
Time-frequency strategies for increasing high frequency 
oscillation detectability in intracerebral EEG

Nicolas Roehri [Student Member, IEEE],
Aix-Marseille Université, Institut de Neurosciences des Systèmes, and with INSERM, UMR 1106, 
13005 Marseille, France

Jean-Marc Lina,
Department of Electrical Engineering, École de technologie supérieure 1100, Notre-Dame Street 
West Montréal, Québec, Canada H3C 1K3

John C. Mosher [Senior Member, IEEE],
Epilepsy Center, Cleveland Clinic Neurological Institute, Cleveland, Ohio, 44195

Fabrice Bartolomei, and
Aix-Marseille Université, Institut de Neurosciences des Systèmes, and with INSERM, UMR 1106, 
13005 Marseille, France. APHM, Timone Hospital, Clinical Neurophysiology and Epileptology 
Department, 13005 Marseille, France

Christian-George Bénar [Member IEEE]
Aix-Marseille Université, Institut de Neurosciences des Systèmes, and with INSERM, UMR 1106, 
13005 Marseille, France

Abstract

Background—High Frequency Oscillations (HFOs) are considered to be highly representative of 

brain tissues capable of producing epileptic seizures. The visual review of HFOs on intracerebral 

electroencephalography is time-consuming and tedious, and it can be improved by time-frequency 

(TF) analysis. The main issue is that the signal is dominated by lower frequencies that mask the 

HFOs. Our aim was to flatten (i.e. whiten) the frequency spectrum to enhance the fast oscillations 

while preserving an optimal Signal to Noise Ratio (SNR).

Method—We investigated 8 methods of data whitening based on either prewhitening or TF 

normalization in order to improve the detectability of HFOs. We detected all local maxima of the 

TF image above a range of thresholds in the HFO band.

Results—We obtained the Precision and Recall curves at different SNR and for different HFO 

types and illustrate the added value of whitening both in the time-frequency plane and in time 

domain.

Conclusion—The normalization strategies based on a baseline and on our proposed method (the 

“H0 z-score”) are more precise than the others.
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Significance—The H0 z-score provides an optimal framework for representing and detecting 

HFOs, independent of a baseline and a priori frequency bands.

Index Terms

high-frequency oscillation; epilepsy; wavelet transform; whitening; stereoelectroencephalography

I. Introduction

Stereoelectroencephalographic (SEEG) recordings using clinical intracranial 

macroelectrodes are considered as a standard for identifying the epileptogenic zone (EZ), the 

part of the brain which has to be surgically removed for the patient to be seizure free. Brain 

activities of patients are recorded during one or two weeks, and the brain regions are then 

ranked according to their epileptogenicity, i.e. to the level of involvement in the initiation of 

epileptic discharges.

One of the most challenging aspects of these examinations is that the electrophysiological 

criteria are not clearly defined. A recently proposed marker consists in High-Frequency 

Oscillations (HFO, 80–500Hz) which have been shown to be an indicator of epileptogenicity 

[1]–[3]. HFOs can be divided into 3 bands: High-Gamma (HG, 80 – 150 Hz), Ripple (R, 150 

– 250 Hz), and Fast-Ripple (FR, 250 – 500 Hz) bands. There is however neither formal 

consensus nor a tool that enable clinicians to detect and identify these events objectively. 

The visual review of HFOs is time-consuming, tedious, and hardly reproducible because of 

the short duration (about a hundred milliseconds or less) and because the frequency (f) 
spectrum is dominated by low frequencies (1/fα spectrum). No automated detectors [4]–[7] 

have yet met a large consensus. Among possible strategies, time frequency (TF) analysis is 

an important tool for characterizing HFOs. In particular, it permits us to separate transients 

from actual oscillations, which have distinct signatures in the TF plan; however, the 1/fα 

spectrum impacts the TF maps. One obstacle that still remains is how to normalize the 

amplitudes across frequencies in order to capture equally well the activities in all the bands.

The purpose of this study is thus to propose a tool to objectively visualize and identify HFOs 

based on TF normalization or prewhitening. The underlying concept is to flatten, i.e. 

“whiten”, the spectrum in order to have a balance of power across frequencies. This 

flattening could however increase the noise and generate false detections. We therefore 

investigated and compared methods on different criteria and ranked them using the Area 

Under the Curve (AUC) of Precision and Recall (PR) curves. We applied these methods to 

simulated data with real human background (BKG) activity.

II. Methods

A. Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) of a signal f is defined as
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(1)

with ψ the wavelet function, a the scaling factor, and b the shifting factor. We chose to 

normalize the wavelet in L2,

(2)

in order for the estimate of the power spectrum – the wavelet spectral function [8] – to 

correspond to

(3)

with B the duration of the time window, which needs to be large enough for standard ergodic 

arguments. In other words, the wavelet spectral function has to be the average over time of 

the TF image for each frequency. This is important to assure consistency between the 

prewhitening methods (that operate in the time domain) and the TF normalization methods. 

A normalization of the wavelet in L1 would lower even more the power of the low 

frequencies in the TF image and act as another filtering stage (more details in Appendix A). 

We therefore used the normalization in L2 defined in (2).

We utilized an analytic Derivative of Gaussian (DoG) wavelet (a specific case of the Morse 

wavelet) with n = 20. It is expressed in the frequency domain as

(4)

We used the analytic DoG wavelet for its good mathematical properties: it is null for 

negative frequencies and thus provides a better estimate of the phase [9], unlike the classical 

Morlet wavelet. Such analytic wavelets could provide a better strategy for analyzing HFOs 

[10]. To compare the different whitening strategies, we computed the TF image in log-scale 

with 3 octaves (Oct) and 12 voices (Voi) to cover the 68 – 512 Hz band (i.e. the band of 

interest for HFOs). For the figures, we increased the number of Oct to obtain a broader 

frequency range (below 68Hz) for a better overview of the data.

B. Whitening Strategies

1) Prewhitening in time-domain—The different prewhitening methods were applied in 

the time-domain. Let n be the time index.
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The Diff method consists in a first-order backward differencing [5]. Let x̃ be the prewhitened 

signal

(5)

The motivation behind the diff method is that it suppresses the continuous component of the 

signal and lowers the low frequencies. The Discrete-time Fourier transform (DTFT) applied 

to a differentiated signal x gives

(6)

Thus its power spectral density (PSD) is

(7)

with X the DTFT of the signal x, ω = 2πf/fs its normalized frequency, f its frequency and fs 

the sampling frequency. The scalar (1 − cos(2πf/fs)) is monotonically increasing from [0, 

fs/4] in [0, 1], which indeed lowers the low frequencies compared to the high frequencies. 

The Diff prewhitening was applied on segments of interest (SOI), i.e. periods of BKG where 
an event of interest was added.

The autoregressive integrated moving average (ARIMA) [11] prewhitening computes the 

coefficients of a pth-order AR model (e.g. Matlab’s LPC function) on the dth-degree 

differentiated signal and filters the signal with the coefficient of the AR model. This method 

aims at finding the trend of the spectrum to flatten it afterward. Let ai (with i ∈ {1, 2, …, n}) 

be the ith coefficient of a pth-order AR model computed on x. The DTFT of a signal x 
prewhitened with the AR prewhitening gives

(8)

where “*” corresponds to the convolution. In other words, the AR prewhitening subtracts the 

autoregressive part of the spectrum from the spectrum. The ARIMA prewhitening is similar 

but the AR coefficients are computed on the dth-degree differentiated signal, yielding
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(9)

It is noteworthy that the ARIMA(0,1,0) prewhitening is equivalent to the Diff method (6). 

As discussed in [11](Section 14.6), the differencing allows us to effectively manage the 

drifts and trends in the data that would otherwise overwhelm the frequencies. The fact that 

the last parameter is null means that there is no moving average (MA). We use ARIMA with 

the MA set to zero, because we want the “pre-emphasis” filter to be strictly FIR and not 

“smear” a transient too far in the data, which would happen if we allowed an MA component 

in the ARIMA. Several parameters were tested, and the set (15,1,0) gave the best results. 

The ARIMA filter was applied on SOI and not on baselines. Increasing the order of the AR 

model would lead to over-fitting the spectrum and thus prewhiten also the signal of interest.

2) Time-Frequency Normalization—Normalization methods were applied to the TF 

image of the original signal. Let n and m be the time and frequency indices.

The Teager-Kaiser Operator Energy (TKEO) is mostly used to identify the instantaneous 

frequency and the amplitude of non-stationary signals [12], [13]. The TKEO applied to a 

continuous signal x(t) = A sin (Ωt + ϕ0) corresponds to

(10)

where “˙” and “¨” describe the first and the second derivative respectively. The energy 

obtained depends on the amplitude and frequency of the wave. Its equivalence in discrete 

time is:

(11)

Note that the TKEO cannot be used as a prewhitening method, since its output is already an 

energy. Indeed TKEO normalization (used in [14]) operates on the complex coefficients of 

the TF image of the SOI over time and for each frequency taken separately,

(12)

where “⨪” denotes the complex conjugate.
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The event-related spectral perturbation (ERSP) is a common way to normalize the TF maps 

in electrophysiological reviewing [15]. This method computes the mean μ[m] of the square 

modulus of the TF coefficients |Tf [n, m]|2 of a chosen baseline over time and for each 

frequency taken separately, and we apply this transformation

(13)

The baseline was taken in the same BKG but in a time-shifted window.

The z-score, another commonly used method, was applied to |Tf [n, m]|2 using the mean 

μtype[m] and the STD σtype[m] with type corresponding to either a baseline or the SOI itself, 

for each frequency taken separately. The baseline was selected the same way as for the 

ERSP. The two types of z-score will be further referred to as Zbaseline and ZSOI, and the TF 

transformation is

(14)

In fact, μ[m] is equivalent to the wavelet spectral function VB defined in (3). ERSP and the 

Zbaseline whiten the data by either dividing the |Tf [n, m]|2 coefficients by VB or subtracting 

VB from the coefficients, which would result in a flat spectrum in presence of BKG activity 

only. However, the results of Zbaseline and ERSP depend on the quality of the chosen 

baseline and its level of similarity with the BKG activity in the window of interest. For 

evoked potential, the baseline is usually taken in the window preceding the stimulus. It is to 

be noted that this does not guarantee that the BKG activity is similar before and after 

stimulus [16]. In HFO studies, finding a baseline for each channel can be difficult. This 

could be solved by the ZSOI that uses the event time window as a reference, but this implies 

that the events occur rarely within the window. This is however a strong hypothesis which is 

usually not verified. We therefore propose a new method – “H0 z-score” (ZH0) – which is 

built to be more robust to the SNR across frequency and does not require a baseline.

The first step of this method is to estimate the noise distribution in the complex plane at each 

scale. We thus made two hypotheses: 1) the global distribution HG per scale is made of a 

zero-mean Gaussian distributed noise H0 and our signal of interest H1; and 2) there is no 

correlation between the real and imaginary part in the center of the complex plan (the noise). 

This enables us to fit a Normal distribution on the center of the distribution of the real and 

imaginary part of the coefficients separately and calculate their mean and STD. Then the real 

and imaginary part are z-scored and the square modulus is taken to generate the TF image. 

The pseudo-code summarizing this technique is given below:

1: for a = 1st scale to last scale do

2:
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3:

  

4:

 calculate the first (Q1) and third (Q3) quartile and the interquartile range (IQR) of  and 

5:

  

6:

  

7:

  

8:

  

9:

  

10: end for

One characteristic of the ZH0 is that it whitens the TF by forcing the real and imaginary part 

of the coefficients to have broadly the same distribution across frequencies (Fig. 1).

The methods are illustrated in Fig. 2; their effect on the power spectrum is represented in 

Fig. 3.

Visualizing the signal in the time-domain is very important for clinicians, because they are 

more used to this type of representation than the TF map. One could argue that the 

normalization techniques do not permit to visualize the whitened signal in time, whereas the 

prewhitening methods do. In fact it is not the case for ZH0, thanks to the properties of the 

analytic DoG wavelet. Given that f(.) is a real-valued signal and the wavelet ψ is analytic, a 

reconstruction formula [17] is proportional to

(15)

with ℜ the real part of the complex number. Since , this could be 

simplified by using the linear analysis-reconstruction scheme [8] into

(16)

We thus define the ZH0 whitened signal as
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(17)

At the computational level, since we choose a log-scale representation and neglect the 

multiplicative factor, the whitened signal can be computed as

(18)

One should be aware that if the number of Oct is not high enough, the reconstructed signal 

will correspond to the original signal being band-pass filtered. Indeed the lower frequency 

captured by the TF decreases when the number of Oct increases. Moreover, the accuracy of 

the reconstruction increases with the number of voices per octave [17].

C. Simulated Data

In order to compare the different methods, we simulated five types of signals. Each segment 

measures 5 s and is composed of human BKG activity and a type of events. The different 

types are the following: BKG activity alone (s1), BKG activity with an artifact (s2), BKG 

activity with a simulated epileptic spike (s3), BKG activity with a simulated HFO (s4), and 

finally BKG activity with a simulated spike and simulated FR (s5). The spike, the HFO and 

the artifact occur at 2.35 s, 2.5 s and 3.75 s respectively. Spikes and artifacts were chosen 

because they lead to false detection in common marking methods. Epileptic spikes were 

simulated using the spline function of MATLAB, which interpolates the curves between 

specific points taken from a real epileptic spike. The width of the spike randomly changed 

across trials. Its amplitude was set to be proportional to the standard deviation (STD) of the 

BKG. Three types of HFOs were produced, one for each HFO band with frequencies of 323 

Hz, 181 Hz, and 114 Hz and a duration of six periods. To avoid edge effects, the spike and 

the FR were windowed beforehand and then added to the BKG. The artifact was simply 

generated by increasing a single point by a certain level (impulse function). This level 

corresponds to five times the STD of the chosen BKG. Examples of the five events are 

shown in Fig. 2. The piece of human BKG activity was randomly selected from a collection 

of recordings (sampling frequency: 2048 Hz) which was previously labeled as BKG, i.e 

signal without one of these events, from several patients and several brain areas. These 

recordings were performed on patients undergoing pre-surgical evaluation of drug resistant 

epilepsy with SEEG during slow wave sleep where HFOs are usually studied [18]. For 

standardization, the collection of BKGs were normalized by dividing each signal by its own 

standard deviation and multiplied by the median STD of the real data collection. Unlike 

previous studies [6], [19], the STDs were not computed on raw data but on data which were 

digitally bandpass-filtered (4th-order Butterworth) in the HFO band. The SNR was also 

calculated on the filtered data on the time duration of the HFO. This approach is motivated 

by the fact that SEEG signals are dominated by the low frequencies which would have 

increased the SNR in a non-representative manner.

Roehri et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Each si event was processed for each prewhitening or normalization method. However, those 

which were prewhitened were not normalized in TF and conversely, as described in Fig. 4

D. Real Data with HFOs

The aforementioned techniques were applied to real HFOs to give an illustration of clinical 

applications. These real HFOs were marked using an automatic detector [5] and verified 

visually [20] and were recorded from the same patients as in the simulation part II-C.

E. Method Quantification

To capture how relevant the representations are, we want to quantify how the oscillations are 

separated from the BKG activity. It is known that oscillations are well localized in TF 

images. They appear as “islands” or “blobs” [21] whereas spikes and artifacts are extended 

across frequencies. While analyzing visually such representations, we pay attention to the 

local maxima rising above the noise level. The method proposed here is to quantify the 

detectability of HFO by constructing Receiver Operating Characteristic (ROC) and 

Precision-Recall (PR) curves. To compute these curves, all local maxima in the HFO band 

are detected and labeled as True Positive (TP), False Positive (FP), True Negative (TN) and 

False Negative (FN) for each value of the threshold. This threshold takes increasing values 

ranging from the minimum to the maximum values across all TF images for each method 

and each HFO type independently. For the three types of simulated HFOs, 30 events of each 

type were generated.

TPs are local maxima which are above the threshold and are our peaks of interest, i.e local 

maxima of all signals s4 and s5 which are above the threshold and are in the confidence 

zone. The confidence zone was set as the zone of the image where the blob of the HFO 

should theoretically appear. It is a rectangular zone centered on the simulated HFO and at 

the frequency of the oscillation with a time width of 2σt and a frequency width of 2σf, where 

σt corresponds to the theoretical width of the wavelet at the corresponding frequency. σf was 

heuristically set to 30 Hz as being the accepted error on the frequency of the oscillation. FPs 

are local maxima which are above the threshold, but are not our peaks of interest, i.e local 

maxima of all signals s1, s2, and s3, which are above the threshold, plus those of all s4 and s5 

above the threshold, which are not in the confidence zone. TNs are local maxima which are 

not above the threshold and are not our peaks of interest, i.e local maxima of all signals s1, 

s2, and s3, which are not above the threshold, plus those of all s4 and s5 under the threshold 

which are not in the confidence zone. FNs are local maxima which are not above the 

threshold but are our peaks of interest, i.e local maxima of all s4 and s5, which are not above 

the threshold but are in the confidence zone.

ROC and PR curves are obtained by calculating the True Positive Rate (TPR) or Recall, the 

False Positive Rate (FPR) and the Precision or Positive Predictive Value (PPV) as follows

(19)
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(20)

(21)

The ROC curve represents TPR as a function of FPR and the PR curve PPV as a function of 

TPR.

The Area Under the Curve (AUC) of the PR curves was used as a criterion to rank the 

different whitening strategies. This measure was repeated 30 times for each SNR with 

random human background activities. The different SNRs were chosen according to the 

range seen in real data. The STD of the oscillation was obtained by decomposing the signal 

using the Empirical Mode Decomposition (EMD) [22] and taking the mode corresponding 

to the HFO band. The obtained signal was checked on TF representation before and after 

decomposition to ensure the correct EMD filtering. The STD of the noise was computed on 

two pieces of filtered BKG before and after the HFO occurs with overall length of the 

oscillation. The SNR of the real data were found to lie between 0 and 17 dB with a median 

value of 9 dB.

III. Result and Discussion

Fig. 3 represents the average spectrum of the signals s1 and s4 at SNR = 10 dB. In the first 

column, HFOs are dominated by the low frequencies in the non-whitened signal. This 

emphasized the importance of signal processing to visualize HFOs correctly. Moreover, the 

original spectrum has a “hockey-stick” like spectrum and is best fitted by two power laws 1/

fαi, with α1 ≈ 3 and α2 ≈ 1 for the frequency range of 10 – 200 Hz and 250 – 500 Hz (the 

FR band), respectively. All the techniques managed to flatten the spectrum. The Diff and 

TKEO methods do not succeed in removing the “hockey-stick” like behavior and 

consequently amplify the high frequencies, whether they are due to FRs or BKG. This could 

lead to more FPs. Furthermore, the R band appears to be in the “elbow” of the raw spectrum 

which is turned into the global minimum of the Diff and TKEO spectra. In other words, a R 

will need a high enough amplitude to overcome the high frequency BKG. Visually, the 

ARIMA, ERSP and z-score methods exhibit better performance in flattening the spectrum. 

The average BKG spectrum is flat and the HFOs stand out of the BKG. The peaks of the 

HFOs on the ZSOI spectral is nevertheless smoother than on the other spectra which is 

probably due to the aforementioned drawback of this method. Because of the high number 

of negative events (N) compared to the number of positive (P) events the ROC curves are 

pushed to the left-hand side corresponding to the low FPR values and are thus not 

discriminative or even seems wrongly efficient. This imbalance is due to the intrinsic local 

maxima generated by the BKG activity. In contrast, the PR curves are not sensitive to this 

imbalance and thus highlight differences between the methods [23], [24]. In a clinical 

setting, it seems interesting to address the proportion of TP within all detections (PPV (21)) 
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regardless of N, i.e. be more precise (high PPV (21)) than specific (high FPR (20)). PR 

curves are therefore preferred for further analysis.

Box and whisker plots of the AUC of the 8 methods applied to the simulated data are 

represented in Fig. 5 for 5 different SNRs. Raw TF representation which corresponds to the 

case without normalization nor prewhitening shows the worst performance overall, except 

for the ideal case with SNR = 20 dB. This is consistent with the aim of this study. Generally 

all the methods improve with increasing SNR. They exhibit poor performance for SNRs 

below 5 dB without having one method being significantly better than another one. This is 

not the case for larger SNRs. The ERSP and z-score methods have better results for SNR = 5 

dB for simulated FRs and Rs. As expected, the ZSOI falls behind the other normalization 

methods for all the frequency bands from SNR = 10 dB and its performances decrease after 

SNR = 15 dB. The more the signal of interest weights in the distribution, the more the 

parameters for the z-score are overestimated. The ERSP, Zbaseline and ZH0 perform the best 

across SNRs and frequency bands. The ARIMA method is the best prewhitening technique, 

but is still less efficient than the latter. The performance of the ERPS and Zbaseline may not 

be representative of the results which could be found in clinical settings because of the way 

the baseline was selected. In our study, the baseline was selected in the same BKG but in a 

time-shifted window. This means that the characteristics of the baseline were very similar to 

those of the BKG by construction. ZH0 is thus better in principle since it does not require a 

baseline. Moreover the normalization and ARIMA methods are very sensitive to the duration 

of the chosen window. Using windows below 5 s (≈ 10000 samples) would lead to bias in 

the estimators and deteriorate the performance of the methods.

IV. Applications

A. Objective identification of HFOs

The ZH0 could improve the objective identification of HFOs since it is independent on a 

baseline and frequency bands and enables the HFOs to be easily spotted without increasing 

the BKG activity. In Fig. 6 four real events are represented in the TF maps using the 

aforementioned whitening processes. A spike with a FR, a gamma oscillation, a HG, and a 

FR are depicted in the first, second, third and fourth column respectively. As discussed 

above, the ARIMA and ZSOI tend to increase high-frequencies whether they originate from 

the background or the signal. It is very clear in the first and second column. The spike is 

dulled and the FR very energetic but the high frequency background is visible above the HG 

for these two techniques whereas it is not for the others. Moreover, note the distortion of the 

spike made by the ZSOI. The Diff and TKEO methods seem to work fine when a single event 

occurs. In Fig. 3 we showed that these methods could not remove the elbow of the spectrum. 

Indeed in the first column the FR appears very dull compared to the spike for both methods. 

The baseline based methods (ERSP and Zbaseline) and ZH0 manage to capture all the 

frequency contents of the examples. However some slight differences can be noticed 

between the two baseline based methods and the ZH0 .... The HG, FR and Gamma 

oscillations are visible, and most importantly the FR and the spike are distinguishable even 

while co-occurring. Fig. 7 illustrates in wider frames other real events which are clearly not 

visible in the normal TF representation and difficult to capture in the time-domain without 
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stretching the signal but are evident in the ZH0 image. This normalization could especially 

improve identification of HFOs which are not distinguishable in the time series. There is still 

a debate on HFOs occurring within spikes. There are some reports of HFOs not visible in 

spikes [1], but it is possible that part of these could arise from filtering artifacts [21]. Time 

frequency methods should in principle improve this situation [19], but may be “blinded” by 

the high energy contained in the spike [25]. Fig. 8 represents a simulated FR which occurs 

during the build up of the spike (dashed boxes) and is clearly not visible in the original 

signal, and only slightly distinguishable when we zoom in. The ZH0 in the time or TF 

domain enables the searchers/clinicians to identify the HFOs without having to stretch or 

filter the signal to ensure the correctness of such “almost not visible HFO in spike”. One 

should be aware that even if the oscillation cannot be captured in the time-series, it does not 

necessarily mean that there is no oscillation. The ZH0 whitened reconstruction enhances 

greatly the FR without denaturing the epileptic spike. This method is also convenient to 

study the signal without having to saturate the color map and thus avoid losing the global 

significance of the signal.

B. Application beyond SEEG

This study mainly focuses on SEEG because HFOs are mainly studied in SEEG recordings. 

Recently some groups have tried to study HFOs in scalp electroencephalography (EEG) 

[26], [27] and magnetoencephalography (MEG) [28]. Since the assumptions made by the 

ZH0 are not relative to SEEG, one could easily apply it to EEG or MEG data since they also 

have a 1/fα spectrum. A gamma wave (G, 25 – 80 Hz) marked in an MEG recording is 

shown in Fig. 9. The TF map is whitened as for SEEG data and the gamma is highlighted.

C. Framework for a new detector

Using our method should speed-up the visual marking of HFOs. Nevertheless, it would still 

be time-consuming and would need human resources. Interestingly, the method could be 

integrated in existing detectors such as [7]. These detectors are based on a two- or three-step 

algorithm. First a threshold is applied on the time-series according to its short-time energy 

[4] or short-time line length [5], but this step suffers high FP [5]; a second step was thus 

introduced to decrease this number. The second stage usually uses time-frequency images 

which could be strengthen by the ZH0. We however think that the signal should already be 

whitened at the first step because the short-time energy and short-time line length are greatly 

influenced by the 1/fα spectrum even if they are band-pass filtered between 80 – 500 Hz. In 

fact, the Diff method was used to prewhiten the signal in [5] to improve detections and 

decrease the number of missed HFOs (FN), but this method does not exhibit the best 

performance as we showed above. Moreover, the study was made on band-passed data 

between 0.1 – 100 Hz because of the low sampling frequency (200 Hz). We believe that FN 

would even be higher on data recorded with the current sampling frequency (2048 Hz) 

without whitening processing. Therefore to solve these issues, HFOs could be detected 

directly in the ZH0 TF map. Such a detector would select all local maxima above a threshold 

and label these maxima according to the shape of the “blob” into oscillation, spike or other. 

Using ZH0 normalization would actually have several interesting assets. By construction, the 

background activity can be modeled by a standard normal distribution (μ = 0 and σ = 1) at 

each frequency. The local False Discovery Rate (lFDR) [29] is an empirical Bayes approach 
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which is based on the similar hypothesis than the ZH0. In short, this method assumes that the 

observed data histogram HG is a mixture of H0 (noise) and H1 (signal of interest), and that 

H0 is in the center of the histogram. It then defines a threshold such as

(22)

with thr the threshold and Q the accepted level of lFDR. The lFDR would provide one single 

threshold for all frequencies. Thresholding methods used in previous detectors [4], [7], [30] 

calculated the mean and the standard deviation of skewed distribution. By combining the 

lFDR and ZH0 we could guarantee that the detected local maxima are not generated by the 

background. Another step would be needed to separate the oscillations from the spikes. 

Fortunately the ZH0 conserves the properties of the wavelet. An interesting property is that 

the frequency width of the wavelets is constant in log-scale. This implies that the oscillations 

which correspond to two Dirac distributions in the frequency domain have the same width 

whatever their frequency. A simple threshold on the frequency width could differentiate 

oscillations from spikes. The measured frequency width is the Full Width at Half Maximum 

(FWHM) of the island in the frequency axis. In the literature [1], [2], [4], a threshold on the 

duration is used to select only oscillations with at least 3–4 periods. To be consistent this 

threshold should be different at each frequency. An approach could be to compare the time 

FWHM of the response of a Dirac in the TF map and the time FWHM of the selected island. 

This would provide a constant threshold across frequencies. It is noteworthy that this 

detector labels all oscillations without prior frequency bands. An example of the detection in 

the parameter plane is shown in Fig. 10. The black dots represent all the detected local 

maxima, the triangles correspond to the local maxima that were labeled as spikes and the 

circles designate the local maxima labeled as oscillations. Some local maxima in the 

oscillation or spike area were not labeled because they were too close in time from another 

local maxima. An illustration of the results of the detection is shown in Fig 11. We 

implemented a prototype of this detector in our open source software AnyWave [31], as well 

as a reviewer add-on that enables the user to review and edit the previous detections. We are 

currently testing them in a clinical setting.

V. Conclusion

This paper has examined several whitening methods for HFOs representation in TF maps. 

We compared 7 commonly used techniques, plus one method which we designed to 

overcome the drawbacks of other methods. We ranked the methods according to their 

capability to flatten the spectrum without increasing the BKG activity. This was made by 

simulated HFOs at different frequencies for several SNRs and localizing all local maxima in 

the TF image. The AUC of the PR curves was used as a performance criterion. We 

determined that the best methods were the ERSP, Zbaseline and ZH0. However, as the ERSP, 

Zbaseline require a baseline, the ZH0 outperforms them by its robustness to non-stationarity of 

background activities. This technique also permits to reconstruct the whitened signal, which 

is an obvious advantage for clinical application. We would like to point out that real HFOs 

could be not visible in time-domain because they are hidden by the slope of a sharp 
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transients, which can be counter intuitive for neurophysiologists. The ZH0 provide an 

objective tool to identify HFOs since it does not over express high-frequency activity of the 

background and dissociate sharp transient from HFOs in time and TF domain. We have 

suggested that this technique could be applied on other types of electrophysiological 

recording with a power law spectrum. Future work will focus on the effect of the whitening 

methods in lower frequency bands and will test the detector on a large number of patients 

from multiple centers.
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The estimate of the power spectrum VB in L2 corresponds to
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(23)

In L1 it corresponds to

(24)

Note that . The main difference is that  is simply the mean over time 

of the scalogram for the scale a, and  is the mean over time of the spectrogram for the 

scale a, but multiplied by the scale a.
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Fig. 1. 
Distributions of the real part of the TF coefficients at different scales for different 

normalizations. a) shows distributions without normalization where large differences in 

width can be observed across frequencies. b) represents the distributions z-scored with μ and 

σ estimated on the whole distribution. The variability is reduced but there is still a difference 

in width. c) displays the distributions normalized with ZH0. In that case distributions are 

similar across frequencies. The same behavior is observed with the imaginary part (data not 

shown).
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Fig. 2. 
Examples of the 5 types of simulated events in time and time-frequency domains. The events 

are represented in a 500 ms-windows. The columns correspond to an event type, the first line 

shows the time-series, and the other lines illustrate the result of each method in the TF map. 

The HFOs were generated with an SNR of 10 dB. Each colormap was normalized between 

the minimum and maximum value of the image. As expected, the HFOs are not visible in the 

raw TF representation but appear in the whitened signal. Note how the ZSOI alters the 

images, especially the spike and the HFO.
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Fig. 3. 
The effect of the several methods on the spectrum are shown. 100 simulations of BKG with 

HFOs (SNR = 10 dB) were generated. The average estimate power spectrum VB of the BKG 

with HFO and the BKG are represented with solid and dotted line respectively. The dashed 

line corresponds to the standard deviation. The first column shows the spectrum of the non-

whitened signal (Raw) and the other columns correspond to the different methods. The lines 

define the three simulated HFO types(FR: 323 Hz, R: 181 Hz, HG: 114 Hz). For the 

representation, an offset of 1 was added to the Zbaseline and ZSOI to have positive values. The 

raw spectrum has a “hockey-stick like” spectrum, meaning it follows two power laws 1/fαi, 

with α1 ≈ 3 and α2 ≈ 1 for the frequency range of 10 – 200 Hz and 250 – 500 Hz. The 

HFOs clearly stand out of the BKG around their respective frequency. All the whitening 

methods manage to flatten the spectrum but the Diff and TKEO do not succeed in removing 

the “hockey-stick like” spectrum and thus enhance the BKG high frequency.
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Fig. 4. 
Schematic representation of the pipeline. The boxes correspond to a stage and the arrows to 

a path. In the first step, we generate an event si. This event is either processed through the 

prewhitening pipeline (solid line), the normalization pipeline with baseline (dotted line), or 

the normalization pipeline without baseline (dashed line). The prewhitening is done in the 

time-domain before the CWT, and the normalization is done after the CWT. This results in a 

whitened TF map.
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Fig. 5. 
Box and whisker plot of the AUC of PR curves of the original signal and the 8 techniques 

for several SNRs are displayed. Generally, all methods show better results when the SNR 

increases except the ZSOI. All methods exhibit poor performances for SNRs below 5dB 

without having one method being significantly better than another one. In most cases, the 

ERSP, the Zbaseline and ZH0 methods exhibit the best results. It is noteworthy that ZH0 is the 

only method which does not require to define a baseline.
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Fig. 6. 
Examples of 4 real events in time and time-frequency domains. The events are represented 

in a 250 ms-windows and are taken from 2 patients. The first to the last column corresponds 

to a spike with a FR, a gamma oscillation, a HG, and a FR respectively. The first line shows 

the original time-series, the second line displays the whitened reconstructed signals, and the 

other lines illustrate the result of each method in the TF map. Each color map was 

normalized between the minimum and maximum value of the image. As in Fig. 2, the HFOs 

are not visible in the raw TF representation but appear in the whitened signal and TF.
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Fig. 7. 
Examples of real FR and HG are illustrated in a wider frame. The FR and HG are 

represented in the time-domain and in the Raw and ZH0 TF image in the left and right panel 

respectively. The round inset is a stretched version of the FR. Both HFOs are completely 

hidden in the Raw TF map but clearly visible in the normalized version.
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Fig. 8. 
An example of a simulated Fast-Ripple (FR) occurring during a sharp transient. The box 

with dashed lines delineate the FR. The first line corresponds to the time course of the raw 

(above) and the ZH0 whitened reconstructed signal (below.) The second line is a stretched 

version of the first line. The third and fourth lines are the raw and ZH0 TF maps relative to 

the first line respectively. This HFO is hardly distinguishable in the time and TF domain on 

the original data. It is however evident in the ZH0 frame and whitened reconstructed signal. 

Note that the spike is still present in the whitened reconstructed signal.
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Fig. 9. 
An example of a real gamma oscillation (G) from MEG data is illustrated. The G is 

represented above in the time-domain and in the Raw and ZH0 TF image. The oscillation is 

enhanced in the ZH0 image.
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Fig. 10. 
Representation of the local maxima in the feature space. The time ratio in the x-axis 

corresponds to the Full Width at Half Maximum (FWHM) in time of the island relative to 

the local maxima compared to the width of the impulse response at the same frequency. The 

frequency spread in the y-axis is calculated in the TF image as the FWHM in frequency of 

the island relative to the local maxima. The black dots represent all the local maxima above 

the threshold. The triangles, and the circles are the local maxima that were labeled as spikes 

and oscillations respectively.
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Fig. 11. 
Example of the detection rates. The results of the detections are displayed in a bar graph 

giving the spike rates and the oscillation rates of given frequency ranges. These ranges can 

be manually set up. The name of the channels correspond to the name of the electrodes in 

bipolar montage (A: Amygdala, B: Hippocampus, H: Heschl’s Gyrus, OR: Orbitofrontal, 

TB: Temporo-basal, .’: left hemisphere). The numbers indicate the indices of the contacts in 

the mesiolateral axis.
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