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It is widely assumed in developmental biology and bioengineering that opti-

mal understanding and control of complex living systems follows from

models of molecular events. The success of reductionism has overshadowed

attempts at top-down models and control policies in biological systems.

However, other fields, including physics, engineering and neuroscience,

have successfully used the explanations and models at higher levels

of organization, including least-action principles in physics and control-

theoretic models in computational neuroscience. Exploiting the dynamic

regulation of pattern formation in embryogenesis and regeneration requires

new approaches to understand how cells cooperate towards large-scale

anatomical goal states. Here, we argue that top-down models of pattern

homeostasis serve as proof of principle for extending the current paradigm

beyond emergence and molecule-level rules. We define top-down control

in a biological context, discuss the examples of how cognitive neuroscience

and physics exploit these strategies, and illustrate areas in which they may

offer significant advantages as complements to the mainstream paradigm.

By targeting system controls at multiple levels of organization and demysti-

fying goal-directed (cybernetic) processes, top-down strategies represent a

roadmap for using the deep insights of other fields for transformative

advances in regenerative medicine and systems bioengineering.
1. Introduction

If you want to build a ship, don’t herd people together to collect wood, and don’t
assign them tasks and work, but teach them to long for the endless immensity of
the sea.

—Antoine de Saint-Exupery, ‘Wisdom of the Sands’.
1.1. Levels of explanation: the example of pattern regulation
Most biological phenomena are complex—they depend on the interplay of many

factors and show adaptive self-organization under selection pressure [1]. One of

the most salient examples is the regulation of body anatomy. A single fertilized

egg gives rise to a cell mass that reliably self-assembles into the complex three-

dimensional structure of a body. Crucially, however, bioscience needs to understand

more than the feedforward progressive emergence of a stereotypical pattern. Some

animals have the remarkable ability to compensate for huge external perturbations

during embryogenesis, and as adults can regenerate amputated limbs or heads,

remodel whole organs into other organs if grafted to ectopic locations (figure 1a),

and reprogramme-induced tumours into normal structures (reviewed in [4,5]).

These capabilities reveal that biological structures implement closed-loop controls

that pursue shape homeostasis at many levels, from individual cells to the entire

body plan.

Biologists work towards two main goals: understanding the system to make

predictions and inferring manipulations that lead to desired changes. The

former is the province of developmental and evolutionary biology, whereas
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Figure 1. Flexible, goal-directed shape homeostasis. (a) A tail grafted to the flank
of a salamander slowly remodels to a limb, a structure more appropriate for its new
location, illustrating shape homeostasis towards a normal amphibian body plan.
Even the tail tip cells (in red) slowly become fingers, showing that the remodelling
is not driven by only local information. Image taken with permission from [2]. (b) In
some species of deer, the cell behaviour of bone growth during antler regeneration
each year is modified by a memory of the three-dimensional location of damage
made in prior years. Image taken with permission from [3]. (c) Kidney tubules
in the newt are made with a constant size, whereas cell size can vary drastically
under polyploidy (image taken with permission from: Fankhauser G. 1945 Mainten-
ance of normal structure in heteroploid salamander larvae, through compensation of
changes in cell size by adjustment of cell number and cell shape. J. Exper. Zool. 100,
445 – 455). Thus, the tubule pattern (a macroscopic goal state) can be implemented
by diverse underlying molecular mechanisms such as cell : cell interactions (when
there are many small cells) or cytoskeletal bending that curls one cell around itself,
to make a tubule (when cells are very large). This illustrates the many-to-one
relationship observed across scales of organization observed in statistical mechanics,
computer science (implementation independence) and cognitive neuroscience
(flexible pursuit of plans).
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the latter is a requirement for regenerative medicine. Con-

sider the phenomenon of trophic memory in deer antlers

(reviewed in [6]). Every year, some species of deer regenerate

a specific branching pattern of antlers. However, if an injury

is made to the bone at a specific location, an ectopic tine will

be formed for the next few years in that same location within

the three-dimensional structure that is regenerated by the

growth plate at the scalp (figure 1b). This requires the

system to remember the location of the damage, store the infor-

mation for months and act on it during local cell growth
decisions made during regeneration so as to produce a pre-

cisely modified structure. What kind of model could

explain the pattern memory and suggest experimental stimuli

to rationally edit the branching pattern towards a desired

configuration? Related problems of forming and accessing

memories, and using them to make decisions and take

actions, are widely studied in neuroscience. We suggest that

these parallels are not just analogies, but should be taken

seriously: methods developed within computational and sys-

tems neuroscience to study memory, decision and action

functions can be beneficial to study equivalent problems in

biology and regenerative medicine.

The current paradigm in biology and regenerative medicine

assumes that models are best specified in terms of molecules.

Gene regulatory networks and protein interaction networks are

sought as the best explanations. This has motivated the use of a

mainly bottom-up modelling approach, which focuses on the be-

haviour of individual molecular components and their local

interactions. The companion concept is that of emergence, and

it is thought that future developments in complexity science

can explain the appearance of large-scale order, resulting from

the events described by molecular models. This approach has

had considerable success in some areas [7]. However, it has

been argued [8,9] that an exclusive focus on the molecular level

(versus higher levels, such as those which refer to tissue geome-

try, or even lower levels, such as quantum mechanical events) is

unnecessarily limiting. It is not known whether bottom-up

strategies can optimally explain large-scale properties such as

self-repairing anatomy, or whether they best facilitate interven-

tions strategies for rationally altering systems-level properties.

However, it has been observed that a number of biological

systems seem to use highly diverse underlying molecular mech-

anisms to reach the same high-level (e.g. topological) goal state

(figure 1c), suggesting a kind of ‘implementation independence’

principle that focuses attention on the global state as a homeostatic

target for cellular and molecular activities.
1.2. Top-down models: a complement to emergence
However, top-down models, which have been very effectively

exploited in sciences such as physics, computer science and

computational neuroscience, present a complementary strategy.

Top-down approaches focus on system-wide states as causal

actors in models and on the computational (or optimality)

principles governing global system dynamics. For example,

while motor control (neuro)dynamics stem from the interactive

behaviour of millions of neurons, one can also describe the

neural motor system in terms of a (kind of) feedback control
system, which controls a ‘plant’ (the body) and steers movement

by minimizing ‘cost functions’ (e.g. realizes trajectories that

have minimum jerk) [10]. This view emerged, because the

inception of cognitive science and cybernetics [11–13], and

might apply more generally not only to the motor system,

but also to behaviour and cognition [14]. Formal tools such

as optimal feedback control [15], Bayesian decision theory

[16] and the free energy principle [17] are routinely used in

computational neuroscience to explain most cognitive func-

tions, from motor control to multimodal integration, memory,

cognitive planning and social interaction [18]. Related norma-

tive approaches derived (for example) from machine learning,

artificial intelligence or reinforcement learning are widely

used to explain several aspects of neuronal architecture such

as receptive fields [19], neuronal coding [20] and dopamine
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function [21] by appealing to optimality principles and rational

analysis [22]. Despite starting in a top-down manner from

optimality principles, these approaches make contact with

data—as optimality principles generate testable predictions—

and have guided empirical research in many fields, becoming

dominant in some of them, such as computational motor

control and neuroeconomics.

Many biological functions, such as pattern homeostasis,

are readily viewed in terms of systems that seek to acquire

and maintain specific large-scale states. A central example

is dynamic anatomical re-configuration; pattern homeostasis,

as seen in highly regenerative animals, is difficult to explain

or control via molecular-level models. This is because the

global control metrics (e.g. ‘number of fingers’) that trigger

and regulate subsequent remodelling are not defined at the

level of individuals cells or molecules; indeed, large-scale

anatomical goal states can activate multiple distinct mechan-

istic pathways to satisfy the homeostatic process (a kind of

implementation independence; figure 1c). These global

metrics can be conceptualized as order parameters in dyna-

mical systems or as controlled variables (or set points) in

cybernetic and control-theoretic models. We argue that top-

down control models provide a valuable complement to the

toolkit of cell biologists, evolutionary biologists, bioengineers

and workers in regenerative medicine because they provide a

mechanistic roadmap for optimal explanation and control of

some complex systems.

The main goal of this article is to introduce, motivate and

demystify top-down approaches for biologists and to enable

deep concepts from other fields to impact the most critical

open questions of systems biology. Least-action principles are

one example of top-down principles that fundamentally trans-

formed understanding in basic physics, and it has been in use

for centuries in that field [23,24]. Perhaps the most representative

example of a top-down approach in biology is the theory of evol-

ution by natural selection [25]. The theory is not necessarily tied

to one specific mechanism—and indeed some of the underlying

mechanisms such as genes were only discussed much later—but

it provided a context to understand many (if not all) biological

phenomena across the field, from molecular biology to genetics

and physiology, and to formulate detailed process models. One

reason why top-down approaches have not been popular in

modern biology (with exceptions, see below) is that they appar-

ently embed a ‘dangerous’ notion of teleology, directedness,

purpose or finalism. After all, evolutionary theory rejects the

idea that processes are ‘directed’ towards some ‘final goal’ or

‘final cause’—it rejects ‘finalistic’ thinking and the idea that

there is ‘purpose’ beyond biology. However, three points are

in order.

First, top-down models do not entail a problematic kind of

teleology [26–28]. Goal directedness is not ‘magical thinking’,

but can be mapped to specific mechanistic models of homeo-

stasis that are already widely used in many fields. For

example, feedback systems that are popular in control theory

and cybernetics do encode a desired state (or set point), but

this is not the kind of ‘final cause’ that biologists should be

worried about [27]. It has nothing to do with claims of a purpose

to the trajectory of evolution, and it does not imply claims of

first-person consciousness. A set point can be as simple as a

desired ‘plant’ state in motor control (e.g. my finger pressing

a button), a desired interoceptive state in homeostasis

(e.g. satiation) or a desired temperature for a thermostat. The

ontological status of these set points is innocuous with respect
to issues of ‘evolutionary thinking versus finalisms’, and it is

an empirical question whether animals use internally rep-

resented goal states with various levels of complexity (from

‘my finger pressing a button’ to ‘my face on the cover of Time
magazine’) to guide their decisions [29,30], as opposed to

simpler (e.g. stimulus–response mechanisms)—or both. Often,

living organisms or machine learning algorithms can learn

goals or set points of a system experience, so it cannot be

assumed that they are innate. Our discussion of top-down con-

trols explicates goal directedness via (extended) homeostatic

mechanisms within existing organisms, thus offering specific

hypotheses on how they may acquire increasingly more

complex and distal goals [14,31].

Second, one might imagine that teleological thinking would

offer a misguided view of causation; after all, it is commonly

assumed that causation in biological phenomena should

be from the parts (micro) to the whole (macro), for example,

from cells to organisms. However, issues of causality are heavily

discussed in philosophy, neuroscience, social science and many

other fields [32–39]. Purely bottom-up views are increasingly

challenged by theories of micro–macro interactions—i.e. the

idea that causality goes in both directions, and that efficient

causality can be ascribed to multiple levels of description of a

system [40,41]. For brevity, we do not discuss the philosophical

issues of top-down causation here, referring the reader to many

recent above-cited discussions. Our view is that empirical suc-

cess in facilitating understanding and control is of paramount

importance, overriding a priori commitments to particular

levels of explanation.

Third, although several researchers in computational and

systems neuroscience have proposed that formal tools such as

feedback control, Bayesian decision theory and error mini-

mization are literally implemented in the brain (e.g. the

Bayesian brain hypothesis), one can also use the same

concepts in a purely descriptive-and-predictive way, without

committing to the ontological status of their constructs

(e.g. the construct of set point). In other words, scientists

can describe biological systems ‘as-if’ they had purpose (in

the cybernetic sense), using an operational approach that

only appeals to the explanatory power of the theory and

the constructs. For example, the notion of (minimization of)

a free energy gradient, which originated in thermodynamics,

can be used to study biological systems such as cell

movement [42] or brain dynamics [17]. In this perspective,

top-down models may be seen as formal tools that enlarge

a scientist’s methodological toolbox and might potentially

increase predictive power of theories. In a similar vein,

Dennett [43] has proposed that when we want to explain

the behaviour of our conspecifics we use an ‘intentional

stance’—we describe others as having goals and inten-

tions—because this stance gives greater predictive power

compared to (say) trying to predict another’s behaviour in

terms of the laws of mechanics. The ‘intentional stance’ is pre-

ferred for its predictive power, irrespective of the fact that

humans have or do not have real goals or intentions. Here,

in other words, is a pragmatic criterion of success (in predic-

tion and control) that should guide the adoption of an

intentional stance. The same criterion of success might motiv-

ate the choice of modelling any given biological system as a

system that has purpose (and can be modelled in terms of

feedback control) versus a system is composed of interacting

parts (and can be modelled by differential equations that

describe these parts separately), or a mixture of both.
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In other words, one can avoid philosophical issues about

ontological reductionism, formulating the success criterion of

biological explanations in empirical, unambiguous terms,

which appeal to pragmatic criteria such as predictive

power, controllability (of experimental manipulations) and

causal explanation. If one considers predictive power, the

best model is the one that allows the most efficient prediction

and control of large-scale pattern formation. In this per-

spective, only the outcome matters—the ability to induce

desired, predictable changes in large-scale shape, regardless

of whether the model is formulated in terms of genes, infor-

mation, topological concepts or anything else. In this, we

hold to an empirical criterion of success, looking for whatever

class of approaches offers the best results for regulating shape

in regenerative and synthetic bioengineering approaches.

One can also consider a more broadly causal explanation

(and the achievement of higher levels of generality) as a cri-

terion for success [44]—it is in this perspective that Popper

argued that scientific discovery goes ‘from the known to

the unknown’ [45]. To achieve this, some models appeal to

latent (or hidden) states that describe or hypothesize under-

lying regularities that are not directly observable in the data

stream but need to be inferred. For example, in object percep-

tion, one can assume that the visible input stream (e.g. the

stimulation of the retina) is a function of a mixture of two

latent causes, the identity of the object and its location

(and/or pose). One can use methods such as Bayesian infer-

ence to infer probabilistically the latter from the former [46].

Deep neural networks [47] and Bayesian non-parametric

methods [48,49] are widely used in machine learning and

computational neuroscience to infer latent states of this

kind directly from data.

Being able to formulate a scientific theory without necess-

arily committing to the ontological status of its entities has

contributed to the success of mature sciences. Some examples

are the principle of least action, which can be regarded as fun-

damental in physics as it explains a range of physical

phenomena [50] and the principle of least effort, which is pop-

ular in many sciences, from ecology to communication [51].

The principle of least action, which is related to free energy

minimization, which we discuss below [17], describes a phys-

ical system as following a path (of least effort) in an abstract

‘configuration space’. It can be used to obtain equations of

motion for that system without necessarily assuming the

ontological reality of the ‘path’ or any finalism in the ‘final

state’. Is the same approach possible and/or useful in

biology? For example, if one focuses on the domain of pat-

terning and growth, the question would be: can we design

top-down models that describe (and permit to reprogramme)

anatomical structure at the level of large-scale shape specifi-

cation (e.g. body morphologies) rather than micromanaging

single cells or molecular signalling pathways? Would such

models be useful and effective?

As a contribution towards a better understanding of top-

down modelling in biology, in the following, we discuss in

more detail some success cases in computational neuroscience.

We first briefly review some concepts of top-down modelling,

and we successively focus in more detail on one specific

example: the free energy principle. This and other concepts

from computational neuroscience and computer science can

enrich the study of many complex biosystems, even those

not associated with brains [52,53]. We then discuss how this

methodology can be successfully applied to other areas of
bioscience, specifically developmental/regenerative biology.

Finally, we briefly describe what a top-down research pro-

gramme in biology would look like and discuss the benefits

that would result for areas of bioengineering and medicine.
2. Examples of top-down modelling
There is no fundamental conflict between emergence and

top-down control [54–56]. However, different strategies are

needed to make use of the less familiar side of the coin,

and these are not often appreciated in molecular biology.

Several mature sciences have, for many decades now, thrived

on the basis of quantitative models focused on information

and goal-directed mechanisms in both living organisms and

engineered artefacts: computational/systems neuroscience

and computer science/cybernetics. Here, we discuss a set of

concepts from these fields to broaden the horizons of workers

in regenerative bioengineering, briefly covering several outsi-

der ideas that may move this field beyond the current gap of

complex pattern control.

A characteristic feature distinguishes top-down models from

emergent models, and these can be observed in physical sciences

at many levels. It is the acknowledgement that higher levels

beyond the molecular can have their own unique dynamics

that offer better (e.g. more parsimonious and potent) explana-

tory power than models made at lower levels [57,58]. For

example, the laser involves a kind of ‘circular’ causality

which occurs in the continuous interplay between macrolevel

resonances in the cavity guiding, and being reinforced by,

self-organization of the molecular behaviour [59,60].

Another example is the ‘virtual governor’ phenomenon,

which arises in an elaborate power grid consisting of many

individual alternating-current generators that interact to

achieve a kind of ‘entrainment’. The remarkable thing is that

this system is optimally controlled not by managing the indi-

vidual generators (which falls prey to instability), but rather

by managing a ‘virtual governor’ that controls the entire

system and is precisely defined by its various components

[13,61]. This virtual governor has no physical location; it is

an emergent relational property or phenomenon of the entire

system. However, there is a sense in which it has causal control

of the individual units, because managing it gives the best

control over the system as a whole. Indeed, anticipating

links between these concepts and cognitive neuroscience,

Dewan & Sperry [61,62] suggest that this dynamic can help

explain instructive control of executive mental states over the

pattern of neuronal firing and subsequent behavioural

activity. Much as a boiler is best regulated by policies that

manage pressure and temperature, and not the individual

velocities of each of the gas molecules, biological systems

may be best amenable to models that include information

structures (organ shape, size, topological arrangements and

complex anatomical metrics) not defined at the molecular or

cellular level but nevertheless serving as the most causally

potent ‘knobs’ regulating the large-scale outcomes.

Yet another example is the Boltzmann definition of

entropy that captures the statistical properties of a system

composed of myriads of elements, rather than tracking the

behaviour of the individual elements. In thermodynamics,

not only entropy, but also several other macroscopic variables

such as temperature or pressure describe the average behav-

iour of a large number of microscopic elements. Statistical
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methods permit linking macro- and the microlevels and

characterizing causal relations between them, in both a

bottom-up (i.e. a given temperature results from specific

kinds of microscopic dynamics) and top-down way (i.e. rais-

ing the temperature of an object has cascading effects on its

microconstituents). In this latter example, one can establish

rules that govern the system but depend on concepts and

‘control parameters’ that exist at levels higher than the micro-

components [41]. This idea meshes well with the concept of

an emergent property of a system. Note that here, emergent

properties are not just by-products to be measured (outputs),

but they can also actually be controlled to change the behav-

iour of the system (emergent inputs). The exploitation of

high-level control knobs in biological systems represents a

major challenge and opportunity for biomedicine, which is

struggling to regulate systems outputs such as cancer

reprogramming and patterning of complex growing organs.

More broadly, one can consider that the success of whole

fields such as thermodynamics has been fuelled by top-down

approaches, which in many cases have paved the way to

the proposal of specific mechanistic models. For example, a

phenomenological model of superconductivity [63] was

developed much before a mechanistic (microscopic) model

[64] was available. This is an example in which not only

the phenomenological model was self-consistent and capable

of non-trivial predictions, but it was also so precise that

it specified which detailed mechanism to look for at the

microscopic level.

There is a class of models that is widely used in compu-

tational neuroscience that nicely combines top-down and

bottom-up aspects. These include dynamical systems

models in which trajectories through a state space emerge

under the (implicit) imperative to reach an attractor, steady

state or limit cycle. The dynamics of attractors have been

widely studied in physics and, since the pioneering work of

Hopfield [65], there is a flourishing body of literature that

uses this concept to model semantics and computation

implemented by neuronal dynamics. The benefit of attractors

is that they illustrate how a mechanistic system can evolve

towards a stable state or set of states—hence they nicely cap-

ture the emergence of complex patterns. At the same time,

the concept of an attractor is a general high-level descriptor

of bottom-up self-organization processes; if the system

reaches an attractor basin, then certain specific details are

not required to understand its behaviour (e.g. it goes towards

the basin of attraction regardless of its initial state). The con-

cept of attractors as causal factors in networks is currently

being explored in cancer and synthetic biology applications

[66,67]. Moreover, hybrid approaches have been developed

that combine control engineering and dynamical systems,

for example, by designing individual components (e.g. cells

or their components) as controllers with a specifically

designed function, but then letting their interactions emerge

through self-organization and distributed computation [68].

The idea that behaviour is regulated towards specific

states or set points is also key in cybernetic and feedback con-

trol models. In these models, however, it is a feedback signal

that usually regulates behaviour, not attractor dynamics.

A central component of most cybernetic models is a compara-

tor that compares current (sensory) and desired states (set

points) and triggers an action that ‘fills the gap’ if it detects

a discrepancy between them. These models were initially

applied to homeostatic processes, but have been extended
to a variety of control and cognitive tasks [14]. For example

(figure 2), the TOTE model [27] has been proposed as a

general architecture for cognitive processing, and its acronym

exemplifies the functioning of the feedback-based, error-

correction cycle described above: test (i.e. compare set point

and current state), operate (e.g. trigger an action), test
(i.e. execute the same comparison as above after the action

is completed), exit (if the set point has been reached).

This is a somewhat simplified control scheme, and there

are now numerous control models that include additional

components, including predictors (i.e. internal models

that predict the sensory consequences of executed actions),

additional comparators (which compare, for example,

actual and predicted sensory stimuli), state, estimators,

inverse models and planners; see [10] for a review. What is

more relevant in this context is that, in principle, the same

(stylized) model can be applied to a set of operations

as diverse as motor control (figure 2b) and growth and

regeneration (figure 2c). See below for a more detailed discus-

sion of the application of TOTE or TOTE-like systems to

biological phenomena.

Another key concept in the top-down toolbox of many

sciences is that of information. Models in which information

transfer plays a central role have been developed in artificial

life and cognitive science [70,71]. Robotic control systems

have been realized that are able to autonomously learn

an increasingly sophisticated repertoire of skills by iterati-

vely maximizing information measures, for example, their

empowerment: roughly, the number of actions an agent

can do in the environment or its ‘potential for control’, as

measured by considering how much Shannon information

actions ‘inject’ into the environment and the sensors [72].

Empowerment or related information measures (for example,

predictive information, homeokinesis and others [73]) can

provide universal metrics of progress of agents’ perceptual-

motor capabilities and permit them to learn new skills

without pre-specifying learning goals.
3. Successful top-down modelling in
computational neuroscience: the case of
free energy

As a paradigmatic example of top-down modelling in compu-

tational neuroscience, we next discuss in more detail one of

these examples: brain predictive processing under the free
energy principle [17]. Free energy is a general principle stem-

ming from physics, and is increasingly providing guidance to

understand key aspects of cognition and neuronal architecture,

including hierarchical brain processing [74], decision-making

[31,75], planning [69,76] and psychosis [77].

The free energy principle starts from a simple evolution-

ary consideration: in order to survive, animals need to

occupy a restricted (relatively rare) set of ‘good states’ that

essentially define their evolutionary niche (e.g. places where

they can find food) and avoid the others (e.g. underwater

for a terrestrial animal). To this aim, animal brains are

optimized to process environmental statistics and guide the

animal towards these ‘good states’, which is done by using

an error-correction mechanism to minimize a distance

measure (prediction error or surprise, see below) between

the current sensed state and the desired good states [78]. In
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exemplifies a class of cybernetic models that operate using similar principles, see the main text). The ‘test’ operation corresponds to the comparison between desired and
sensed state values. If a discrepancy is detected, then an action is activated (‘operate’) that tries to reduce it. When there is no discrepancy, the ‘exit’ operation is selected,
corresponding to no action. (b) An example in the domain of action control. Here, the red box corresponds to a desired state value (handle grasped), which can trigger a
series of (grasping) actions; see [69] for an example implementation. (c) The same mechanism at work in regeneration, where a discrepancy between the organism’s
target morphology and the current anatomical state (caused by injury) activates pattern homeostatic remodelling and growth. In highly regenerative animals, such as
salamanders, cells proliferate, differentiate and migrate as needed to restore the correct pattern, and cease when the correct shape has been achieved.
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this perspective, the free energy approach can be seen as an

extension of homeostatic principles (i.e. to maintain the free

energy minimum) to the domains of perception, action and

cognition [31]. Despite the simplicity of its assumptions,

this approach has deep implications for brain structure and

function [17,69]. Indeed, to allow adaptive control (towards

the desired states), the brain needs to learn a so-called genera-
tive (Bayesian) model of the statistics of its environment,

which describes both environmental dynamics (necessary

for accurate perception) and action–outcome contingencies

(necessary for accurate action control). This generative
model has necessarily a hierarchical form, reflecting the fact

that environmental and action dynamics are multilevel

and operate at a hierarchy of timescales [79]. The hierarchy

is arranged according to the principles of predictive coding,

where hierarchically higher and lower brain areas recipro-

cally exchange ‘messages’—which encode (top-down)

predictions and (bottom-up) prediction errors, respect-

ively—and the same scheme is replicated across the whole

hierarchy. A similar scheme can be defined for physiological

states of the body [80,81], and perhaps even of anatomical

states implemented by cellular remodelling activities [52].
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Perception corresponds in this architecture to the ‘inverse

problem’ of inferring the causes of sensory stimulations; for

example, inferring that the pattern of stimulation of an animal’s

retina is caused by the presence of an apple in front of it [82].

This problem is called inverse, because the generative model

encodes how the causes (the apple) produce the sensory obser-

vations (a pattern on the animal’s retina), e.g. the probability to

sense a given retina stimulation given the presence of an apple.

However, to infer/reconstruct the causes, it is necessary to

‘invert’ the direction of causality of the model, i.e. calculate

the probability of an apple given the retina stimulation. The

inverse problem is solved using the logic of predictive coding:

perceptual hypotheses encoded at higher hierarchical levels

(e.g. seeing an apple versus a pear) produce competing predic-

tions that are propagated downward in the hierarchy, and

compared with incoming sensory stimuli (say, seeing red)—

and the difference between the predicted and sensed stimuli

(a prediction error) is propagated upward, helping revise the

initial hypotheses, until prediction error (or free energy more

precisely) is minimized and the correct hypothesis (apple) is

inferred. This inference is precision-weighted (where precision

is the inverse of variance of a distribution), meaning that

the higher the uncertainty of a sensation, the lower its influence

on hypothesis revision. This scheme has been used to model

several perceptual tasks, including also aberrant cases

(e.g. hallucinations and false inference) owing to precision mis-

regulations [77]; and operates equally for different modalities

(exteroceptive, interoceptive and proprioceptive).

To implement action control, the aforementioned pre-

dictive coding scheme requires at least two additional

components: desired (goal) states that are encoded at high

hierarchical levels as (Bayesian) ‘priors’ and are endowed

with high precision, and motor reflexes that essentially exe-

cute actions. In this extended scheme, called active inference,

the priors encoded at high hierarchical levels (e.g. I have an

apple in my hand) have very high precision and thus

cannot be (easily) revised based on bottom-up prediction

errors and external stimuli. For this, they functionally play

the role of goals—i.e. states that the agent seeks to achieve

by acting, as in the TOTE model introduced earlier—rather

than just hypotheses as in the case of perceptual inference.

Based on such priors, the system generates ‘strong’ predic-

tions that are propagated downward in the hierarchy and

enslave action. This mechanism follows the usual logic of pre-

dictive coding, in which relatively more abstract beliefs at a

higher layer (e.g. having an apple in the hand) produce a cas-

cade of predictions of more elementary exteroceptive and

proprioceptive sensations at lower layers (e.g. the sight of

red and the feeling of a round object in my hand). If there

is no apple in my hand, these apple-related predictions give

rise to strong prediction errors (i.e. between the apple I

expect to see and feel and the absence of apple that I actually

see and feel). The key difference between perceptual proces-

sing and active inference is the way these prediction errors

are minimized. In perceptual processing, one can change

one’s own hypotheses about having an apple. However, if

the priors encoded at higher hierarchical levels are too

strong, this is not possible: the only way to minimize predic-

tion errors is to make one’s predictions true by acting—that

is, engage reflex arcs to grasp an apple. This is why one

can consider that active inference is predictive coding

extended with reflex arcs [69]. However, this architecture

can be beyond mere reflex arcs and proximal action. If an
apple is not directly available, then the same architecture

(opportunely augmented) can steer a more complex pattern

of behaviour such as searching for the apple with the eyes

and then grasping it, or even buy an apple. In this perspec-

tive, action control corresponds to minimizing prediction

errors by engaging arc reflexes (or action sequences in more

complex cases), not by revising hypotheses as in the case of

perception. This would only be the case if the system’s

goals are strong enough and the predictions they generate

have high precision. This active inference scheme has been

used to model a variety of control tasks, including hand

[83] and eye movements [84] and has been extended to plan-

ning processes, in which essentially free energy minimization

spans across actions sequences, not just short-term actions

such as grasping an apple [69,76,85,86].

The free energy principle is now widely used in compu-

tational neuroscience and constitutes one of the few

examples of ‘unified’ theories of brain and cognition. The

usefulness of the top-down approach intrinsic in this frame-

work, which proceeds from first principles (free energy

minimization), is apparent in many domains of cognitive

neuroscience, including perceptual, motor and learning

domains [17]. The top-down approach has also proven to

be effective at the level of detailed neuronal computations;

for example, in the explanation of the structure and infor-

mation flow in ‘canonical cortical microcircuits’—neuronal

microcircuits that recur widely through the cortex and are

considered to be the putative building blocks of cortical com-

putations [87]. What is remarkable in this example is that

formal constraints that one can derive from predictive

coding, such as asymmetric top-down and bottom-up mess-

age passing between neurons (encoding predictions and

prediction errors, respectively), describe particularly well

key anatomic and physiological aspects (e.g. intrinsic connec-

tivity) of neuronal populations within and across cortical

microcircuits. In this example, it was possible to proceed

from first principles and derive specific and testable predic-

tions, for example, about the connectivity and functional

roles of the elements of canonical microcircuits, as well as

their characteristic rhythms and frequencies (e.g. slower fre-

quencies such as beta for top-down predictions and faster

frequencies such as gamma for bottom-up prediction errors).

The free energy principle has been recently applied to the

control patterning and regeneration, in which high-level ana-

tomical goal states must functionally interface with the

molecular and cellular events that implement them [52].

Shape regulation may be efficiently understood and manipu-

lated as a kind of memory/recall process, analogous to a

scheme in which generative models memorize patterns and

error-correction mechanisms trigger actions that involve body

changes (e.g. growth and differentiation) that restore them

as necessary. Cells are initially undifferentiated and have to

‘find their place’ in the final body morphology (here, a

simple morphology with head, body and tail; figure 3a).

In the simulation, genetic codes parametrize a generative

model that is identical for all cells, and essentially describes

‘what chemotactic signals the cell should expect/sense’ at

a(ny) given location if the final form was achieved

(figure 3b)—but note that the generative model or part of it

can also be learned. The model addresses the epigenetic

process through which each cell ‘finds a place’ in the mor-

phology. This is a difficult (inverse) problem, made more

challenging by the fact that a cell can only sense the ‘right’
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Figure 3. An example of application of the free energy principle to morphogenesis. (a) Illustration of the target morphology that the cells have to achieve: a simple
morphology with head, body and tail. The cells have to ‘find their place’ in this morphology, but are initially undifferentiated; this means that, in principle, each cell
could become part of the head, body or tail (although constraints can be introduced on this process). (b) When cells occupy a given positions, they emit chemical
signals that can be sensed by the surrounding cells. The figure illustrates the signals that each cell ‘expects’ to sense when it occupies a given spatial position. Of
note, the cells can only sense these signals (and thus minimize their prediction error or free energy) if all the other cells are in the right place and emit the right
signal. (c) In turn, this triggers a multi-agent migration (or differentiation) process, in which cells that ‘search’ their own place in the morphology influence and are
influenced by the other cells. (d ) There is only one solution to this multi-cell process—one in which each cell occupies its place and emits (and senses) the right
signals. This corresponds to the target morphology. (e) It is only in this ‘solution’ state that the free energy of the system is minimized. Overall, it is a free energy
minimization imperative that drives the pattern formation and morphogenetic process at the level of the whole system, with the cell – cell signalling mechanism
playing a key role by permitting cells to influence one another. Images re-used according to the Creative Commons licence from ref. [52].
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(expected) signals when all the other cells are in place. This

problem is solved by inverting the cells’ generative models

and minimizing free energy—except for the fact that here

the problem is intrinsically multi-agent (or multi-cell): each

cell has to (minimize free energy and) reach its unique

place and express the ‘right’ signals, which, in turn, permits

the other cells to reach their own places. Key to the model

is the fact that migration and differentiation are considered

to be the cell’s actions (figure 3c) that move the cell towards

the desired state (in which it senses the right signals) and

the whole organism towards the target morphology

(figure 3d ). In short, each cell can use the aforementioned

active inference scheme to select the appropriate action(s)

that minimize its free energy (figure 3e), and the minimum

of (variational) free energy can only be achieved when each

cell is in a different place in the morphology, and the whole

organism has thus composed the desired form (or in other

words, the free energy of individual cells and of the ensemble

are strictly related). Subsequent simulations in the same

study show that, besides pattern formation, the same

method can be used to model pattern regeneration, when

part of the morphology is disrupted by injury [52].

This example illustrates a possible use of top-down mod-

elling principles to model biological phenomena such as
patterning and regeneration. One emerging aspect is that in

this computational model there is no contradiction between

normative, top-down principles and ‘emergentist’ dynamical

views that are popular in biology, as both are specified within

the same framework. Indeed, one can equivalently describe

the patterning and self-assembly process as minimization

of free energy, and as the emergent property of cells that

share a generative model (an ‘autopoietic’ process [88]).

This points to the more general fact that top-down and

bottom-up perspectives are not necessarily in contradiction

but can be integrated and act synergistically. Free energy

enables biological phenomena from both top-down and

bottom-up perspectives to be simultaneously addressed.

From a top-down perspective, it provides a normative prin-

ciple (or ‘objective function’) that describes—or in a sense,

prescribes—the collective behaviour of the system, and the

function it is optimizing. From a bottom-up perspective, it

can provide specific process models of probabilistic and

inferential computations.

This facilitates the exploration of functional and mechan-

istic analogies between dynamic regulation of patterning and

cognitive function (e.g. decision and memory) [53]. One

example is the parallel between cognitive and cell decisions.

In hierarchical predictive coding architectures, perception
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and decision-making are not purely bottom-up, sensory-

guided processes but rather result from a (Bayes-optimal)

combination of prior information (and memory) and current

sensory evidence [84,89]. Mechanistically, this is achieved

through a continuous and reciprocal exchange of top-down

and bottom-up signals, which convey prior information and

prediction errors, respectively. In principle, one can use the

same scheme to analyse cellular decisions during morpho-

genesis, which would therefore be a function of both,

top-down information based on network memories (priors)

and bottom-up signals (e.g. chemical/electrical signals from

their neighbours). The current understanding of cogni-

tive (e.g. decision, categorization, pattern completion and

memory) processes [53,90] in neural cells provides rich, rigor-

ous inspiration for understanding top-down influences over

non-excitable cell behaviour during their navigation within

the complex in vivo environment.
 3:20160555
4. Implementing top-down models in biology: a
roadmap to regenerative medicine

Regenerative medicine seeks to control large-scale patterns,

to turn tumours into functional tissues, repair birth defects

and guide the formation of missing or damaged organs.

The gulf between a wealth of high-resolution genetic

data and the systems-level anatomical properties that need

to be controlled is growing, despite increasing sophistica-

tion at the molecular level. We propose that adding

top-down modelling to the toolkit of developmental biol-

ogists can help achieve cross-level integration and result in

transformative functional capabilities.

Tadpoles significantly remodel their faces during their jour-

ney of becoming a frog. Remarkably, tadpoles created with a

very abnormal positioning of the head organs nevertheless

achieve normal head structure, by moving the various organs

through novel paths in order to enact the correct frog target

morphology [91]. Understanding how this system activates

remodelling trajectories that reach the same goal state despite

different starting configurations (i.e. not the evolutionarily

default normal sequence of movements) is the kind of advance

that will be needed to unlock regenerative abilities in patients

and artificial bioengineered constructs. A top-down model

would specify how the target morphology is represented

within tissues, what cellular processes underlie the compu-

tations that drive the system from a novel starting condition to

that goal state (and stop when it has been achieved), and how

those computations about large-scale anatomical metrics

become transduced into low-level marching orders for cells

and molecular signalling cascades.

How are such phenomena to be understood? Perhaps, a

kind of least-action principle in regenerative remodelling

might define a cellular network that functions to minimize

the distance (in energy) between the current morphology and

the target morphology, by steps that alter cell motility, differen-

tiation and proliferation by optimizing some variables, such as

measured differences between size/shape of specific com-

ponents and a stored ‘correct’ value. Note that this is quite

distinct from the current paradigm, in which it is assumed

that no target morphology or map exists at any level of descrip-

tion, and the result (e.g. settling in one of the local minima of

the system) is always an emergent outcome of purely local

interactions. Similar schemes have been suggested, for example
using field property minimization models for understanding

physical forces as controls of morphogenesis [92–94].

Models in this field will need to be explicit about the size

of decision-making units (cells, cell networks or whole

organs), what these units measure [95,96] and how they

represent large-scale goal states internally [97]. How might

cellular networks implement a TOTE-like homeostatic

system which needs to represent global quantities (size and

shape of organs), and issue local decisions to cells, based

on comparisons to a stored memory or representation of a

target morphology? There are many ways in which cell

networks can compute, including chemical gradients

[98–100], genetic and protein networks [101,102] and cyto-

skeletal state machines [103–105], but one obvious choice

for exploration in the context of top-down modelling is

endogenous developmental bioelectricity [106–109].

Ionic dynamics were exploited by evolution in the devel-

opment of brains for good reason: ion channels and electrical

synapse proteins (gap junctions) enable electrical activity to

modify voltage and resistance [110], implementing feedback

loops that underlie plasticity in networks, thus serving as

the substrate for logic elements and memory from which

higher computation (brain function) can be built up. Cru-

cially, ion channel, electrical synapse and neurotransmitter

hardware is far older than brains; the evolution of the CNS

and its impressive cognitive abilities co-opted these tricks

from a far earlier cellular control system that drove pattern

regulation, physiological homeostasis and behaviour in

single cells and primitive metazoans (these concepts are

reviewed in more depth in [111,112]). Thus, it is possible

that top-down control, an important component of brain

function, is likewise reflective of similar control strategies

implemented by non-neural cells during embryogenesis,

regeneration and cancer suppression (figure 4a,b illustrates

the extensive functional and molecular conservation between

the interplay of ion channel-based hardware and its resulting

electric pattern-mediated software in the brain and the body

during behaviour and pattern regulation, respectively).

While many other physical and chemical modalities are

involved in pattern regulation, bioelectric circuits have a

number of properties that suggest that they are a highly tract-

able first target for modelling and intervention via top-down

approaches. Recent data have revealed that dynamic endogen-

ous bioelectric gradients, present throughout many tissues (not

just excitable nerve and muscle) not only specifically control cell

behaviour, but serve as global integrators of information across

the body that instructively guide patterning, growth control,

organ identity and topological arrangement of complex struc-

tures [106,113]. Patterns of bioelectric signalling have been

shown to serve as master regulators (module activators) and

prepatterns for complex anatomical structures, coordinating

downstream gene expression cascades and single cell beha-

viours towards specific patterning outcomes [114–116]. The

extensive use of bioelectric circuits to represent information

and guide activity in the brain offers conceptual and experimen-

tal tools for unravelling how tissues perform the computations

needed to implement dynamic remodelling (figure 1) and

developing interventions that alter the encoded information

structures to achieve complex patterning goals without micro-

managing molecular-level events. The organizing role for

global patterning by somatic bioelectrical circuits, and their

high intrinsic suitability for cellular circuits implementing plas-

ticity and memory, suggest this layer of biological regulation as
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a facile entry point into the quantitative understanding of how

high-level goal states may be encoded in tissues.

A number of laboratories are investigating (with

ever-higher mechanistic resolution) how global electrical

states regulate downstream cellular processes inside cells

[115,117]. This must now be accompanied by the development

of new ways to model the integrated information flow and

decision-making that may be mediated by somatic bio-

electricity to enable flexible shape homeostasis (figure 4c–g
illustrates the progressive levels of organization and infor-

mation encoding from gene networks that specify tissue

components to the pattern-editing algorithms that drive
large-scale anatomical change). This effort may involve

neural net-like models storing stable body organ configur-

ations as memories and fleshing out the mechanistic links

between attractors in circuits’ bioelectrical state space and ana-

tomical morphospace. One possible conceptual approach

(illustrated in figure 5) is to view specific pattern outcomes

as stable attractors in the state space of a distributed non-

neural electric network, representing pattern memories that

are stable and yet labile (can be re-written). In such networks,

voltage-mediated output signals control downstream gene

expression cascades and the behaviour of many cells, leading

to specific patterning outcomes. Concepts from computational
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The current state of the art in the field of developmental bioelectricity is that it is known, at the cellular level, how resting potentials are transduced into downstream
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circuits make decisions that orchestrate large numbers of individual cells, spread out over considerable anatomical distances, towards specific pattern outcomes. The
mechanisms by which bioelectrics and chromatin state interact at a single cell level will be increasingly clarified by straightforward reductive analysis. The more difficult,
major advances in prediction and control will require a systems-level model of pattern memory and encoding implemented in somatic bioelectrical networks whose output
is signals that control growth and form. Images in panels (a) and (b) drawn by Jeremy Guay of Peregrine Creative.
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neuroscience may be especially useful for this nascent field,

systems in which low-level mechanisms (same as some of

those guiding patterning) and top-level goals coexist and can

be productively studied. This field serves as proof-of-principle

of integration across multiple levels of organization—the key

challenge in regenerative biology and medicine.
5. Conclusion
Next-generation bioengineering must move beyond direct

assembly of cell types and exploit the modularity and adaptive

control seen throughout developmental biology. The major

knowledge gap involves our understanding of how complex

shape arises from, and is dynamically remodelled by, the

physical activity and information processing of smaller

subunits (not necessarily cells). The current paradigm in the

field is bottom-up, focusing on genetic networks and protein
interactions. If we understand the molecular networks within

cells, we should be able to tame the emergence of large-scale

structures from those microlevel processes. Our ultimate

goal, however, is the programming of shape by specify-

ing organs and their topological relationships, instead of

attempting to micromanage the construction at the ‘machine

language’ level [129,130]. Here, we have discussed a comp-

lementary, top-down approach, which can encompass the

known molecular elements that implement pattern formation:

chemical gradients [131–134], physical forces [135–137] and

bioelectrical signalling [108,115,138–140].

Numerous examples of pattern formation exist [141], in

which spatial order is generated by emergence from collective

low-level dynamics. In contrast, top-down strategies incor-

porate models in which the key functional elements are not

molecules, but higher-order structures defined at larger

scales. Examples include ‘organs’, ‘positional coordinates’,

‘size control’, ‘topological adjacency’ and similar concepts.
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Top-down models can be as quantitative as the familiar

bottom-up systems biology examples, but they are formu-

lated in terms of building blocks that cannot be defined at

the level of gene expression and treat those elements as

bona fide causal agents (which can be manipulated by inter-

ventions and optimization techniques). The advantages of

top-down models, which are apparent in many mature

sciences such as physics and computer science, is that they

hold the promise to surmount an inverse problem that is

intrinsic in biological modelling [6]. The near-impossibility

of determining which low-level components must be

tweaked in order to achieve a specific system-level outcome

is a problem that plagues most complex systems. This is

clearly seen in the state of our field today, where the ever-

growing mountain of high-resolution molecular pathway

data cannot be directly mined to determine which proteins

need to be introduced or removed to, for example, pre-

dictably change the shape of even a relatively simple

structure such as an ear.

In this article, we have discussed normative principles and

top-down modelling in both computational neuroscience and

biology. We have reviewed top-down modelling approaches

that are popular (and in some cases even dominant) in other

research fields such as physics, computational neuroscience,

computer science and cybernetics. They can be useful for

biology at large by demystifying some of their key concepts

such as teleology and enabling quantitative models of control

systems that operate at levels of organization above molecules.

Indeed, there are examples of top-down models with greater

predictive power than any available bottom-up candidates;

for example, the field-based models of intercalary regeneration

that not only explain the puzzling appearance of supernumer-

ary limbs [142–144], but also extend the work to intercalation

on a single-cell level, displaying a profound conservation of

pattern control principles that span levels of organization

from the single cell to the entire organ [92–94,145].

We have focused on a specific class of models—based on the

free energy principle—and offered a proof-of-principle example

of its use in biology: the case of patterning and the self-assembly

of a simple body morphology. However, there are numerous

other top-down modelling tools that have been developed in

computational neuroscience, computer science, physics, control

theory and engineering, which have great potential to be re-used

in biology. We have also briefly mentioned some of these con-

cepts, such as feedback control methods or least-action

principles in physics. A full review of these concepts is beyond

the scope of this article, but see [53]. This does not mean that

using atop-down approach is necessarilyerror-proof. Appealing

to first principles or simplicity is often heuristic—but, as for

any other approach, empirical validation is a key criterion for

scientific acceptance of a theory.

Neuroscience has long grappled with issues of goal

directedness, and searched for ways to integrate levels

(from the biochemical to that of propositional mental con-

tent); it is the one example of a science that has produced

mechanistic explanations linking cellular activity to planning

and complex memories [146]. The analogies are many, and

biology has much to learn from this field. For example, the

attempt to understand how the activity of cells underlies

large-scale decision-making (e.g. control of shape, size and

organ identity relative to the rest of the body plan) is parallel

to the programme of explaining complex cognitive functions

via the nested activity of increasingly less-informed units,
such as brain networks, cell assemblies or single cells. More-

over, the current paradigm in biology of exclusively tracking

physical measurable and ignoring internal representation and

information structures in patterning contexts quite resemble

the ultimately unsuccessful behaviourist programme in

psychology and neuroscience [147].

The top-down perspective that we have stressed here is not

intended to replace existing approaches, but to offer unique

insights and complement existing more bottom-up efforts

based on emergence from molecular pathway models.

Models derived from the top-down perspective need to be

evaluated as to their empirical validity based on the degree

of prediction and control they allow over the large-scale pat-

terning of growth and form. Successful models will facilitate

the appearance of a ‘compiler’ able to convert design goals

at the level of morphology into cell-level instructions that

can be applied to reach the desired anatomical results. In

this, computer science offers an ideal example of systems

that are understood synthetically, from electric currents to

the high-level data representation, control loops and formal

reasoning that their circuits implement.

Future research will identify specific pros and cons of top-

down versus bottom-up approaches in biology—as well as

their possible integration. A key aspect of top-down models

that make them particularly appealing for the field of patterning

and regeneration is that they offer an intuitive starting point to

control outcomes that are too complex to implement directly.

For example, even if stem cell biologists knew how to make

any desired cell type from an undifferentiated progenitor, the

task of assembling them into a limb would be quite intractable.

Similarly, the insights of molecular developmental biology have

not revealed the control circuitry that would enable making a

self-repairing robot. If it were discovered that somatic tissues

actively represent anatomical goal states, then it may be possible

to rationally modify those pattern memories and let cells build

the needed structures (for repairing birth defects, regenerating

injured organs or constructing artificial biobots). Top-down

approaches offer the possibility of offloading the computational

complexity onto cells, allowing the bioengineer to specify target

states instead of micromanaging the processes of growth and

morphogenesis. Applications along these lines are already

coming online, from work that exploits the same mechanisms

used by the brain to implement goal-seeking behaviour—

bioelectrical computation—in non-neural cells. The field of

developmental bioelectricity has begun to explore top-down

(modular) control of organ regeneration [148], as well as drastic

reprogramming of metazoan body architecture (despite a

normal genome) by rewiring physiological network states

[120–122]. Editing of ‘pattern memories’ in vivo, such as the per-

manent conversion of genomically wild-type planaria into a

two-headed form [120–122], represent the first novel capabilities

arising from the pursuit of the proposed research programme at

the bench, and are likely just the tip of the iceberg.

Future research should investigate in depth what models

can be adapted from computational neuroscience to biological

modelling—especially if the molecular conservation of mech-

anisms can be exploited for parallel insights into pattern

memory. One example application may be the effort to under-

stand cell signalling during pattern control by leveraging on

the analogies with information flow (synaptic exchanges)

implied in a specific cognitive operation such as perceptual

(e.g. visual) processing. Leading theories of perceptual proces-

sing in neuroscience follow a predictive coding (or similar)
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scheme based on interactive, top-down and bottom-up proces-

sing pathways. In these models, perceptual processing is a

function of what you expect and not ( just) of stimuli; this is

quite literal, in the sense that what is propagated upward in

a predictive coding hierarchy is a prediction error (roughly,

the difference between expected and sensed stimulus), not

the stimulus itself [89]. Future models of how cells interpret

incoming signals may use a similar (predictive coding)

scheme, not a purely feedforward scheme. There are numerous

other examples of brain computations (e.g. evidence accumu-

lation, normalization, winner-take-all selection) that are well

characterized in terms of neural circuits and synaptic

exchanges, and which may provide insights to study cell sig-

nalling and other biological phenomena [90,149,150].

Establishing a quantitative, predictive, mechanistic under-

standing of goal-directed morphogenesis will enrich many

fields, forging new links to information and cognitive sciences,

and perhaps even help neuroscientists understand the
semantics of electrical states in the brain. In addition to

novel capabilities for regenerative medicine and synthetic

bioengineering [151], the conceptual advance of includ-

ing top-down strategies is likely to strongly potentiate the

well-recognized need for cross-level integration across biology.
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