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Mammals use endogenously produced heat to maintain a high and relatively

constant core body temperature (Tb). How they regulate their Tb during repro-

duction might inform us as to what thermal conditions are necessary for

optimal development of offspring. However, few studies have measured Tb

in free-ranging animals for sufficient periods of time to encounter reproductive

events. We measured Tb continuously in six free-ranging adult female African

lions (Panthera leo) for approximately 1 year. Lions reduced the 24 h amplitude

of Tb by about 25% during gestation and decreased mean 24 h Tb by

1.3+0.18C over the course of the gestation, reducing incidences of hyperther-

mia (Tb . 39.58C). The observation of improved homeothermy during

reproduction may support the parental care model (PCM) for the evolution

of endothermy, which postulates that endothermy arose in birds and mam-

mals as a consequence of more general selection for parental care. According

to the PCM, endothermy arose because it enabled parents to better control

incubation temperature, leading to rapid growth and development of off-

spring and thus to fitness benefits for the parents. Whether the precision of

Tb regulation in pregnant lions, and consequently their reproductive success,

will be influenced by changing environmental conditions, particularly hotter

and drier periods associated with climate change, remains to be determined.
1. Introduction
Reproduction is regarded as a particularly costly period of life, with gestation and

lactation often requiring the most resources and potentially leading to energetic

trade-offs [1]. Measuring how adult females allocate resources during these

phases might help us understand how and why different homeostatic processes

are prioritized, particularly under free-ranging conditions which can vary unpre-

dictably and in which resources are limited. We measured the Tb and monitored

the life histories of six free-ranging lionesses over a sufficient period to encounter

pregnancies—approximately 1 year. During this time, three lionesses experienced

pregnancies and gave birth to litters of cubs, and three did not, allowing us to

compare Tb patterns in lionesses before, during and after pregnancies, and

between lionesses that did, and did not, experience pregnancy.
2. Material and methods
We measured the Tb of six adult free-ranging lionesses, by surgically implanting min-

iature temperature bio-loggers (DST centi loggers, Star Oddi, Gardabaer, Iceland)

between the parietal peritoneum and the transversus abdominis muscle. Bio-loggers

were removed approximately 1 year later. During our study, three lionesses gave

birth to litters of cubs (three cubs each), and three did not. All study animals were

monitored frequently by direct observation throughout the study.
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Figure 1. Reproductive state and Tb of lionesses. Raw Tb data recorded every 5 min for each lioness included in the study coloured by reproductive state (blue,
pregnant; red, lactating; black, non-pregnant and non-lactating). The light grey line indicates the trend in Tb. The temperature logger in lioness 6 did not produce
reliable data after the beginning of May.
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We used the statistics program R [2] and package ‘nlme’ [3] to

perform a linear mixed effects analysis of the relationship between

24 h amplitude of Tb and reproductive status. The 24 h amplitude

of Tb was defined as the difference between the maximum and

minimum 24 h Tb. We recognized three reproductive states: preg-

nant, non-pregnant and lactating. Non-pregnant is taken to mean

non-pregnant and non-lactating. We included 24 h dry-bulb temp-

erature range and reproductive status (without an interaction term)

as fixed effects in the model. As random effects, we had intercepts

for individual. The 24 h amplitude of Tb was likely to be temporally

auto-correlated so we included a correlation structure with an

autoregressive process of order 1. P-values were obtained by likeli-

hood ratio tests of the full model that contained the effect in

question (reproductive status), against a null model that did not

include the effect in question. We used multcomp [4] to perform a

post hoc multiple variable comparison to determine in which repro-

ductive states 24 h amplitude of Tb differed. Linear mixed effects

analysis was also used to determine the relationship between

mean 24 h Tb and ‘pregnancy day’ (the number of days into a ges-

tation), and only data recorded during gestation were included in

the analysis. We included mean 24 h dry-bulb temperature and

pregnancy day as fixed effects, and included individuals as

random intercepts, with an autoregressive correlation structure of

order 1. Once again, p-values were obtained by likelihood ratio

tests of the full model with the effect in question (pregnancy

day), against a null model that did not include the pregnancy

day. Raw data are accessible online [5].
3. Results
Mean female 24 h Tb was 37.7+0.18C (1 s.d. calculated

between individual means) outside of pregnancy. Pregnancy

day had an effect on mean 24 h Tb (x2
1 ¼ 58:8, p , 0.0001).

In a 108-day gestation, Tb decreased by 1.3+0.18C
(approximately 0.018C per day, s.d. estimated by model,

figure 1). Reproductive status affected 24 h amplitude of Tb

(x2
2 ¼ 106:7, p , 0.0001), which was approximately 25%

lower during pregnancy (mean ¼ 1.7+0.38C) than

when females were lactating (mean ¼ 2.4+0.38C; z ¼ 10.8,

p , 0.0001) or not pregnant (mean ¼ 2.2+0.38C; z ¼ 7.9, p ,

0.0001). Mean 24 h amplitude of Tb was not different between

non-pregnant and lactating (z ¼ 1.7, p ¼ 0.2) reproductive

states. Reduced 24 h amplitude of Tb during pregnancy indi-

cates that lionesses improved homeothermy during

pregnancy compared with non-pregnant and non-lactating

periods. Incidences of hyperthermia (Tb . 39.58C) occurred

less frequently in females during pregnancy than when they

were lactating or non-pregnant (figure 1).
4. Discussion
Improved homeothermy, and a continuous decline in mean Tb,

which we refer to as gestational hypothermia [6], appear to be

thermal characteristics of gestation in lions. As far as we are

aware, our study is the first to demonstrate gestational

hypothermia in free-ranging mammals, with mean 24 h Tb

1.38C lower at the end of pregnancy. Over the same period,

there was no change in Tb of non-pregnant lions. The clear

trend of decreasing mean Tb in lionesses began in the first tri-

mester (figure 1), earlier than in reports of gestational

hypothermia in laboratory animals [7–9]. In addition to the

decline in mean Tb, pregnant lions also regulated Tb with

greater precision over 24 h, with the mean amplitude of Tb

0.68C lower than that when non-pregnant or lactating.

Gestational hypothermia has been observed in a variety

of species under laboratory conditions [7–11], and appears
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to represent a regulated reduction in Tb rather than an

inability to regulate a high Tb. The threshold temperature

for initiating cooling mechanisms was reduced in pregnant

compared with non-pregnant rats, indicating that pregnant

rats defended a lower Tb [12]. Pregnant rats, like non-

pregnant rats, also did not select a warmer microclimate

when it was made available to them [7]. In rats, a central

angiotensin AT1 receptor mediated mechanism appears to

play a role in generating the gestational hypothermia [11].

The improved homeothermy during pregnancy is likely the

result of increased thermoregulatory effort, by a combination of

physiological and behavioural mechanisms. Maintaining a

narrow 24 h range of Tb during pregnancy requires both food

energy and water [13]. The requirement of extra resources

makes improving homeothermy a costly process and a Darwi-

nian argument posits that there should be some corresponding

gain in fitness, or selection would act against this waste of

resources. One advantage of improved homeothermy during

gestation might be accelerated offspring development, resulting

from rapid cell division occurring in conditions that better

approximate the optimum temperature for cell division. For

large endothermic mammals that regulate Tb at a high tempera-

ture (usually between approx. 368C and 398C [13]), further

increases in Tb to accelerate offspring development are not feas-

ible. Rather, to accelerate offspring development, large

mammals may focus on spending more time at the optimum

temperature for development by increasing thermoregulatory

effort during gestation, as we see here in lions.

Lions have a particularly strong incentive to accelerate off-

spring development. Male lions dominate a pride of females

for only a short period (about 2 years [14]), during which

they must sire and raise cubs to maturity. If cubs have not

reached independence by the time incumbent males are

forced out, the cubs face a high likelihood of being killed by

incoming males [15,16]. The imminent threat of infanticide

gives females a strong incentive to achieve rapid fetal develop-

ment as this will reduce the time between the date on which

cub(s) are conceived and the date at which they reach indepen-

dence. As cubs that reach independence faster are less likely

to be exposed to and killed by infanticidal males, this may

explain why lionesses invest additional resources to increase

thermoregulatory control during gestation.

If rapid fetal development is the primary adaptive advan-

tage of improved homeothermy during gestation, as we

suggest, then the presence of improved homeothermy during

gestation in lions would support the parental care model

(PCM) for the evolution of endothermy. The PCM, as proposed

by Farmer [17], seeks to explain the convergent evolution of

endothermy as a by-product of more general selection for par-

ental care. According to the PCM, endothermy would have

enabled parents to better control incubation temperature, lead-

ing to rapid growth and development of offspring and thus to

fitness benefits for the parents.

Support for the PCM has been found in tenrecs, primitive

eutherian mammals, which were more homeothermic during

pregnancy than at other times [18]. Tighter regulation of Tb

during near-term gestation has also been demonstrated in

echidnas (Tachyglossus aculeatus), bats (Eptesicus fuscus) and

dunnarts (Sminthopsis macroura) [19], and more recently sup-

port for the PCM has been found in the remarkable discovery

of reproductive endothermy in a small (approx. 2 kg) reptile

(tegu lizard; Salvator merianae) [20,21]. Although data on free-

ranging large mammals during reproduction are scarce, if the
PCM does explain increased homeothermy during gestation

in lions, we might expect to observe it also in other species.

However, evidence in the literature is mixed. Bears practise

delayed implantation (embryonic diapause) and pregnancy

occurs during hibernation [22], making their thermal biology

complex. However, free-ranging bears (Ursus arctos) also dis-

played improved homeothermy during the gestation period

[22]. In springbok (Antidorcas marsupialis), neither homeo-

thermy nor gestational hypothermia was evident in

pregnant females [23]. However, the mean 24 h amplitude

of Tb in springbok was only 1.28C, and further decreases in

amplitude of Tb may only be possible at a prohibitive cost.

Gestational hypothermia is also likely to facilitate fetal

development. Fetal Tb is necessarily higher than maternal Tb,

because the metabolically active and rapidly dividing fetal

cells generate more heat than those of the mother, and fetal

Tb has been found to be approximately 0.58C higher than

maternal Tb for all species measured so far [9]. Cell division

has been found to cease at temperatures higher than 408C
[24], and developing fetuses are vulnerable to damage by epi-

sodes of hyperthermia [25]. Gestational hypothermia therefore

might be necessary to protect the fetus from damage caused by

episodes of hyperthermia. A lower maternal body temperature

may also protect the fetus from hypoxia by reducing metab-

olism, and therefore oxygen demand in the mother, or by

causing a leftward shift in the oxyhaemoglobin dissociation

curve—increasing oxygen affinity and saturation as a result [6].

Thermoregulatory responses of free-ranging animals expo-

sed to complex stressors differ from those of captive animals

[26], and insights from free-living animals are critical if we are

to understand how large mammals might respond to future

changing climates [27]. This study highlights the importance of

thermoregulatory control and protection from hyperthermia in

lions (and potentially other large carnivores) during gestation,

and has implications for conservation initiatives. For example,

large carnivores living in more extreme future environments

may be able to cope with normal daily thermoregulatory

demands but might fail to reproduce successfully.
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