disease will be studied, opening a new window in the management of
the HF and other diseases. The current work provides a comprehensive
review and comparison (Table 8), in terms of advantages and disadvan-
tages, of the methods reported in the literature that address, either
separate or in combination, all the aspects of the HF management
employing machine learning techniques.
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