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Mitochondria-specific antioxidant supplementation does
not influence endurance exercise training-induced
adaptations in circulating angiogenic cells, skeletal muscle
oxidative capacity or maximal oxygen uptake
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and Nathan T. Jenkins

Department of Kinesiology, University of Georgia, Athens, GA, USA

Key points

� Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the
negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative
stress produced during acute exercise facilitate beneficial vascular training adaptations, but the
effects of non-specific antioxidants on exercise training-induced vascular adaptations remain
elusive.

� Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that
maintain vascular integrity.

� We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would
affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial
capacity and maximal oxygen uptake in young healthy men.

� We show that endurance exercise training increases multiple CAC types, an adaptation that is
not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or
whole-body aerobic adaptations to exercise training.

� These results indicate that MitoQ supplementation neither enhances nor attenuates endurance
training adaptations in young healthy men.

Abstract Antioxidants have been shown to improve endothelial function and cardiovascular
outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations
remain elusive. General acting antioxidants combined with exercise have not impacted circulating
angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ)
supplementation would affect the response to 3 weeks of endurance exercise training on CD3+,
CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mono-
nuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2max)
in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and
24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285%
increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced
CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also
independent of MitoQ supplementation, exercise training significantly increased quadriceps
muscle mitochondrial capacity by 24% and VO2max by roughly 7%. In conclusion, endurance
exercise training induced increases in multiple CAC types, and this adaptation is not modified
by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted anti-
oxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training.
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Abbreviations BMI, body mass index; CAC, circulating angiogenic cell; CD, cluster differentiation; CD62E,
E-selectin; FFM, fat-free mass; FITC, fluorescein isothiocyanate; MDA, malondialdehyde; MitoQ, mitochondria-targeted
ubiquinone antioxidant; NIRS, near infrared spectroscopy; PBMC, peripheral blood mononuclear cell; PE,
phycoerythrin; ROS, reactive oxygen species; VEGFR2, vascular endothelial growth factor receptor 2; VO2max, maximal
oxygen consumption.

Introduction

Reactive oxygen species (ROS) are important signalling
molecules with roles in both health and disease. At
physiological concentrations, ROS play a regulatory role
in vascular homeostasis, beta oxidation, glucose uptake
and myokine production (Quintero et al. 2006; Zhang
& Gutterman, 2007; Silveira et al. 2008; Scheele et al.
2009; Finkel, 2012; Merry & McConell, 2012; Freed &
Gutterman, 2013). Importantly, transient increases in ROS
produced during exercise facilitate beneficial vascular and
skeletal muscle adaptations to exercise training (Lauer
et al. 2005; Ji et al. 2006; Ushio-Fukai, 2006; Powers
et al. 2011; Nikolaidis et al. 2012). Minimizing excessive
oxidative stress, via chronic exercise or exogenous anti-
oxidants, can attenuate the deleterious effects induced
by excessive amounts of ROS (Dudgeon et al. 1998;
Kojda & Hambrecht, 2005; Jablonski et al. 2007; Zhang
& Gutterman, 2007; Widlansky & Gutterman, 2011).

The effects of antioxidant supplementation on
training-induced changes in vascular function are unclear
(Polytarchou & Papadimitriou, 2004; Lauer et al. 2005;
Polytarchou & Papadimitriou, 2005; Ristow et al.
2009; Wray et al. 2009; Theodorou et al. 2011), but
literature suggests non-specific antioxidants do not alter
training-induced changes in circulating angiogenic cells
(CACs) (Balestrieri et al. 2008; Fiorito et al. 2008a,b).
CACs are an exercise-inducible subset of peripheral blood
mononuclear cells (PBMCs) with endothelial-specific
antigens and angiogenic characteristics thought to
facilitate endothelial repair by homing to sites of damage
and integrating into the endothelial monolayer or releasing
paracrine factors (Asahara et al. 1997; Kim et al. 2011;
Lansford et al. 2016). Importantly, the maintenance of
vascular integrity is thought to be contingent on the
number and function of CACs (Koutroumpi et al. 2012).
Exercise training enhances CACs and their regenerative
capacity (Koutroumpi et al. 2012; Landers-Ramos et al.
2015), but the effect of mitochondria-specific antioxidant
supplementation on training-induced changes in CACs is
unknown.

The mitochondria-targeted antioxidant MitoQ is
engineered to accumulate to the matrix surface of the
inner mitochondrial membrane and exert beneficial
effects through oxidation of ubiquinol to ubiquinone
and subsequent re-reduction, thereby reducing electron
backup and ROS formation (Smith & Murphy, 2010).
Moreover, the ubiquinone moiety appears to have some

beneficial effects on the vascular endothelium. For
example, evidence from animal and in vitro studies
has demonstrated that MitoQ administration mitigates
intracellular PBMC oxidative stress, prevents endothelial
apoptosis and re-establishes endothelial function in
disease states (Dhanasekaran et al. 2004; Graham et al.
2009; Marthandan et al. 2011; Gioscia-Ryan et al. 2014).
However, the efficacy of MitoQ supplementation is
uncertain (Doughan & Dikalov, 2007; Gane et al. 2010;
Snow et al. 2010). The majority of studies indicate
that non-specific exogenous antioxidant supplementation
does not alter or can even blunt exercise training
adaptations in muscle (Ristow et al. 2009; Wray et al. 2009;
Nikolaidis et al. 2012). Interestingly, however, our group
recently reported that a resveratrol/piperine supplement
in combination with endurance training enhanced skeletal
muscle oxidative capacity compared to training alone
in the human forearm (Polley et al. 2016). Collectively,
the mixed evidence on whether antioxidant supplements
alter training adaptations indicates that further studies are
warranted.

Therefore, the present study investigated the effect of
endurance exercise training with and without MitoQ
supplementation on CACs, skeletal muscle oxidative
capacity and maximal oxygen uptake. Consistent with
previously observed effects of non-specific antioxidant
supplementation during aerobic training (Balestrieri et al.
2008; Fiorito et al. 2008a; Ristow et al. 2009; Wray
et al. 2009; Theodorou et al. 2011) and MitoQ’s putative
mechanism, it was hypothesized that MitoQ would
either attenuate or have no effect on training-induced
adaptations in CACs, muscle oxidative capacity or
maximal oxygen uptake.

Methods

Ethical approval

The University of Georgia Institutional Review Board
approved all study procedures, which conformed to
Declaration of Helsinki standards, and subjects provided
written informed consent prior to participation.

Screening

Twenty 18–40-year-old men free of cardiovascular or
metabolic diseases, participating in less than 45 min of
vigorous activity 3 days per week, or less than 60 min
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of moderate activity 4 days per week for the previous 6
months were recruited. As previously described, vigorous
activity was defined as activities requiring greater than
or equal to six metabolic equivalents (e.g. running),
and moderate activity was defined as activities requiring
between three and six metabolic equivalents (e.g. brisk
walking) (Pescatello et al. 2014). Subjects were excluded
based on the following: any known food allergies, body
mass index (BMI) < 20 or > 35 kg m–2, currently smoking
or previous use within 2 years, currently taking more
than three pharmacological agents including prescription,
non-prescription, cardiovascular and/or metabolic drugs
or oral antioxidants � 300 mg day–1 within 120 days of
enrollment. A 7-day washout period was required for sub-
jects currently taking oral antioxidants at doses between
25 and 300 mg day–1 and any multivitamin or mineral
supplements.

Testing protocol

Baseline and post-training visits consisted of a blood
draw and assessments of body composition, skeletal
muscle mitochondrial capacity and maximal oxygen
consumption (VO2max). Subjects arrived in the laboratory
between 06.00 and 09.00 h for their baseline visit in
a fasted state (> 12 h) and refrained from exercise,
alcohol consumption and caffeine ingestion for the
preceding 24 h. Blood samples were obtained using
standard venipuncture techniques. Dual-energy X-ray
absorptiometry was used to assess body composition
(iDXA, GE Healthcare, Pittsburg, PA, USA). Skeletal
muscle mitochondrial oxidative capacity was measured
as previously described (Ryan et al. 2012, 2014). Briefly,
near infrared spectroscopy (NIRS) was used to measure
metabolic recovery kinetics in the left vastus lateralis
muscle following contractions induced by neuromuscular
electrical stimulation. The recovery kinetics of muscle
oxygen consumption were fitted to a mono-exponential
curve where the rate constant (min−1) derived from the
curve is directly related to the muscles’ maximal oxidative
capacity (Ryan et al. 2014). Whole-body VO2max was
assessed via a progressive cycle ergometer protocol. To
elicit VO2max within 6–12 min, the first stage commenced
at a workload between 150 and 200 W and increased
by 25 W every 2 min until subjects could no longer
maintain a pedal cadence of 60 r.p.m. Expired gas (Parvo
Medics TrueOne 2400, Parvo Medics, Salt Lake City,
UT, USA) and heart rate (Polar, Polar Electro Inc., Lake
Success, NY, USA) were collected throughout the graded
exercise test. VO2 was considered maximal if a plateau was
achieved (< 250 ml min–1 increase in VO2 with increased
work). If a plateau was not apparent, the following
criteria verified maximal effort: respiratory exchange
ratio > 1.15 and peak heart rate within 10 beats min–1

of age-predicted maximum. In a randomized and double

blind fashion, subjects were assigned to consume a placebo
or MitoQ pill every morning, with breakfast, throughout
study enrollment. Further, subjects were instructed to
maintain normal exercise routines and abstain from
alcohol. Placebo pills contained rice flour (Arrowhead
Mills, The Hain Celestial Group, Inc., Lake Success, NY,
USA). MitoQ (Antipodean Pharmaceuticals Inc., San
Francisco, CA, USA; obtained from Amazon.com, Inc.,
Seattle, WA, USA) capsules were prescribed in accordance
with the manufacturer’s recommended dose of 10 mg
daily. Baseline measurements were repeated 24–48 h after
the last training session. For post-testing measurements,
subjects ingested their assigned pill with water before
blood sampling, but otherwise remained in a fasted state
and did not consume caffeine for the previous 24 h.

Exercise training

Subjects completed three exercise sessions during the first
week of training, with each session consisting of 45 min
of stationary cycling at an intensity of 50–60% VO2max.
During the second and third weeks, training load increased
to 60 min sessions at 60–70% VO2max on 5 days per
week. Research assistants supervised all exercise-training
sessions and monitored intensity by heart rate and ratings
of perceived exertion.

Lipid peroxidation assay

EDTA-collected plasma samples were prepared by
centrifugation and stored at –80°C until examined in
duplicate for concentrations of malondialdehyde (MDA)
using the TBARS Assay Kit (Cayman Chemical Company,
Ann Arbor, MI, USA), according to the manufacturer’s
instructions. Absorbance values read at 530 nm yielded a
standard curve (R2 = 0.9956) to determine the amount of
MDA in each sample.

CAC preparation and data acquisition

PBMCs were isolated from 10 ml of EDTA-collected
blood samples (Vacutainer K2EDTA, Becton Dickinson,
Franklin Lakes, NJ, USA). After centrifugation on a density
gradient (Ficoll, GE Healthcare, Pittsburg, PA, USA),
cells were washed with PBS three times and characterized
with the following fluorescein isothiocyanate (FITC) and
phycoerythrin (PE) conjugated cluster differentiation
(CD) antibody combinations: FITC-CD3/PE-
CD31, FITC-CD14/PE-CD31, FITC-CD34/PE-VEGFR2
(vascular endothelial growth factor receptor 2), and
PE-CD62E (E-selectin) (all BD Biosciences, Becton
Dickinson, Franklin Lakes, NJ, USA). After fluorochrome
staining, PBMCs were incubated in the dark and fixed.
Fluorescence was acquired from 50 000 positive events
via flow cytometry (CyAn ADP, Beckman Coulter,
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Table 1. Subject characteristics

Combined (n = 20) Placebo (n = 10) MitoQ (n = 10)

Baseline After training Baseline After training Baseline After training

Age (years) 22.1 ± 0.7 – 20.8 ± 0.7 – 23.4 ± 0.9 –
Height (m) 1.75 ± 0.01 – 1.74 ± 0.02 – 1.76 ± 0.02 –
Mass (kg) 81.9 ± 2.8 81.7 ± 2.7 82.3 ± 4.9 81.9 ± 4.8 81.6 ± 3.0 81.6 ± 3.0
BMI (kg m–2) 26.9 ± 0.9 26.8 ± 0.9 27.4 ± 1.7 27.3 ± 1.7 26.3 ± 0.8 26.3 ± 0.7
Body fat (%) 24.8 ± 1.3 23.9 ± 1.3∗ 24.8 ± 2.1 23.9 ± 2.0 24.1 ± 1.7 24.0 ± 1.7
Fat mass (kg) 20.1 ± 1.6 19.3 ± 1.5∗ 20.5 ± 2.7 19.5 ± 2.6 19.7 ± 1.7 19.0 ± 1.6
FFM (kg) 62.4 ± 1.7 62.8 ± 1.7 62.4 ± 2.5 62.8 ± 2.5 62.5 ± 2.4 62.8 ± 2.4
Lean mass (kg) 59.3 ± 1.6 59.6 ± 1.6 59.3 ± 2.4 59.7 ± 2.3 59.3 ± 2.3 59.6 ± 2.3
MDA (µM) 9.4 ± 0.6 8.4 ± 0.6 9.6 ± 0.6 9.1 ± 0.9 9.2 ± 1.1 7.7 ± 0.8

Values are mean ± SEM. BMI, body mass index; FFM, fat-free mass = mass – fat mass; lean mass = mass – fat mass – bone; MDA,
malondialdehyde.
∗Statistically significant effect of training (P < 0.05).

Hialeah, FL, USA). Data were gated from unstained and
single-stained controls in respective populations and
analysed in FlowJo v.10.0.08 (FlowJo, LLC, Ashland, OR,
USA), as previously described (Shill et al. 2016).

Statistics

Statistical analysis was performed in SPSS, Version 23.0
(IBM Corp., Armonk, NY, USA). Data were analysed
using two-factor repeated measures ANOVA and Fisher’s
Least Significant Difference tests for simple effects. Data
are presented as mean ± SEM. Statistical significance was
accepted at P < 0.05. Approaching statistical significance
was defined as P � 0.10.

Results

Subject characteristics are presented in Table 1. MitoQ
did not produce any adverse side effects among
study participants, and no adverse events occurred
during exercise training. Exercise training adherence was
99% (258/260 sessions completed during the study).
Additionally, placebo/MitoQ pill compliance was 100%, as
monitored through daily questionnaires. No interactions
between training and MitoQ were observed (P > 0.05);
therefore, main effects of training are reported.

Training did not elicit significant changes in body
mass, BMI, fat-free mass (FFM), lean mass or MDA
concentrations (Table 1) (P > 0.05). Body fat percentage
and fat mass were reduced by 4% after training (Table 1)
(P < 0.05). Training induced 7% increases in absolute
(Fig. 1A) and relative (Fig. 1B) VO2max (P < 0.05).
VO2max relative to FFM increased by 6% (Fig. 1C)
(P < 0.05). Additionally, training increased quadriceps
muscle mitochondrial capacity by 24% (Fig. 1D)
(P < 0.05).

Training induced 105 and 285% increases in CD62E+
(Fig. 2A) and CD34+/VEGR2+ (Fig. 2B) PBMCs,
respectively (P < 0.05). A 33% increase in CD14+/CD31+
cells approached statistical significance after training
(Fig. 3A) (P = 0.056). Training did not alter
CD14+/CD31− or CD14−/CD31+ PBMCs (Fig. 3B, C)
(P > 0.05). Exercise training reduced CD3+/CD31−
PBMCs by 14% (Fig. 4A) (P < 0.05). Training did
not alter CD3+/CD31+, CD3−/CD31+ or CD3+ PBMCs
(Fig. 4B–D) (P > 0.05).

Discussion

The present investigation demonstrates that supple-
mentation of commercially available MitoQ at the
manufacturer’s recommended dose did not influence
training-induced changes in CAC subpopulations or
aerobic training adaptations in young healthy men.
Additionally, our observations of training-induced
increases in CD62E+, CD34+/VEGR2+ and CD14+/
CD31+ cells, but a lack of change in CD3+ or CD3+/
CD31+ cells, suggest that training-induced adaptations
in CACs are heterogeneous among cell types. Finally,
we demonstrate that MitoQ does not influence training-
induced changes in skeletal muscle or whole-body aerobic
capacity.

Vascular-derived mitochondrial ROS are cell-signalling
molecules that facilitate CAC recruitment and function,
contributing to the maintenance of vascular integrity
(Schroder et al. 2009; Ushio-Fukai & Urao, 2009; Fleissner
& Thum, 2011; Widlansky & Gutterman, 2011; Urao
& Ushio-Fukai, 2013). While exercise-induced ROS
have been shown to modulate CAC mobilization and
angiogenesis, the present study demonstrates MitoQ does
not influence the training-induced CAC enhancement
(Polytarchou & Papadimitriou, 2004; Ushio-Fukai, 2006;
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Urao et al. 2008; Fiorito et al. 2008b; Ushio-Fukai &
Urao, 2009; Suvorava et al. 2010). Consistent with these
results, previous studies have found CACs were not altered
by antioxidant supplementation during exercise training
(Balestrieri et al. 2008; Fiorito et al. 2008a,b). However,
these studies used vitamins C and E, polyphenols and
L-arginine, which do not specifically target mitochondrial
ROS. Taken together, our current results and the
available evidence support the notion that antioxidant
supplements, mitochondrial-targeted or otherwise, do not
alter training-induced effects on CACs.

Although mitochondria in contracting muscles
have generally been considered the source of ROS
during exercise (Kanter, 1994; Urso & Clarkson,
2003), accumulating evidence suggests mitochondrial
bioenergetics are not responsible for producing excessive
ROS, indicating an origin other than skeletal muscle
mitochondria, such as NADPH- or xanthine oxidases
(Herrero & Barja, 1997; Di Meo & Venditti, 2001;
St-Pierre et al. 2002; Kozlov et al. 2005; Jackson et al.
2007; Powers & Jackson, 2008). Furthermore, CACs’
predominant source of ROS is derived from sources
other than mitochondria, for example NADPH-oxidases
(Ushio-Fukai & Urao, 2009). Thus, non-mitochondrial
ROS production during exercise could prevent MitoQ
from being an effective modulator of exercise-induced

ROS, which may potentially explain our results. Moreover,
although MitoQ did not influence training-induced
changes in CACs, a main effect of training was noted
in several CAC subpopulations. Our study is the first to
report that short-term, aerobic exercise training affects
multiple CACs including CD62E+, CD34+/VEGFR2+
and CD14+/CD31+ PBMCs, with a reduction in
CD3+/CD31− PBMCs. As our study included only young
healthy males, future studies are warranted to determine
whether training enhances numbers of these cells in other
populations (e.g. patients with chronic diseases) or alters
their angiogenic function.

CD62E, an endothelial adhesion molecule, is critical
to cell adhesion, angiogenesis and CAC recruitment to
ischaemic tissue (Koch et al. 1995; Mazo et al. 1998; Oh
et al. 2007). The present study documents, for the first
time, an increase in CD62E+ CACs after an endurance
exercise training intervention. We recently reported that
CD62E+ PBMCs are an acute exercise-inducible cell type
with angiogenic potential (Lansford et al. 2016). The
cumulative effect of transient increases in CD62E+ cells
after each training session is a plausible explanation for
our finding of enhanced basal CD62E+ PBMCs after
training. Although post-training blood samples were
obtained 24–48 h after the final exercise session, it is
nevertheless possible we captured a residual effect of
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(P < 0.05).
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the final acute exercise bout rather than training effects
per se. Future studies are necessary to determine the time
course of acute exercise-induced increases in CD62E+
PBMCs.

CD34+ cell subpopulations, largely studied for their
role in regenerative medicine, facilitate angiogenesis
and rescue ischaemic tissue probably through paracrine
signalling (Asahara et al. 1997, 1999; Weissman, 2000;
Kim et al. 2011; Landers-Ramos et al. 2015). We
demonstrate increased CD34+/VEGFR2+ PBMCs after
exercise training, consistent with previous investigations
(Koutroumpi et al. 2012). Inherent antioxidative
phenotypes in CD34+ cells potentially explain why MitoQ
did not impact changes in CD34+/VEGFR2+ PBMCs with
aerobic training (Dernbach et al. 2004).

Monocytes, identified by the CD14 surface antigen,
migrate to sites of vascular injury and contribute to
vascular homeostasis (Awad et al. 2006). Although we
recently showed a decrease in CD14+/CD31+ CACs after
acute exercise (Lansford et al. 2016), the present study
found an increase in CD14+/CD31+ PBMCs after 3 weeks
of aerobic training. Not all investigations have reported an
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influence of exercise training on CD14+ cells (Stewart et al.
2005; Czepluch et al. 2011). Enhanced CD14+/CD31+
CACs after endurance exercise training may be indicative
of an anti-inflammatory state and active endothelial repair
(Harraz et al. 2001; Timmerman et al. 2008), but future
studies are needed to address the influence of angiogenic
monocytes on inflammation.

The influence of exercise training on CD3+ cells appears
to be mediated by training status, duration and intensity
(Shore et al. 1999; Lancaster et al. 2004; Wang et al. 2011).
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data approaching statistical significance (P � 0.10).
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The present study observed no changes in CD3+ cells,
but a reduction in CD3+/CD31− PBMCs after exercise
training. Although the precise mechanism underlying this
effect of training remains unclear, it is possible that the
training-induced decrease of CD3+/CD31− PBMCs was
linked to a reduction in fat mass and associated systemic
inflammation (Rajala & Scherer, 2003).

Our data indicate MitoQ supplementation neither
enhances nor attenuates endurance training adaptations
in skeletal muscle oxidative capacity and VO2max in
young healthy men. The aerobic stimulus produced a
24% increase in oxidative capacity, concurring with pre-
vious training studies in different muscles (Polley et al.
2016), and 6–7% increases in VO2max. The effects of anti-
oxidant supplementation on exercise-induced adaptations
could be attributable to training intensity and duration,
the dose of antioxidant, and the differential impact of
exercise on systemic-tissue ROS production (Nikolaidis
et al. 2012; Durand & Gutterman, 2014). The effect
of antioxidant supplementation may also be influenced
by the relationship between endogenous antioxidant
scavenging capacity and the source of ROS responsible for
exercise-induced training adaptations. Assuming MitoQ’s
aforementioned biochemical formula and molecular
function were operative in the present study, the observed
increases in VO2max and mitochondrial capacity may
have been driven by non-mitochondrial ROS production,
supporting previous studies investigating the role of
non-mitochondrial muscle ROS contributing to exercise

adaptations (Herrero & Barja, 1997; Di Meo & Venditti,
2001; St-Pierre et al. 2002; Kozlov et al. 2005; Jackson et al.
2007). It is also possible that the relatively lower dose of
MitoQ administered in the present study, 10 mg day–1 as
recommended by the manufacturer vs. 20–80 mg day–1

in previous clinical trials (Gane et al. 2010; Snow et al.
2010), was not sufficient to suppress the exercise-induced
ROS in our study subjects. Importantly, neither exercise
training nor MitoQ supplementation impacted plasma
MDA concentrations, an indicator of oxidative stress,
although we did not assay mitochondrial-derived ROS
production in CACs or muscle biopsy samples. Future
examinations incorporating these measures would be
informative.

Our study has limitations that warrant mention.
First, our study involved only young, healthy males.
Accordingly, our findings on the influence of MitoQ on
training-induced adaptations should not be extrapolated
to other populations, e.g. women, older adults and/or
patients with chronic diseases. Additionally, we did not
measure levels of MitoQ in blood or muscle tissue. Such
measurements would have provided insight into whether
the 10 mg dose, as recommended by the manufacturer
and therefore used in the present study, could induce
biological effects. Future studies should address these
limitations by examining other study populations
and incorporating muscle biopsies and/or CAC
oxidative stress measurements into their experimental
approach.
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Figure 4. CD3+ PBMCs before and after endurance training
CD3+/CD31− (A), CD3+/CD31+ (B), CD3−/CD31+ (C) and CD3+ (D) PBMCs before and after 3 weeks of endurance
training in placebo (white) and MitoQ (grey) groups. ∗Statistically significant effect of trainng (P < 0.05).
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In conclusion, the present study indicates that CAC
subpopulations and aerobic training adaptations are
not affected by supplementing commercially available
MitoQ, at the manufacturer’s recommended dose, during
exercise training in young healthy men. We provide
the first evidence of a heterogeneous CAC adaptation
to endurance exercise training not limited to cells of
progenitor origin. Specifically, we demonstrate an increase
in CD62E+, CD34+/VEGFR2+ and CD14+/CD31+
CACs and a reduction in CD3+/CD31− PBMCs
after training. Moreover, our study is the first to
use NIRS to non-invasively detect a training-induced
increase in the oxidative capacity of the human
vastus lateralis. We extend previous findings of anti-
oxidant effects on training adaptations by demonstrating
that mitochondria-targeted antioxidant administration
neither enhances nor attenuates short-term aerobic
training adaptations in muscle oxidative capacity or
whole-body VO2max.
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