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Abstract

Hyperpolarized carbon-13 magnetic resonance imaging has enabled the real-time observation of 

perfusion and metabolism in vivo. These experiments typically aim to distinguish between healthy 

and diseased tissues based on the rate at which they metabolize an injected substrate. However, 

existing approaches to optimizing flip angle sequences for these experiments have focused on 

indirect metrics of the reliability of metabolic rate estimates, such as signal variation and signal-to-

noise ratio. In this paper we present an optimization procedure that focuses on maximizing the 

Fisher information about the metabolic rate. We demonstrate through numerical simulation 

experiments that flip angles optimized based on the Fisher information lead to lower variance in 

metabolic rate estimates than previous flip angle sequences. In particular, we demonstrate a 20% 

decrease in metabolic rate uncertainty when compared with the best competing sequence. We then 

demonstrate appropriateness of the mathematical model used in the simulation experiments with in 
vivo experiments in a prostate cancer mouse model. While there is no ground truth against which 

to compare the parameter estimates generated in the in vivo experiments, we demonstrate that our 

model used can reproduce consistent parameter estimates for a number of flip angle sequences.

Index Terms

Hyperpolarized carbon-13 magnetic resonance imaging; optimal experiment design; Fisher 
information; quantitative imaging; parameter mapping
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I. Introduction

Hyperpolarized carbon-13 magnetic resonance imaging (MRI) has enabled the real-time 

observation of perfusion and metabolism in preclinical and clinical studies [1]–[6]. This 

technology is made possible by techniques for dynamic nuclear polarization (DNP) that have 

led to signal-to-noise ratio (SNR) increases of four to five orders of magnitude compared 

with endogenous signal in dissolved 13C-labelled molecules [7], [8]. Injected [1-13C] 

pyruvate is frequently used as a substrate in metabolism experiments and its rate of 

conversion to [1-13C] lactate has been shown to distinguish between healthy and diseased 

tissues in animal [2], and recently human [4], studies.

In contrast with conventional MRI, magnetization is a non-renewable resource in 

hyperpolarized MRI. Conventional imaging relies only on thermal equilibrium polarization, 

therefore an arbitrary number of acquisitions can be performed if we allow time for the 

magnetization to return to equilibrium between acquisitions. In contrast, hyperpolarization 

can only be performed before a 13C-labeled substrate is injected into the body, and once 

injected the magnetization decays due to T1 relaxation and rapid T2 relaxation following 

radio frequency (RF) excitation. Thus, the choice of excitation sequence is important for 

managing the trade-off between present and future measurement quality.

In typical practice a constant flip angle sequence is used for excitation, with typical values 

ranging from 5–30 degrees. Alternative time-varying acquisition sequences include 

sequences that attempt to maintain constant observed signal over time [9], maximize the 

cumulative observed lactate signal over time [10], or saturate the lactate signal in each 

acquisition [11].

In this paper our goal is to design a time-varying flip angle sequence to achieve maximally 

reliable quantitative estimates of the metabolic rate that can be compared between tissue 

regions, across subjects, or over time. To achieve this we develop a statistical model of the 

observed data as a function of the flip angle sequence and design flip angles to maximize the 

Fisher information about the metabolic rate parameter.

We begin by presenting a mathematical model of the magnetization dynamics in the 

observed tissue in Section II. In Section III, we introduce a flip angle optimization procedure 

and present an optimal sequence. Next, we validate this result with computer simulation 

studies to demonstrate that our optimized sequence yields more reliable metabolic rate 

estimates than commonly-used flip angle sequences in Section IV. Finally, in Section V, we 

demonstrate the feasibility of this procedure in vivo and demonstrate the well-foundedness 

of our mathematical model with experiments in a prostate cancer mouse model.

The software and experimental data required to generate the figures in this paper are 

available at: https://github.com/maidens/TMI-2015.

II. Mathematical Model

Linear differential equations are well-established as models of metabolic flux measured 

using MR spectroscopy [2], [12]. It is shown in [13] that a first-order, two-site model with 
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unidirectional flux of pyruvate to lactate is sufficient to accurately model the appearance of 

lactate, when observed by hyperpolarized MR. This work also showed that increasing the 

fidelity of the model to incorporate bidirectional flux, or transport of lactate outside the cell, 

did not significantly improve the fit to hyperpolarized MR data. Therefore, we consider a 

two-dimensional system of ordinary differential equations

(1)

that models the magnetization dynamics in a tissue with an arterial input function u(t) and 

uni-directional conversion from the substrate (pyruvate) to a metabolic product (lactate), 

which has been commonly applied for hyperpolarized 13C pyruvate experiments. The state 

x1(t) denotes the longitudinal magnetization of pyruvate contained in a particular voxel in 

the tissue and x2(t) the longitudinal magnetization of lactate in the same voxel. The rate of 

metabolism of pyruvate to lactate is denoted kPL, the perfusion rate from the arterial input to 

the tissue is denoted kTRANS, and R1P and R1L are lumped parameters that account for T1 

decay in the magnetization along with other effects, such as metabolism of pyruvate into 

products other than lactate as well as flow of magnetization out of the slice. The input to the 

system u(t) is an unmeasured arterial input function (AIF) resulting from the injection of 

hyperpolarized [1-13C] pyruvate. In an experimental setting an AIF will be estimated based 

on the data collected, but for the purposes of designing a flip angle sequence, it will be 

assumed to be of gamma-variate shape

with parameters t0, γ, β, A0 given in Table I.

We acquire data at N time points separated by intervals of length TR. Each time t an 

acquisition is made, we must choose a flip angle αk,t for each compound k to be measured. 

If the magnetization of the k-th compound before the acquisition is xk, then this choice of 

flip angle allows us to measure a signal of magnitude sin(αk,t)xk, after which cos(αk,t)xk 

magnetization remains for future acquisitions (Fig. 1a). This causes discrete jumps, or resets, 

in the system state, leading to a hybrid dynamical system [14] (Fig. 1b). Since we are only 

interested in the system’s state at acquisition times, we can avoid technicalities associated 

with hybrid system modelling by discretizing the system in time and considering a discrete-

time dynamical system that simultaneously captures the evolution of (1) between 

acquisitions and the discrete jumps induced by the acquisitions. We define the transition 

matrices Ad and Bd
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that correspond to the discretization of (1) assuming a zero-order hold on the input between 

each acquisition [15].

We will construct metabolite maps using magnitude image data, which necessitates a Rician 

noise model. Using magnitude images allows us to avoid modelling sources of phase in the 

image which would require additional states and parameters to estimate. It would also be 

possible to perform the parameter mapping using complex images with Gaussian noise, but 

this would require revising the model to account for phase, or modifying the image 

reconstruction to estimate and remove phase from the acquired images.

Accordingly, we model the measurements as independent Rician-distributed random 

variables [16], which have probability density

where Iν denotes the modified Bessel function of the first kind of order ν. All together, we 

have the discrete-time model

(2)

Simulated trajectories of this model are shown in Fig. 2.

The model parameters are

and we have the freedom to choose
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to generate the best possible estimate of the unknown parameters. The noise parameters σk 

for k = 1, 2 can be estimated separately from a measurement of the background and are 

therefore assumed to be known. We fix a sampling interval of TR = 2 seconds, though this 

could in principle be included as a decision variable.

III. Optimal Experiment Design

In this section, we present a methodology for designing flip angle sequences to provide 

maximal information about the metabolic rate parameter kPL. This methodology is based on 

an optimization problem that can be solved to local optimality using nonlinear 

programming. To facilitate the implementation of this methodology, we have released an 

open source MAT-LAB toolbox for the design of optimal flip angle sequences. This toolbox 

is available at https://github.com/maidens/Flip-Angle-Design-Toolbox.

A. Theory

The goal of optimal experiment design is to estimate parameters in a statistical model from 

observed data with minimum variance in the estimates [17]. The most commonly used 

optimization criteria are scalar-valued functions of the Fisher information matrix. For a 

statistical model described by a family of probability density functions pθ(y) parametrized 

by a vector of parameters θ ∈ ℝp, the Fisher information is a p × p symmetric, positive 

semidefinite matrix defined as

where the expectation is computed under the distribution pθ.

In linear regression models with Gaussian-distributed measurements, the maximum-

likelihood estimator of θ is unbiased and has covariance equal to the inverse of the Fisher 

information matrix. Thus the variance of estimates of θ can be minimized by maximizing 

the Fisher information. For general models, the Cramér-Rao inequality

(3)

gives a lower bound on the covariance of any unbiased estimator θ̂ of the parameter θ in 

terms of the Fisher information matrix. In general, finite-sample efficient estimators do not 

exist, that is, there is no estimator that can achieve the Cramér-Rao bound based on a single 

experiment, or even a finite number of independent experiments. Nonetheless, the Fisher 

information is commonly used in optimal experiment design in nonlinear models as it is 

general, easy to compute, provides good results in practice and can be justified 

mathematically via asymptotic analysis [18].
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In this paper, we will estimate unknown model parameters using the maximum likelihood 

estimator (MLE) defined as

where Y is the observed data. Under mild assumptions, the maximum likelihood estimator is 

asymptotically efficient [19], that is,

(4)

as the number n of independent data sets used to compute the MLE tends to infinity. Here 

(0, ℐ−1) denotes the multivariate normal distribution with mean zero and covariance ℐ−1 and 

 denotes convergence in distribution. Thus, we see that asymptotically the MLE achieves 

the Cramér-Rao bound. While it is not necessarily the case in general that the MLE based on 

a single data set, or any finite number of data sets, has covariance equal to ℐ−1, it is often a 

good approximation. Thus, we attempt to design an experiment to reliably estimate θ by 

maximizing the Fisher information.

The Fisher information is a function of the true value of the parameter vector θ, which is 

unknown a priori. There are commonly three approaches to overcome this difficulty:

1. Minimax/maximin optimal design: Given a range Θ of values for the 

parameter vector choose the design α to maximize the worst-case 

information among all potential values of the parameter θ ∈ Θ (i.e. α* = 

arg maxα∈  minθ∈Θ μ(ℐ(θ, α)) for some measure μ of the size of the 

information matrix). This approach is advantageous because it provides a 

guaranteed lower bound on the information gained from an experiment 

despite parametric uncertainty. But it typically leads to a design α* that is 

optimized for a “corner case” in the parameter space, which may be overly 

conservative in practice. In addition, minimax/maximin objective 

functions are non-differentiable and can be difficult to optimize 

numerically [20], [21].

2. Bayesian optimal design: Given a prior distribution p0(θ) on the space of 

possible parameter values, maximize the expected information (i.e. α* = 

arg maxα∈  ∫ μ(ℐ(θ, α)) p0(θ)dθ). This approach handles parametric 

uncertainty nicely, but can lead to difficulties when it in unclear how to 

choose an appropriate prior, or when the parameter space is large and 

hence the computation of the high-dimensional integral is numerically 

intractable [22].

3. Choose a nominal value θ0 of the parameter vector at which to optimize 

the information (i.e. α* = arg maxα∈  μ(ℐ(α, θ0))). This approach is 
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conceptually simple and numerically tractable, but may suffer from a lack 

of robustness to the choice of θ0.

In this paper, we take the third approach. We address the potential lack of robustness to the 

choice of the nominal parameter value θ0 by a systematic numerical study of the robustness 

to parametric uncertainty in Section IV-C. These experiments demonstrate that for this 

particular model, an experiment designed using nominal values of the model parameters 

performs well across a wide range of values of the true parameter. It is possible that the 

results presented here could be improved further based on a minimax or Bayesian 

formulation, but this investigation is beyond the scope of this paper.

B. Computing Fisher information for our model

To find a maximum-likelihood estimate with minimum variance, we choose the sequence α 
to maximize the Fisher information matrix at a nominal value of the parameter vector θ. The 

nominal parameter values used are given in Table I. The T1 relaxation, perfusion and 

metabolic rate parameters were chosen based on our typical data in a prostate cancer mouse 

model, and nominal values for the input shape and noise parameters were chosen based on a 

maximum likelihood fit to an arterial input function measured in a preliminary experiment.

To compute the Fisher information, we use the expression derived in [23] for the (i, j)-th 

entry of ℐ:

(5)

where the sensitivities are computed recursively as

and ψ is defined in terms of the integral

C. Eliminating nuisance parameters

In practice, we do not necessarily need good estimates of all the unknown parameters in the 

model. For example, in this paper our primary goal is to estimate the metabolic rate 

parameter kPL which is useful for discriminating between cancerous and non-cancerous 
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tissues [5], determining the severity of disease [24], [25] and monitoring response to therapy 

[2]. Thus we wish to modify our optimality criterion to maximize the sensitivity of the 

experiments to kPL while considering the nuisance parameters only insofar as they allow us 

to estimate the parameters of interest. We do so by partitioning the information matrix as

where the first block corresponds to the parameters of interest and the second block 

corresponds to the nuisance parameters. The inverse of the Fisher information is given by

Thus, optimal design for the parameters of interest can be performed by maximizing the 

Schur complement of ℐ22:

which corresponds to minimizing the asymptotic covariance of the marginal distribution of 

the MLE corresponding to the parameters of interest via (4), or equivalently, minimizing the 

Cramér-Rao bound on the parameters of interest via (3).

In general, if multiple parameters are of interest then  will be a matrix and we would be 

required to choose a suitable scalar criterion for measuring the size of . The problem of 

simultaneously estimating kPL and kTRANS is considered in [23], where the D–, E– and A– 
optimality criteria are compared. However, in this instance we are considering a single 

parameter of interest kPL, therefore the Schur complement  is scalar-valued.

D. Regularization

We desire a smoothly-varying sequence of flip angles for a number of reasons including 

increasing robustness against model mismatch and interpretability of the resulting sequence 

of flip angles. We achieve smoothness in the flip angle sequence by adding a regularization 

term λ||Δα||F to the objective function to penalize nonsmooth sequences where the 

differencing operator Δ is defined as

and ||·||F denotes the Frobenius norm. The nonnegative parameter λ can be adjusted to 

achieve the desired degree of smoothness.
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Regularization also improves the convexity of the objective function. When the 

regularization parameter takes the value λ = 0, the objective function possesses multiple 

local minima, but as λ → ∞ the convex term ||Δα||F dominates, which guarantees that any 

stationary point is a global optimum.

We chose a particular value of λ by comparing the flip angle sequences resulting from the 

optimization using numerous regularization parameter values. The value λ = 0.1 was found 

to nicely balance between smoothness and range (between 0° and 90°) of the flip angle 

sequence.

E. Numerical optimization

To design an optimal flip angle scheme, we must solve the flip angle optimization problem

(6)

for the flip angle sequence α where θ is fixed to some nominal value for the unknown 

parameters. The MATLAB Optimization Toolbox [26] provides a derivative-free 

implementation of the quasi-Newton optimization algorithm of Broyden-Fletcher-Goldfarb-

Shanno (BFGS) [27], which is well-suited to finding local optima of this objective function.

F. Results

A solution to the optimization problem (6), initialized at αk,t = 5°, is given in Fig. 3. 

Simulated state and observation trajectories corresponding to this flip angle sequence are 

shown in Fig. 4.

We see that the pyruvate flip angles follow a pattern similar to flip angle sequences designed 

for other objectives, beginning with small flip angles to preserve magnetization for future 

acquisitions but increasing toward the end of the sequence [9], [10]. In contrast, the 

optimized flip angle sequence is much more aggressive with the lactate flip angles at the 

beginning of the experiment than in other variable flip angle sequences. This provides more 

reliable information about the leading end of the lactate time series, which contains the most 

information about the metabolic rate.

For the particular model and regularization parameter values used, the BFGS optimization 

algorithm converges to the same optimal sequence for a wide range of initializations. To 

confirm this, we have initialized the search algorithm using three flip angle sequences with 

angles generated randomly between 0 and 90°. For all three initializations, the algorithm 

converges to the flip angle sequence shown in Fig. 3. This demonstrates that the flip angle 

sequence presented is likely a global optimum.

IV. Validation Using Simulated Data

In this section, we demonstrate the advantage of the optimally designed flip angle sequence 

using computer-simulated data. Working with simulated data allows us to collect a large 
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number of statistically independent data sets and provides us access to a “ground truth” 

value for the parameter vector. This makes it possible to reliably determine the parameter 

estimation error that results from noise in the simulated measurements. It is not feasible to 

acquire such a large number of data sets in vivo, and these would also not include ground 

truth values. Thus we use simulated data to demonstrate that our optimized flip angle 

sequence leads to smaller uncertainty in estimates of the metabolic rate parameter kPL.

A. Two-step parameter estimation procedure

When fitting the data from in vivo experiments, data from different voxels will correspond to 

different values of the parameters kTRANS, kPL, R1P and R1L as these values change with 

spatial location, but all correspond to the same arterial input u(t). Thus we present a fitting 

procedure that proceeds in two steps: first we fit a single input function u(t) to the entire data 

set, then we fix this input function and estimate values of the remaining parameters 

individually for each of the voxels in the slice.

B. Simulation results and discussion

We wish to compare the reliability of estimates of kPL between data generated using five 

competing flip angle sequences:

1. a T1-effective sequence [9] that aims to keep the measured signal constant 

despite repeated RF excitation and magnetization exchange between 

chemical compounds (Fig. 5a)

2. an RF compensated flip angle sequence [28] that aims to keep the 

measured signal constant despite repeated RF excitation (Fig. 5b),

3. a constant flip angle sequence of 15°,

4. a sequence that maximizes the total signal-to-noise ratio in the observed 

signal

[10] (Fig. 5b), and

5. our flip angle sequence that maximizes the Fisher information about kPL 

(Fig. 3).

For each of the five flip angle sequences, we simulate n = 25 independent data sets from the 

model (2) using the parameter values given in Table I. We then perform the two-step 

parameter estimation procedure described in Section IV-A. The resulting parameter 

estimates are shown in Fig. 6. We see that for all five flip angle sequences, the parameter 

estimates congregate near the ground truth value of the model parameters.

To demonstrate that our optimized flip angle sequence provides more accurate estimates of 

kPL than the competing flip angle sequences, we compare the root mean squared (RMS) 

estimation error between the sequences. We repeat this experiment for various values of the 
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noise parameter σ2 ranging from 103 to 106 to demonstrate that the improvement in the 

estimates is robust to variation in the noise strength. A value of approximately 2 × 104, in the 

center of this range, is typical for prostate tumor mouse model experiments. For each value 

of σ 2 we compute the RMS error of the kPL and nuisance parameter estimates across the n = 

25 trajectories and plot these relationships in Figs. 7 and 8 respectively. The average 

improvement compared with competing sequences, across a range of noise parameter values 

{σp, p = 1,..., 5}, is computed as a percentage

These improvement percentages are summarized in Table II.

Overall, we see that the optimized flip angle sequence provides a more reliable estimate of 

the parameter of interest kPL, with a substantial improvement over all four competing flip 

angle schedules. The magnitude of the improvement varies from a 91% decrease in the 

estimation error against the T1 effective sequence to a 20% decrease compared against the 

closest competitor: the maximum total SNR sequence. This improvement comes at the 

expense of less reliable estimates of some of the nuisance parameters. This highlights the 

advantage of using optimization-based methods to manage trade-offs in experiment design.

C. Robustness to parametric uncertainty

Based on the simulation experiments described in Section IV-B we have argued that flip 

angles optimized based on the Fisher information lead to smaller error in estimates of the 

parameter of interest kPL when the same parameter values are used for the simulation and 
flip angle optimization. In this section we dispense with the latter assumption to demonstrate 

that this improvement is robust to uncertainty in the model parameters. We use the flip angle 

sequence shown in Fig. 3, which was designed using the specific model parameters given in 

Table I, along with two competing flip angle sequences to simulate data from models with 

different values for the parameters kTRANS, kPL, R1P, R1L and t0 as well as a factor ΔB1 

multiplying the flip angle sequence, used to demonstrate robustness to known B1 

inhomogeneities.

The ranges of the varying parameters were chosen to represent realistic physiological ranges 

and to center near the values we typically observe in a prostate tumor (TRAMP) mouse 

model. In Fig. 9 we plot the ensemble RMS error over n=25 simulated data sets as a function 

of the model parameter modified in the simulated data.

We see that the flip angles optimized based on Fisher information lead to better estimates of 

kPL across nearly the entire range of model parameters used, despite no longer being optimal 

for the parameter values used to generate the data. This provides strong evidence that not 

exactly knowing the parameter values a priori does not limit the usefulness of our proposed 

flip angle design methodology.
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V. In Vivo Experiments

We now move on to in vivo experiments. In contrast with the in silico experiments, here 

there is no ground truth value of the model parameters against which to compare our 

estimates, as the true rates are unknown and may vary between different regions of the 

tissue. However, the in vivo experiments can be used to show well-foundedness of the model 

that we have chosen and to demonstrate the feasibility of model-based parameter mapping 

using our optimized time-varying flip angle sequence. We show that our model can reliably 

reproduce observed data and achieve consistent parameter estimates across a variety of time-

varying flip angle sequences.

A. Experimental setup

To implement this technique in vivo, metabolic data were acquired in a prostate tumor 

mouse (TRAMP) model using a 3T MRI scanner (MR750, GE Healthcare). Briefly, 24μL 

aliquots of [1-13C] pyruvic acid doped with 15mM Trityl radical (Ox063, GE Healthcare) 

and 1.5mM Dotarem (Guerbet, France) were inserted into a Hypersense polarizer (Oxford 

Instruments, Abingdon, England) and polarized for 60 minutes. The sample was then rapidly 

dissoluted with 4.5g of 80mM NaOH/40mM Tris buffer to rapidly thaw and neutralize the 

sample. Following dissolution, 450μL of 80mM pyruvate was injected via the tail vein over 

15 seconds, and data acquisition coincided with the start of injection. Metabolites from a 

single slice were individually excited with a singleband spectral-spatial RF pulse and 

encoded with a single-shot symmetric EPI readout [29], with a repetition time of 100ms, a 

field-of-view of 53 × 53mm, a matrix size of 16 × 16, an 8mm slice thickness, and a 2 

second sampling interval. A 1H image showing the anatomy contained in the slice in 

question is given in Fig. 10.

Datasets were acquired using three time-varying flip angle sequences. The T1-effective and 

RF-compensated sequences, shown in Figs. 5a and 5b respectively, aim to distribute 

observed magnetization evenly across acquisitions, leading to roughly constant observed 

signals over time. The RF-compensated sequence does so by accounting for magnetization 

lost due to repeated RF excitation, but ignoring exchange between chemical compounds and 

T1 relaxation [28]. In contrast, the T1-effective sequence accounts for exchange and T1 

relaxation as well as RF excitation in attempting to achieve a flat time profile [9]. We 

compare these two sequences against our sequence, shown in Fig. 3, that has been optimized 

with respect to the Fisher information about kPL.

B. Resulting data

An example of the collected data, from the experiment with the Fisher information-

optimized flip angles, is shown in Fig. 11. Experimentally-estimated values for the noise 

parameters are given in Table III.

C. Flip angle profile modelling

Due to an imperfect (non-rectangular) slice profile, flip angles applied in practice vary 

spatially across the slice. This can lead to excess signal coming from regions near the 

boundary of the slice at later time points in the acquisitions, a phenomenon known as the 
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slice profile effect [30], [31]. We have found that it is necessary to account for this effect in 

order to accurately fit the experimental data.

We consider the actual slice profile π(z) shown in Fig. 12 which corresponds to the spatial 

response of the RF pulse used experimentally. We assume that at each time step t and for 

each compound k (i.e. k = 1 corresponding to pyruvate, k = 2 corresponding to lactate) we 

can choose a real parameter αk,t such that the flip angle applied at location z is θk,t(z) = αk,t 

π(z). To generate a finite-dimensional model of the dynamics, we consider the 

magnetization dynamics at a discrete set of z coordinates {z1,..., zN}. The magnetization at 

location zi in the slice is then governed by the equations

and the total magnetization measured is then assumed to be distributed

This approach accounts for the slice profile effects by modelling the dynamics across the 

actual slice profile.

D. Parameter estimation

We begin by extracting time evolutions of the measured pyruvate and lactate signal from n = 

9 voxels in the slice. The chosen volumes from which these signals are extracted are 

illustrated in Fig. 10. As in Section IV, parameter estimation is performed in two steps. First, 

a single arterial input function and value for the parameter R1L are estimated based on the 

spatial average of the time series extracted from the tumor region. Second, the estimated 

input function and R1L value are held fixed while model parameters kTRANS and kPL are fit 

individually to the time series extracted from each of the voxels. To ensure practical 

identifiability of the model, the parameter R1P is fixed to a value of 0.05 during both steps.

E. In vivo results and discussion

Estimates of the arterial input corresponding to each of the three flip angle sequences are 

shown in Fig. 13. We see that the estimated inputs are reasonably consistent between the 

three data sets, but have some variation due to measurement noise in the pyruvate signal. 

Our optimized sequence yields the most smoothly-varying input function, which suggests 

that it is likely the most reliable of the three estimated AIFs.

Parameter estimates corresponding to each of the nine voxels are compared between the 

three flip angle sequences in Fig. 14. Examples of the quality of the fit corresponding to a 

particular voxel are shown in Fig. 15. We see that the estimated parameter values are 
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consistent between the three flip angle sequences and that our model is able to reliably 

reproduce the observed data in all three cases. This provides evidence that the model we 

have used in this paper accurately describes the dynamics of magnetization exchange in 
vivo, and hence that the decision to use this model for the numerical reliability experiments 

of Section IV is well-founded.

We also present maps that show the spatial distribution of estimated metabolic and perfusion 

rates in Fig. 16. We see that the range and spatial distribution of parameter estimates are 

consistent between acquisition sequences.

VI. Conclusion

We have presented a method of generating optimal flip angle sequences for estimating the 

metabolic rate in a model of pyruvate metabolism. This method uses the Fisher information 

about the parameter of interest as the objective function that we wish to maximize. We have 

shown that the resulting flip angle sequence leads to smaller variance in the parameter 

estimates due to noise in the measured signal. We have demonstrated this in silico where we 

can explicitly compare the estimated model parameter values against the ground truth value. 

In this simulation experiment we demonstrated that our flip angle sequence leads to a 20% 

to 90% decrease in the uncertainty of the estimated metabolic rate, when compared with 

existing sequences. We also performed in vivo experiments to provide evidence that the 

model used in the in silico experiments is well-founded and demonstrate the feasibility of 

metabolic rate estimation and parameter mapping using this novel sequence. Based on the 

reliability results demonstrated in silico and the in vivo experiments demonstrating the 

appropriateness of the model used for the in silico experiments we argue that, for 

experiments that aim to quantitatively compare metabolic rates, optimizing flip angle 

sequences based on the Fisher information will probably lead to more reliable estimates of 

the model parameters of interest.
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Fig. 1. 
Illustration of the trade-off between present and future image intensity in a single compound. 

(a) Each acquisition relies on choosing an angle α to perturb the longitudinal magnetization 

into the transverse plane, allowing a measurement of magnitude x(t) sin(α), after which x(t) 
cos(α) longitudinal magnetization remains for future acquisitions. (b) Repeated excitation 

leads to repeated discrete jumps in the system state, depleting the remaining magnetization.
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Fig. 2. 
Simulated trajectories of the model (2) using a constant flip angle sequence with αk,t = 15°.
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Fig. 3. 
Optimized flip angle sequence for estimating the metabolic rate parameter kPL using the 

nominal parameter values in Table I and a sampling interval TR = 2 s between acquisitions.
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Fig. 4. 
Simulated trajectories of the model (2) using the optimized flip angle sequence shown in 

Fig. 3 and the arterial input function shown in Fig. 2a.
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Fig. 5. 
Flip angle schedules compared experimentally with our optimized flip angle sequence. Note 

that for the RF compensated and maximum total SNR schedules, the sequences 

corresponding to pyruvate and lactate are identical.
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Fig. 6. 
Maximum likelihood estimates of the parameters kTRANS, kPL, R1P and R1L for numerous 

independent simulated data sets compared between five flip angle sequences for σ2 = 2.3608 

× 104. The ground truth value is depicted as ×.
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Fig. 7. 
Comparison of the root mean square kPL estimation error between various flip angle 

sequences across different values of the noise strength parameter σ2.
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Fig. 8. 
Comparison of the root mean square nuisance parameter estimation error between various 

flip angle sequences across different values of the noise strength parameter σ2.
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Fig. 9. 
Simulated comparison of the kPL estimation error across values of the model parameters. 

The error is compared between five flip angle sequences shown in Figs. 3 and 5. These flip 

angle sequences are computed based on the nominal values of the model parameters given in 

Table I and held fixed across all comparisons. Note that the first graph is logarithmically 

scaled, due to the fact that low perfusion leads to significant uncertainty in the metabolic rate 

estimates. Some estimation errors corresponding to the T1 effective sequence are greater 

than the maximum value plotted on these axes.
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Fig. 10. 
1H image of the slice of interest. A large tumor, outlined in blue, fills a significant portion of 

the slice. Numbered volumes used to extract trajectories for parameter estimation are 

outlined in gold.
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Fig. 11. 
Data collected using the optimized flip angles shown in Fig. 3. The field-of-view of these 

images is identical to the 1H image in Fig. 10.
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Fig. 12. 
Comparison between an ideal flip angle profile across the slice and the actual profile for the 

RF excitation pulse used.
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Fig. 13. 
Estimated arterial input functions corresponding to each of the three flip angle sequences 

given in Figs. 3 and 5.
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Fig. 14. 
Maximum likelihood estimates of the parameters kTRANS and kPL for time series trajectories 

extracted from various voxels, labelled 1 through 9. The resulting estimates are compared 

between data sets collected using the three flip angle sequences shown in Figs. 3 and 5.
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Fig. 15. 
Model fit to a collection of experimentally measured time series data corresponding to voxel 

number 5. Each of the three data sets was collected using a different flip angle sequence.
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Fig. 16. 
Maps of the perfusion rate parameter kTRANS and metabolic rate parameter kPL 

corresponding to each of the three flip angle sequences. The kPL maps are masked outside 

the perfused region using a threshold of kTRANS = 0.02. A single map combining anatomic, 

perfusion and metabolism information is shown on the right. In this map, the color is 

determined by the estimated kPL value while the transparency of the map is set using the 

perfusion rate parameter kTRANS such that in highly-perfused tissues where the estimates of 

the metabolic rate parameter are more reliable the map is less transparent. The combined 

image data are zero-filled from 16 × 16 to 256 × 256 to match the resolution of the 1H 

images.
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TABLE II

Improvement in metabolic rate estimate achieved by Fisher information sequence against competing 

sequences

Competing sequence T1 effective RF compensated Constant 15° total SNR

Improvement achieved 90.6% 23.1% 25.3% 19.8%
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TABLE III

Maximum-likelihood estimates of the noise parameter  For each of the three data sets collected

T1 effective RF compensated Fisher information

 (pyruvate)
1.84 × 104 2.05 × 104 2.21 × 104

 (lactate)
2.14 × 104 1.97 × 104 3.26 × 104
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