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Key points

� The complexity of computational models is increasing, supported by research in modelling
tools and frameworks. But relatively little thought has gone into design principles for complex
models.

� We propose a set of design principles for complex model construction with the Physiome
standard modelling protocol CellML.

� By following the principles, models are generated that are extensible and are themselves suitable
for reuse in larger models of increasing complexity.

� We illustrate these principles with examples including an architectural prototype linking, for the
first time, electrophysiology, thermodynamically compliant metabolism, signal transduction,
gene regulation and synthetic biology.

� The design principles complement other Physiome research projects, facilitating the application
of virtual experiment protocols and model analysis techniques to assist the modelling
community in creating libraries of composable, characterised and simulatable quantitative
descriptions of physiology.

Abstract The ability to produce and customise complex computational models has great potential
to have a positive impact on human health. As the field develops towards whole-cell models
and linking such models in multi-scale frameworks to encompass tissue, organ, or organism
levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling
group wishing to reuse existing computational models as modules for their own work faces
many challenges in the context of construction, storage, retrieval, documentation and analysis
of such modules. Physiome standards, frameworks and tools seek to address several of these
challenges, especially for models expressed in the modular protocol CellML. Aside from providing
a general ability to produce modules, there has been relatively little research work on architectural
principles of CellML models that will enable reuse at larger scales. To complement and support the
existing tools and frameworks, we develop a set of principles to address this consideration. The
principles are illustrated with examples that couple electrophysiology, signalling, metabolism,
gene regulation and synthetic biology, together forming an architectural prototype for whole-cell
modelling (including human intervention) in CellML. Such models illustrate how testable units
of quantitative biophysical simulation can be constructed. Finally, future relationships between
modular models so constructed and Physiome frameworks and tools are discussed, with particular
reference to how such frameworks and tools can in turn be extended to complement and gain
more benefit from the results of applying the principles.
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Introduction

The complexity demanded of computational models is
increasing, both in terms of the detail required at a given
spatial or temporal scale, and in terms of the number
of scales to be considered. Recent initiatives focus on
describing and exploring large numbers of connected
processes such as interacting pathways (Büchel et al. 2013).
Models that address whole-cell level complexity, a goal of
Systems Biology for some time (Snoep et al. 2006), are
now being constructed (Karr et al. 2012).

With the increase in complexity comes difficulties
in communicating the meaning of model components,
maintaining such models in the light of new biophysical
information, and extending them to deal with new physio-
logical scenarios of interest. Reuse of existing models,
particularly in combination with other models to form
mathematical descriptions that simulate more complex
and realistic biophysical situations, will in the near future
become less of ‘an advantage’ and more of ‘a necessity’.

Over the last decade, the associated sub-field of model
representation has developed. Community standards
such as CellML (Cuellar et al. 2003) and the Systems
Biology Markup Language (SBML) (Hucka et al.
2003) have addressed some of the issues in model
communication by virtue of their functions as XML-based
model exchange protocols. Such declarative protocols
focus on the mathematical representation of entities
of interest and the relationships between them. In
contrast to procedural approaches such as object-oriented
programming, they separate the solver from the model,
thereby allowing flexibility in model simulation; this is
important as large-scale models are constructed from
many smaller-scale efforts. CellML in particular is used in
cellular and physiological modelling and allows modular
construction of models via component instances and
encapsulation hierarchies, and is accepted by many
journals as a community standard.

Despite this work, a modeller who today wishes
to construct a complex model in an efficient fashion
still faces several challenges. Ideally, their model could
be composed of modules from existing models, with
perhaps a few additional modules as required. They will,
therefore, want some way of finding existing models
that cover their own area of interest, and be apprised
of, or at least have access to information to readily
discern, what physiological conditions the models do
and do not cater for. The larger model will need to be
assembled from different modules, so the modules will
need to be connectable in some fashion, and making
those connections should be computer-assisted and auto-
mated as much as possible. The modeller must ensure
that the final model behaves appropriately enough to
facilitate investigation of the research question at hand, so
ideally it would be easy to test input–output responses for

the module components, either separately or in concert,
to both confirm model development directions and aid
‘debugging’. The behaviour of the resulting model should
also be readily presentable to facilitate validation, and
ultimately the validation process should itself be auto-
mated where possible. Finally, the resulting model should
be able to be treated, in future model building efforts,
as a reusable module itself, with information about the
assumptions and physiological coverage of the model
readily discernable by future re-users. While not all of these
goals are achievable today, a number of research projects
have led to the development of tools and frameworks to
begin to address these challenges.

A key enabler is the Physiome Model Repository
(PMR; models.physiomeproject.org; see Yu et al. 2011)
which provides an online centre for groups of researchers
to develop models, either publicly or privately, with
full provenance information (Miller et al. 2011). Model
versions can be ‘released’ via public ‘exposures’, and may
contain links to other models within the repository. These
links provide a dynamic mechanism for reuse of models
from the community of modellers during the composition
of new models.

The ApiNATOMY framework (de Bono et al. 2012) uses
links between model elements and ontologies to provide
efficient and accurate model search and retrieval in order
to facilitate reuse. In addition, it is also possible to auto-
mate the sending of retrieved models to a numerical
simulator so that the modeller can discover not simply
what models are available but what quantitative behaviour
is available (de Bono et al. 2015).

The Cardiac Electrophysiology Web Lab initiative
(Cooper et al. 2016) provides an automated method for
simulating models according to well-defined protocols
(each being a ‘virtual experiment’) and testing the
behaviour of the models against defined expected
behaviour – in a similar manner to automated
unit-testing frameworks for software development. Where
the protocols represent some real-world experimental
conditions, with care this system can also be used to
identify whether a given model behaves ‘properly’ in
a physiological sense. Thus, after some initial setup,
violation or compliance of assumptions can largely be
checked automatically.

OpenCOR (Garny & Hunter, 2015) is a desktop-based
software package that allows a modeller to construct,
simulate and interact with CellML models. The focus here
is on the user experience and providing a usable gateway
to the various frameworks and protocols. Via an extensible
system of plugins, it is also capable of providing an inter-
face for interacting with PMR and virtual experimental
protocols (such as the Simulation Experiment Description
Markup Language (SED-ML), as discussed below) and
for linking model elements to ontologies by providing an
interface for annotation with metadata.
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SemGen (Neal et al. 2015) provides an interface to the
SemSim framework that enables more complex anno-
tations to be made. SemGen allows the modeller to use this
metadata for visual module definition and combination
where module interfaces are defined dynamically, guided
by the modeller and biological and physical information
encompassed in metadata provided by OpenCOR or
SemGen (Neal et al. 2014).

Underpinning these tools is a set of standards that
allow the various software components to interoperate
and to help ensure clarity about what model components
represent. The CellML Metadata Framework (Cooling
& Hunter, 2015) connects model components with
biophysical concepts such as proteins and metabolites,
cellular components, and anatomical features. SED-ML
is used to clearly define virtual experiments, including
which models to simulate, simulation parameters, and
which model results are of particular interest and can be
considered ‘output’ (Waltemath et al. 2011).

These standards provide the connections between
models and tools and ontologies, but what of the models
themselves? We observe that, beyond providing a general
composition framework, comparatively little thought
has been given thus far to the structural design of
models within those frameworks. Many models found in
journals are monolithic and not designed with reuse in
mind. Others are modular within their own contexts but
require refactoring to reuse. As in wider engineering or
construction, as construct size and complexity increases,
design principles will be necessary to ensure a consistent,
understandable and extensible aggregation of concepts
in encoded mathematical models. Such principles would
be applicable to modelling in general but particularly
relevant to cardiac models which have reached a level
of sophistication and complexity that justifies careful
thinking about the design principles used and model
formulation.

For example, the CellML protocol embodies a number
of concepts for model representation that a modeller is free
to choose from. This freedom can stimulate innovation
but can also result in models that require modifications to
integrate. CellML has a proven track record in multi-scale
simulations (Nickerson, 2006), and integrated physiology
modelling (Beard et al. 2012). Models have been published
in the domains of cellular electrophysiology (Nickerson
et al. 2008), signal transduction (Cooling et al. 2007),
metabolism (Wimalaratne et al. 2009), cell contraction
(Terkildsen et al. 2008) and synthetic biology (Cooling
et al. 2010). Although these models are in some sense
mathematically compatible, and were all architected with
extension and reuse in mind, the style of model structure
differs between them. There was no clear set of CellML
design principles that would lead to modellers being
able to easily recombine models from all the domains
without significant refactoring. In order to construct larger

models, such as whole-cell models and models that allow
investigation of the physiological context of the cell, it is
necessary to restructure some or all of them according
to some set of common CellML design principles. What
should these principles be? How can we structure our
models to facilitate reuse in complicated contexts?

Here we develop a set of design principles that yield
models that are more easily reused and extended in order
to support complex, more physiologically relevant model
development. Example models are constructed from these
principles. The first example provides a relatively simple
illustration in an intracellular signalling context. The
second example provides a more complex illustration
linking one example from each of several different sub-
domains including electrophysiology, thermodynamically
sensitive metabolism, signal transduction, gene regulation
and synthetic biology. This second example is an
architectural prototype for an approach towards whole-
cell modelling [albeit limited to compartmentalised
ordinary differential equation (ODE)-based formula-
tions], as it covers a ‘core set’ of domains for
whole-cell modelling with genetic human intervention,
and is also used to demonstrate some of the practical
considerations in providing harnesses for model testing
and characterisation.

All models and components are available in the
online collaborative repository for computational physio-
logical models: the Physiome Repository (http://models.
physiomeproject.org), providing a publicly extensible
library of modelling modules across multiple domains to
facilitate complex cellular model construction.

Design principles for modularity in CellML

There are some similarities between mathematical models
and software. Both are encoded into sets of character
strings, representing relationships and/or processes. Some
have commented that model composition challenges are
equivalent to those in software composability (Bartholet
et al. 2004). As the software field matured, concerns
such as those outlined above were met by giving careful
thought to the design and structure of code and languages.
Inspired by this, and informed by our collective experience
in modelling scenarios in the domains above, we here
propose a set of modelling design principles to guide
reusable and extensible model development.

Our design principles can be grouped into three
categories: those dealing with the structuring of
mathematics into modules; those dealing with specifying
interfaces between those modules; and those dealing with
the definition of units and ‘data’ for the modules –
specifically model parameters and initial conditions.
Each category will be explained in turn. These principles
can be applied fruitfully in any order and combination
to new model construction, or to the wrapping or
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refactoring of legacy monolithic models to enhance model
extension.

Module structures. Many models have constructs that
are repetitions of the same biophysics represented with
the same mathematical formulation but with different
parameters. For example, consider a simple reaction
where two reactants D and E combine to form F (and
the stoichiometry of all reactants and products is 1).
If another reaction in the model similarly combines G
and H to form I, then both of these reactions will use
the same mathematical formulation, more generally as
J = a × b × kf, where J represents the flux of the
reactions (in, for example, microlitres per second), kf is
a rate constant, and a and b are reactant concentrations.
This commonality suggests the opportunity for reuse. In
the field of software engineering, it has been found that
modularisation on the basis of design decision is fruitful,
rather than on the basis of mere function or process
sequence which might at first seem more natural (Parnas,
1972). How to represent common biophysical processes
mathematically is the modeller’s design decision here. This
decision may in many cases only need to be made once for
many instances of the same biophysics. But, this principle
is not limited to representations of biophysics. Thus, while
we will also consider modularisation by function below,
these considerations lead us to our first principle: (1)
common mathematics should be abstracted into separate
modules and reused wherever possible.

It is natural to group biological processes and entities
into functional modules. One of the guiding principles
of good modules is that they exhibit high cohesion
(Stevens et al. 1974), that is, they have a well-defined
set of responsibilities that are strongly related, and all
responsibilities of that kind in the larger system reside
in that module. One of the strongest forms of cohesion
is ‘functional cohesion’ which in software engineering
can be considered in terms of deriving output data from
input data in a particular way. In a computational biology
model, we propose that this could be considered in terms
of outputs based on biological processes. For example: a
single reaction component may be considered as trans-
forming concentrations of reactants and rate constants
into fluxes of products. A ‘calcium handing’ component
may derive a calcium flux or transient based on various
inputs such as channel shear stresses, voltage changes,
stored calcium levels, etc. Some of the elements of a
functional module may be functional modules in their
own right, e.g. some lower-level biological process such
as a particular channel, or a calcium store. Such modules
could conceivably be reused in different ways, depending
on how the larger-scale components are partitioned.
Rather than building large, tightly cohesive structures,
as is common in monolithic model construction, we
propose constructing larger functional modules from

smaller modules in a nested fashion, in what may be
termed a composition hierarchy. Simply put: (2) build
large, cohesive functional modules from smaller, cohesive
functional modules. Ideally, the smallest cohesive modules
(at the leaves of the compositional hierarchy) would be at
the level of individual species and ‘atomic processes’ (such
as a particular reaction). However, if one is refactoring
an existing module that contains a ‘lumped parameter’
formalism, practically speaking it may not be easy or even
possible to arrive at quite that level of detail.

High cohesion of modules tends to be accompanied
by low coupling – a reduction in the number and
kind of connections between modules. While connections
between mathematical modules may not be undesirable
per se, care should be taken that such connections do
not reflect assumptions that one module makes about the
inner workings of another. In this we reflect, and have
surely been forewarned by, the citing of similar concerns
during the beginnings of software engineering (Parnas,
1971). It is sometimes tempting, if the modeller knows
that a module needs to communicate with another, to
embed target module-specific mechanisms in the source
or target module. In our experience, the most common
scenario is where several modules need to communicate
in order to produce some result, for example in the
production of a sum of fluxes of a second messenger
which has many possible sources and sinks. We can
avoid other-module-specific mechanisms by ensuring
that, instead of attempting to encode the connection in
one of a set of components, we (3) form separate modules
to handle multi-module communication.

Module interfaces. Consideration of highly cohesive,
loosely coupled modules leads naturally to the concept of
‘information hiding’ where the inner workings of a module
are simply not accessible to other modules. When done
well, this ‘separation of concerns’ (Dijkstra, 1982) allows
parts of a model to be reformulated without affecting
other parts. But it is possible to hide information that
could become important if the module were used in other
contexts. It is helpful to distinguish between design
decisions of a mathematical nature (which probably can
be hidden), and information of a biological nature (such
as the concentration of a particular metabolite, or density
of a receptor on a membrane). In the latter case, it is often
difficult to be certain that that information would not be
useful elsewhere in the wider model – new relationships
between biological entities are uncovered as scientific
research continues, and the scope of encompassing models
may change over time. Hiding that kind of information
may lead to the module having to be redesigned later, or, in
the worst case, a larger model may unwittingly include the
same biological entity more than once. For these reasons
we propose that modellers (4) expose information relating
to the amounts and rates of change of biological entities.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Mathematical modelling languages may allow, or even
demand, the definition of units for parameters and
variables. In such cases, it is common for modules that have
been created by different researchers and/or for different
purposes to expose parameters or variables that one would
wish to connect, at different scales or in different units
(that may or may not be dimensionally consistent with one
another). A conversion may be necessary, and a decision
may need to be made on where to do the conversion. Rather
than selecting one module or the other, and thus coupling
them to the conversion, we instead advocate that modellers
(5) use separate modules to perform unit conversions. This
could be considered somewhat analogous to the ‘Adaptor
Pattern’ in software engineering (Gamma et al. 1994).

Module units and data. Models typically require many
parameters and initial conditions, each set of which may
be specific to a virtual biological scenario or experiment.
Coupling these ‘data’ tightly with the mathematical
modules that utilise them may make it difficult for these
data to be changed without unintended side-effects, and
may lock the modules into describing one particular
scenario. These undesirable effects can be reduced by
ensuring that we (6) separate all parameter and initial
condition definitions from the mathematical modules and
place them in their own dedicated modules. This parallels the
notion of ‘data independence’ developed for ‘Structured
Modeling’ of decision support systems (Geoffrion, 1991),
especially if one considers a complex mathematical model
to be a system for decision support, be it decisions on
what scientific hypothesis to adopt or what set of real
experiments to plan next, with multiple simulations as
‘what-if’ analyses on how the biology may be functioning.
Following this principle makes it easier to find and
alter parameter values when refining virtual experimental
conditions. It also facilitates the potential replacement
of parameter values with additional modules should, for
example, a constant need to be replaced with a variable
governed by some new process.

For protocols that allow the definition of new units, the
question of where, in a large model, to define them arises.
In Principle (2) we advocated a composition hierarchy
where leaf nodes are, ideally, individual biological entities
and processes. Since such leaf nodes should be able to
be recombined into different higher-level compositions, it
seems logical that units should be defined at the simplest
level of module in which they are used, thus keeping the
simpler modules cohesive with respect to their units. Unit
definitions themselves represent a design decision, and as
such could be considered a module in their own right.
Hence if the modelling language allows it, we propose
that modellers (7) define units at the lowest level of the
composition hierarchy possible.

Some unit and parameter or initial condition definitions
may be common across many models; units may be

defined according to the SI system of units and some
parameters may in fact be universal constants. In both
cases it seems helpful to define these once and promote
consistency amongst models and modules within models
by advocating that modellers (8) use standard unit and
universal constant modules where possible.

Summary of the design principles. For ease of reference,
the set of design principles is reproduced below, in the
order to be discussed.

(1) Common mathematics should be abstracted into
separate modules and reused wherever possible.

(2) Build large, cohesive functional modules from smaller,
cohesive functional modules.

(3) Form separate modules to handle multi-module
communication.

(4) Expose information relating to the amounts and rates
of change of biological entities.

(5) Use separate modules to perform unit conversions.
(6) Separate all parameter and initial condition

definitions from the mathematical modules and place
them in their own dedicated modules.

(7) Define units at the lowest level of the composition
hierarchy possible.

(8) Use standard unit and universal constant modules
where possible.

Examples

This section describes two example models formulated
from model modules that were constructed using the
principles. The first is a relatively simple example model
in a signalling context by which the application of
the principles can be described. The second example,
which reuses parts from the first example, shows how
the principles can be used to define an architectural
prototype for whole-cell modelling. This ‘Core Domains’
example provides more advanced examples of reuse that
following the design principles facilitates.

Signalling model example. We apply the principles to the
construction of a signal transduction model. This end-
othelial cell model combines the shear-stress sensitive
channels of Kang et al. (2007) with the calcium handling of
Plank et al. (2006) to form a model for calcium dynamics
on shear-stress from blood flow, as shown in Fig. 1.

The model can be simulated in OpenCOR (all example
models and their components are available online; please
see the Supporting information for more details on
retrieving and simulating the models). Please note that
while these are quantitative models, the actual parameter
values and scales of the output are not particularly
important here; our contribution lies in how such models
can be structured and composed. Broad qualitative

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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behaviour is shown in order to illustrate how some of the
different kinds of models may be composed, but this work
is not concerned with parameter, variable or output value
accuracy per se in this or in further models considered
here.

Model modules are implemented as CellML
components, which encompass module variables
and, optionally, mathematics. Components for a model
can be distributed among multiple files and copies of
components from other files can be made in-memory
using what is known as a CellML import (more details
can be found in Cuellar et al. 2003). The import feature is
used to implement Principle (1) (abstraction of common
mathematics), as reusable mathematics can be defined
once and then copies made for each required use of those
mathematics, as shown in Fig. 2.

Principle (2) (a compositional hierarchy of modules)
was followed by considering the natural division
between larger scale processes related to shear-stress,
calcium-handling and calmodulin activation. A schematic
diagram of the component hierarchy is shown in Fig. 3.

Large scale processes are constructed from aggregations
of finer-grained components that represent particular
biological entities or processes, implemented using
CellML’s group construct (Cuellar et al. 2003). Large scale
processes could themselves be included in even larger
models, as will be shown in a later example. Variables
that are required inputs or outputs at lower levels become
candidate input or output variables at higher levels –
design decisions where achieving high cohesiveness and
low coupling should, in general, be priorities.

Principle (3) (separate modules for multi-module
communication) is implemented as a separate component
for each species that participates in more than one process.
The aggregation of the resulting fluxes is handled in
components with a ‘ delta’ suffix as shown in Fig. 4. As
shown in that figure, it may also include multiplication
by factors to account for different volumes between
compartments. The output of this component is fed into
components that would be interested in the net rate of
change (via CellML connections; Cuellar et al. 2003), such
as the component that implements the species of interest.

Figure 1. Biological schematic diagram of the Signalling Model Example
Shear stress sensed by receptors (Rtau) leads to IP3 production and store calcium release. Calcium is also transferred
between the extra- and intracellular compartments via stress-sensitive calcium channels, calcium/sodium exchanger,
a calcium pump, a basal calcium leak and capacitative calcium entry. Calcium leads to activation of calmodulin
(CaM). Representative traces of Rtau, free intracellular calcium, and activated calmodulin over a 25 s simulated
time period are shown (please see the Supporting information for more details on the traces).

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Principle (4) (exposing entity information) is
implemented by considering what entity amounts and
rates of change exist in the model. These are then exposed
in the interfaces of the higher level components that
encompass them. The ‘Calcium Handling’ component
exposes ‘Ca if’ and ‘J Ca if’ – the current intracellular
calcium concentration and the rate of change of that
species, respectively. Similar values are exposed for other
entities. Those values can simply be ‘read’ via connections
(from higher level components as will be shown in
the example models) without having to understand the
inner workings of the source component. For example,
the ‘Calmodulin Activation’ component uses the ‘Ca if’
value from ‘Calcium Handling’ as an input (the source of
the dotted line between the two components in Fig. 3A).
A more subtle requirement is revealed by considering
that the activation of calmodulin decreases the free intra-
cellular calcium concentration, and this ‘drain’ on calcium
should be reflected in the ‘Calcium Handling’ component.
Hence, in addition to exposing values to be read, the
higher level components also provide input variables
‘J <species> External’ to represent fluxes contingent on a

species from processes external to that component. In the
case mentioned above, the flux of calmodulin activation
is connected to a ‘J Ca if External’ variable exposed by
the ‘Calcium Handling’ component (noted in Fig. 3A
by the bidirectional arrow), so that the free intracellular
calcium flux summation can include it. Additional fluxes
could be connected by summing them in a separate
component first, then passing that component’s output
to the ‘ External’ variable. In general, each biological
entity likely to be of interest should have exposed, in any
component that encapsulates it, the current concentration
and the current flux, and take as inputs both the initial
value and a net flux from processes external to the
immediate parent component or its immediate ancestors.

Additional components are also used to perform unit
conversions (Principle (5)), necessary here as the amount
of inositol trisphosphate (IP3) in the system is handled
differently between the Kang et al. and Planck et al.
models. In the former it is a dimensionless construct,
whereas the latter considers the IP3 concentration. This
is handled relatively simply by a component at the top
level of the hierarchy, that performs a multiplication of

Ca_if

A B

Ca_Extrusion_Basal

Ca_Extrusion_Pump

Ca_Extrusion_Exch

Ca_st CaM_star CaM

Template_Species_uM

Template_HillFunction_uM

Figure 2. Common template components being imported to form biological entities (A) and processes
(B)
Squares are CellML components, and arrows show the direction of the import: for example, ‘Ca_if’ is an imported
instance of ‘Template_Species_uM’. Ca_if and Ca_st are free and store calcium respectively, ‘CaM’ is calmodulin,
and the ‘_star’ suffix denotes the activated version.

Environment

A

B

Shear_Stress_to_IP3 Calcium_Handling

Calcium_Handling

Ca_Extrusions Ca_Extrusion_Basal

Ca_Extrusion_Pump

Ca_Extrusion_Exch

Ca_st

Ca_if

CaStore_Release

CaStore_Resequestration

Ca_Intrusions

Ca_Intrusion_StressSensitiveChannels

Ca_Intrusion_CCE

Calmodulin_Activation

Figure 3. The biological component hierarchy of the Signalling Example model
A, the top level of the hierarchy, with large cohesive modules (dotted lines indicate general flow of information;
free intracellular calcium modulates both IP3 generation and calmodulin activation). B, the nested nature (brackets
indicate encapsulation relationships) of the Calcium_Handling module, which are constructed from smaller
cohesive components representing sub-modules. Similar sub-hierarchies could be drawn for Shear_Stress_to_IP3

and Calmodulin_Activation components.
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the dimensionless value from the ‘Shear Stress to IP3’
component by a concentration scaling factor, before
passing the result to the ‘Calcium Handling’ component.

Each of the components requires parameters or initial
conditions pertaining to the low-level components that
they encompass. Following Principle (6) (separation of
initial conditions and parameters from mathematics),
these sets are each housed in their own component which
is then connected to the components representing those
processes and entities, as shown in Fig. 5.

In CellML, units are housed in models that encompass
the components we have mentioned, their units and
connections between components at that level. Following
Principle (7), units are defined not at the top level, but at
the lowest level possible (see Fig. 6), ensuring that every
level has the units that it needs to be well defined.

Additionally, all unit definitions have been collected in
a single file that serves as an evolving ‘standard library’
of units for intracellular models, thus implementing the
unit-related aspect of Principle (8).

Note that CellML allows some flexibility with respect
to where models and components are stored on the
file system. Here our discussion centred on how to
organise components following the principles defined
earlier, independently of where the components are stored
on the file system. We do, however, note an inherent design
trade-off in having many files and thus being able to locate
components easily, but also having then to work between
perhaps a great many files at once, which may make
enhancing and maintaining the models more difficult
without a suitable tool.

Core domains example. Having devised the implemen-
tation of the principles in CellML, we now apply them
to the construction of a more complex model with
modules from multiple domains, in an effort to illustrate
how structured whole-cell modelling might occur. Our
simplified model, the ‘Core Domains’ model, does not

JExternal

JPlusCaStore_Resequestration

JMinusCaStore_Release

V_ce

JNet

Figure 4. Variables of the ‘Ca_st_delta’ component, which
handles multi-module communication between Ca_st (store
calcium) and other components, with respect to flux
Arrows represent input or output on variables listed by name. The
component includes ‘input’ variables for fluxes (positive or negative)
from store resequestration and release processes, as well as any
external processes (see the example models for more details). There
is also a variable for converting between different volumes (in this
case, cytoplasm/store). The net flux is component output, named
‘JNet’. The ‘Ca_st’ component will use ‘JNet’ to update the total
amount of calcium in the store, across a given time interval.

contain all the processes in a cell, rather it contains some
processes from each of several domains that one might
expect in a whole-cell model, in order to demonstrate
the architecture. More processes could be added in a
similar fashion to achieve the desired level of cellular
complexity.

This example, shown in Fig. 7, considers an electrically
active cell with one ion channel (an L-type calcium
channel from Nickerson & Buist, 2008). The channel
is sensitive to pH and adenosine triphosphate (ATP),
hence is also sensitive to the myosin ATPase activity as
implemented in the metabolic models of Vanlier et al.
(2009). The resulting intracellular calcium flux signals
calmodulin activation (reusing a high level component
from the Signalling Example model) which in turn
activates calcineurin and cycling of the transcription factor
nuclear factor of activated T-cells (NFAT) between nucleus
and cytoplasm (model from Cooling et al. 2009). This
transcription factor binds to a promoter of a variant of
a green fluorescent protein (GFP)-producing synthetic
biology device (modified here to represent a eukaryotic
system). The extensible nature of the components is used
to our advantage by additionally attaching a stimulus
current on the virtual plasma membrane, to depolarise the
cell leading to a calcium signal and subsequent increase in
GFP signal (Fig. 7). In order to readily demonstrate time
courses showing key activities, several rate constants were
scaled in this example. The model can be run in OpenCOR
(please see the online Supporting information for more
details).

Exploiting Principle (2), it is possible to structure the
large composite models so that they can be run and
simulated by themselves without modification, as well as
being connected to a larger model. That is, it is possible
to define a model composed of the ‘main’ component and
some parameter and time components, and also define
a larger model that connects different parameters (and
perhaps uses outputs from other components for those
parameters). An example of this is shown in Fig. 8A.
The former model can be thought of as a ‘test harness’
for the ‘main’ component, allowing an exploration and
debugging if necessary of that model with different
parameters, before attempting to simulate the complete
model.

We extend this to a more complex test harness.
We have included a ‘Calcium to Calcineurin Activation’
model that incorporates both the ‘Calcineurin Activation’
component (used in the Core Domains model) and a
separate implementation of intracellular calcium, which is
set to increase steadily over time. When this model is run,
it effectively tests the calcineurin activation component,
generating a characterising sigmoidal activation curve
(Fig. 8B). This is useful for testing the dynamic range of the
model with a given set of parameters, independently from
any larger model, aiding parameterisation and debugging.
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This example of a complex harness also illustrates how
Principle (2) helps to resolve conflicts between two models.
Both the Core Domains model and the described test
harness implement intracellular calcium. If a biological
entity or process is implemented in both models as a
constant parameter value, then it is simply a matter of
choosing which parameter to use from the two possibilities
(facilitated by Principle (6)). If, as in this case, the
processes and entities are implemented as components,
then only one component for each conflicting element
can be chosen. Principle (2) means that sub-components
of the components of interest can be separated out, and
desired components connected together, allowing conflict
resolution.

Principle (4) is more completely implemented in this
model such that the top level model is provided an inter-
face similar to its children. All the children’s input and
output variables are similarly exposed at the next level
up, unless a sibling component provides or exclusively
consumes that information. The notion of time and the
parameters and initial conditions are always exposed as
inputs to be provided by higher level modules. This means
that not only can a module be run or tested by itself,
but this entire Core Domains model can be incorporated
into a future larger model (including, for example,
extracellular detail, other cells or tissue-level effects) in

exactly the same way as its children have been incorporated
into it.

Universal constants are separated from the mathematics
(Principle (8)), in the ‘mohr taylor newell 2008 subset’
model, using values derived from Mohr et al. (2008).

When building components from scratch, it is easy to
apply the principles from the beginning. However, some
advantages can still be gained from legacy models by
applying only some of the principles to wrap existing
structures. The Core Domains example imports the L-type
calcium channel model from Nickerson & Buist (2008)
largely unchanged. The processes in the metabolic model
(from Vanlier et al. 2009) are also partly retained in
their original monolithic form. However, in both cases
care has been taken here to wrap the components in
the interfaces appropriate for implementing Principles
(4) and (6), demonstrating that they can take advantage
of the modular architecture of the larger model and be
thus usefully included. Principle (8) was also followed
with units being imported from our evolving standard
units file. These principles are relatively easy to apply
to existing modules to facilitate composability of higher
level models without necessarily having to re-factor all
the processes as Principle (2) would require. This could
also be a useful strategy if the advantages of following
Principle (2) were not needed in a particular situation.

Shear_Stress_to_IP3_Parameters

Shear_Stress_to_IP3

Calcium_Handling_Parameters

Calcium_Handling

Calmodulin_Activation Parameters

Calmodulin_Activation

Figure 5. Parameters and initial conditions are placed in their own components, here for each high level
biological component
Each has their own parameter set, but the separation allows for parameters to come from other sources too.
Shear_Stress_to_IP3 can run using its own parameters; however, when linked with other modules (such as
Calcium_Handling) it may be more appropriate for some parameters to come from that source instead. Following
Principle (6) allows such ‘parameter collisions’ to be resolved by the model builder.

Units_Cellular_Systems

uM uM uM

uM_per_s uM_per_s uM_per_s

Template_Hill_Function Calcium_Handling

Figure 6. Units reuse
Units (triangles) are defined at the lowest level and imported into the models (circles) housing low-level components
so that those components can be reused in other models along with consistent and expected unit information
(continuous arrows show unit import directions). Units for higher level modules (‘Calcium_Handling’, in this case)
may be (dotted arrows) imported from lower levels or from other ‘child’ models. Additionally, following Principle (8),
we include a ‘Units_’ model that houses standard units providing a library of such units for many models to use
promoting inter-model consistency. Higher level constructs can import all units directly from that common source,
reducing coupling that the former strategy would incur.
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For example, if there are no common species or processes
that change over time between one model and any
foreseeable model that connects to or encompasses it,
then the ability to resolve such a collision by importing
only non-overlapping components would not be
needed.

Finally note that while parameter and initial conditions
are separated from the rest of the model (Principle (6)),

their source is flexible and not necessarily centralised.
For example, the synthetic biology modules are designed
to be transferred with embedded parameters, and the
‘ExampleDevice’ component maintains this custom: if
run by itself it uses the embedded parameters from its
children. By contrast, the Core Domains model defines all
parameters centrally and passes them down to its children,
including ‘ExampleDevice’. Either, or combinations of the

Figure 7. Biological schematic diagram of the Core Domains model
The membrane is depolarised at t = 50s (voltage trace shown, scale is mV), resulting in calcium influx (trace shown
in µM) through L-type calcium channels (electrophysiology). The channels are sensitive to pH and [ATP], both of
which are influenced by myosin ATPase reaction (metabolism). Calcium activates calmodulin and calcineurin (trace
of ratio of active calcineurin–calmodulin complex shown), leading to NFAT cycling (signalling). NFAT (trace shown
in nM) is a transcription factor for a sample ‘device’ (gene regulation and synthetic biology) resulting in mRNA
production that is translated outside the nucleus to form a GFP signal (trace shown in nM), which increases as the
membrane is depolarised. Please see the Supporting information for more details.
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two, are valid options made possible by following the
principles.

Discussion

The scope and complexity demanded of mathematical
models increases as the field moves towards whole-cell,
multi-scale and clinically relevant modelling. Therefore,
the ability to design model structures such that their
compositional utility is increased will become more
important. Modelling work that follows the principles
described here will therefore have a greater chance of
directly contributing to new discoveries as the biological
modelling field increases in scope.

Following the principles, CellML models are structured
in a considered, coherent fashion, aiding the under-
standability and communicability of the models (once

the design is understood). This, and the separation
of parameters from the mathematics of the model,
provides a high level of maintainability as cohesive
modules – whether they represent low-level mathematical
constructs, simple biological constructs, or complex
biological scenarios – can be readily found and considered
in isolation. Additionally, parameters can be changed
without having to alter the modules themselves. The model
design also provides reuse without modification, as shown
in our examples by the calmodulin activation module.
Importantly, the design greatly increases extensibility;
models can be subsumed into other or larger models
without modification, even (if desired) while they
continue to be part of still other models.

We validated the principles’ utility in a series of example
models, culminating in the successful composition of a
model covering several key intracellular domains central to

CaN_to_DNAReady_NFAT
A

B

Calcium_to_Calcineurin_Activation

CaN_to_DNAReady_NFAT

CaN_to_DNAReady_NFAT_Parameters

NFAT_Cycling_Parameters

NFAT_Cycling_Parameters

NFAT_Cycling

NFAT_Cycling

1

0.8

Activated

Calcineurin

Proportion

0.6

0.4

0.2

0

0 500 1000 1500 2000

[Calcium]

NFAT_Cycling

Calcineurin_Activation

Calcineurin_Activation_Parameters

Calcium_to_Calcineurin_Activation Ca

Ca_deltaCalcium_to_Calcineurin_Activation_Parameters

Calcineurin_Activation_Parameters

Calcineurin_Activation_Parameters

(Process and Entity components)

Calcineurin_Activation

Calcineurin_Activation

Calcineurin_Activation

Figure 8. Simultaneous model reuse and characterisation
A, model aggregation and re-parameterisation. Here all models (rounded boxes) are complete and simulatable in
their own rights. Components (squares) imported (dotted arrows) from ‘NFAT_Cycling’ and ‘Calcineurin_Activation’
form part of the higher level model ‘CaN_to_DNAReady_NFAT’, which includes parameter components related
to the child components by default, but could equally source parameter values from other components.
‘Calcium_to_Calcineurin_Activation’ model imports the ‘Calcineurin_Activation components’, but also includes
a calcium species whose concentration varies over time, hence replaces the constant calcium concentration
parameter with the output of the ‘Ca’ component. B, output of the ’Calcium_to_Calcineurin’ model. The trace
of activated calcineurin proportion for increasing calcium concentration is shown (calcineurin and calmodulin
concentrations are fixed in that model).
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whole-cell modelling. While the principles are important
in this work, rather than the model per se, that example is,
to our knowledge, also the first model to incorporate all
of these cellular domains together, reflecting the utility of
the principles.

Elements of the principles can be found in earlier work.
For example, Principles (1) and (7) unify approaches
advocated in Cooling et al. (2007), Nickerson & Buist
(2008) and Wimalaratne et al. (2009). Cooling et al.
(2007) also advocated an early, CellML-specific version
of Principle (3), and Terkildsen et al. (2008) noted the
importance of what we have developed into Principle (5).
Elements of some of the principles are perhaps used by
modelling groups already. Here we present principles that
are coherent as a set, together with detailed examples, to
enable better reuse and extension of models from different
domains.

While the most gain is in following all the
principles, trade-offs in resulting code complexity (due
to fine granularity and interface construction) against
extensibility and clarity must be weighed by the modeller.
A model of small scope that is to be put together
quickly to explore some idea, or constructed as a learning
exercise, and crucially is not intended to be significantly
built upon or shared, may, if all the principles were
followed, accrue too great an ‘overhead cost’ for the extra
effort and structure to be worthwhile. We demonstrate
that even partial application of the principles can yield
gains, in particular in wrapping existing models that are
differently structured. Complete refactoring can be an
iterative process to be conducted if required, given the
modelling situation at hand. There are also trade-offs
with the set of principles. For example, in Principle (4),
there is a potential tension between reducing coupling and
designing larger module–module interfaces. If one wishes
to reduce the coupling that this principle promotes, a
viable compromise may be to connect a second, removable
component which presents a reduced interface to other
components rather than the full interface of the original
component – somewhat analogous to the ‘Façade Pattern’
known in object-oriented software design (Gamma et al.
1994). The principles are named as such as we hope to
facilitate thought rather than replace it.

While we are concerned with CellML in this work,
commonalities and differences between these principles
and those possible in other modelling paradigms would
be an interesting area of research. This includes protocols
that are semantically close to CellML (such as SBML) and
those that share a more distant common ancestor, such as
object oriented programming.

Models of physiology are concerned with biophysical
mechanisms and quantification of behaviour. CellML
is a powerful modelling protocol for representing such
models. Our principles greatly facilitate the potential
for CellML models to have a longer life cycle than one

or two modelling studies. For example, the response of
cells to external signals, and the feedback from those
cells to the wider physiological environment, can be
modelled in greater detail by the careful construction of
smaller models which are later combined to yield more
detailed representations of the workings of a cell. While
CellML has been used to provide a library of components
in Synthetic Biology (Cooling et al. 2010), libraries of
CellML components for the various domains needed
by systems of physiological complexity that interoperate
without modification have not been constructed. In part,
this is because a coherent set of design principles that
covers all domains did not exist. Hierarchies of small,
cohesive, loosely coupled modules allow the iterative and
partitioned development of cellular physiology models
and their validation. As more biophysical details emerge
from physiological research, ‘swapping out’ older modules
for modules embodying new knowledge will be facilitated.
Separation of the data from the model allows easier
application of models to new physiological scenarios.
Models that can be recombined without modification and
do not have to be partially recoded for new questions of
interest will, as a resource, facilitate the reuse of physio-
logical studies at the model level.

Realising the full potential of the principles will depend
on the interaction of the resulting models with Physiome
tools, frameworks, and standards. PMR already has facility
for linking ‘workspaces’ together so that enhancements to
a component model can influence higher level models if
desired. This functionality has already been demonstrated
in previous work (Cooling et al. 2010) and, as in that work,
components from the Core Domains Model provide the
seed of an extensible CellML module library, available to
the international modelling community.

Retrieving the modules from PMR via ApiNATOMY
would rely on thorough annotation of the modules
with links to appropriate anatomical and biophysical
concepts. While that is not the focus of this work, many
of the required elements exist, as briefly described in
the Introduction. Development of a standard annotation
process to complement the standard metadata framework
is a current research project.

The principles do not directly address the content
of the models. It is possible to completely follow the
principles and still connect models together that do not
make good sense. Unresolved duplications of entities or
processes, missing processes, or not updating the notions
of species or processes based on new additions are all
still entirely possible. In the Core Domains model, for
example, if more electrophysiological modules are added
that impact potassium ions, their impact on the potassium
ion species in the metabolic model, and vice versa, must
be considered. The principles make it easier to address
these modelling considerations, but the fact that they
may exist in a particular model is still up to the model
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builder to realise. Appropriate tagging of components
with metadata and automated model ‘sanity checking’
will help. The enhancement of model generation tools,
whether metadata-driven or not, such that the resulting
models follow the design principles above, is likely to be of
great practical benefit to the builders of complex models.
Annotation will also facilitate the modules’ inclusion in
SED-ML-defined experimental protocols.

As the number of reusable model modules grows,
tools such as the Cardiac Electrophysiology Web Lab will
become valuable in both testing the assumptions and
behaviour of the modules, and checking that the relevant
assumptions hold when the modules are composed with
others. Characterisation of modules’ behaviour would be
valuable to modellers searching for components to reuse,
and future work to determine how best to define and
present these characterisations is likely to be beneficial
to the modelling community. Extending the information
available on a given module to include sensitivity analysis
will also benefit both search and model composition.

Separation of the model parameters from the
mathematical relationships provides clear entry points for
parameter modification by virtual experiment protocols.
It will similarly facilitate parameter modification from
tools and platforms that use clinical information
to constrain and contextualise mathematical models
(Nickerson et al. 2016).

Tools such as SemGen may generate CellML models
from user directives at the biophysical level, or
from semantically driven model composition. Another
development that may assist with composition is the recent
application of bond graphs to intracellular modelling
(Gawthrop et al. 2015). This provides a method for
sketching the main players in a system and the effort
or flows between them, and generating mathematical
models that are automatically appropriately constrained
by, for example, mass, charge, or Gibbs free energy. This
will provide implicit biophysical constraints on signalling,
metabolic, electrophysiological and other models. Future
developments may include the generation of CellML code
from such models. Whether models are crafted by hand or
generated algorithmically, as in the above two examples,
following the principles described above will help ensure
that they are maintainable as testable modules that can
be directly reused in the composition of simulatable
quantitative descriptions of larger systems.
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