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A new layer of degradation mechanism for PR-Set7/Set8 during cell cycle

Nana Zhenga,#, Xiangpeng Dai b,#, Zhiwei Wanga, and Wenyi Weib

aThe Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital,
Soochow University, Suzhou, P. R. China; bDepartment of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

ARTICLE HISTORY
Received 20 July 2016
Revised 30 August 2016
Accepted 5 September 2016

ABSTRACT
Set8 is critically involved in transcription regulation, cell cycle progression and genomic stability. Emerging
evidence has revealed that E3 ubiquitin ligases such as CRL4cdt2 and SCFSkp2 regulate Set8 protein abundance.
However, it is unclear whether other E3 ligase(s) could govern Set8 level for proper cell cycle progression in
response to genotoxic stress such as UV irradiation. Recently, we report that the SCFb-TRCP complex regulates
Set8 protein stability by targeting it for ubiquitination and subsequent degradation. Notably, Set8 interacts
with the SCFb-TRCP E3 ligase complex. We further revealed a critical role of CKI in SCFb-TRCP-mediated
degradation of Set8. Mechanistically, CKI-mediated phosphorylation of Set8 at the S253 site promotes its
destruction by SCFb-TRCP. Importantly, SCFb-TRCP-dependent Set8 destruction also contributes to the tight
control of cell proliferation and cell cycle progression, in response to UV irradiation. Here, we summarize our
new findings regarding the crucial role of b-TRCP in CKI-mediated Set8 degradation, which could provide new
evidence to support that dysregulation of a tight regulatory network of Set8 could lead to aberrant cell cycle
process.
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Set8 (also known as PR-Set7 and SETD8) has been previously
characterized as a histone methyltransferase that specifically
monomethylates Lys (20) of histone H4 (H4K20).1,2 Set8 is crit-
ically involved in multiple cellular processes including tran-
scription regulation, cell cycle, DNA repair, genome integrity
and tumor metastasis.3 The biological function of Set8 in cell
cycle is largely exerted through suppressing DNA replication.3,4

Further studies identified that Set8 could methylate non-his-
tone proteins such as p53, Twist, Wnt-activated genes, PCNA
(proliferating cell nuclear antigen), ERa (estrogen receptor)
and AR (androgen receptor).5 These results indicate that Set8
may play a key role in the development and progression of can-
cers. In keeping with this notion, multiple studies have demon-
strated that high levels of Set8 are associated with tumor
metastasis and poor survival of breast cancer patients.6,11 Simi-
larly, Set8 overexpression led to shorter survival time, suggest-
ing that Set8 might be a predictor of worse outcome for gastric
cancer.6 Mechanistically, Set8 interacted with AR and pro-
moted AR-mediated transcription activation, leading to
enhanced prostate cancer cell proliferation.7 Notably, Set8
interacted with Twist and induced epithelial-mesenchymal
transition (EMT), and subsequently led to enhanced cell inva-
sion in breast cancer.8 Taken together, Set8 could play an onco-
genic role to facilitate tumorigenesis.

Since Set8 is a key oncoprotein in a variety of human cancers, it
is pivotal to determine how Set8 is regulated in cellular processes.
A number of studies reported that Set8 is regulated at both the tran-
scriptional level9 and post-translational level.10 Some enzymes have

been validated to control Set8 modification, including kinases,
SUMO (small ubiquitin-like modifier), and ubiquitin ligases. For
example, the Ser29 residue of Set8 is phosphorylated by Cyclin B/
Cdk1 (cyclin dependent kinase 1) during mitosis.11 One E3 ligase
CRL4Cdt2(Cullin-RING ubiquitin ligase 4Cdt2) controls the Set8
ubiquitination and degradation.12-14 Moreover, the anaphase-pro-
moting complex APCCdh1 was also confirmed to govern the ubiqui-
tination and degradation of Set8 during the G1 phase.11 Recently,
microRNAs (miRNAs) have been validated to control the Set8
expression in human malignancies. It has been known that miR-
NAs, small non-coding RNAs, largely exert their biological func-
tions through inhibiting the translation or targeting the mRNAs
for degradation through direct binding to the 30-UTR region of
mRNAs.15 Several studies have revealed that Set8 is a direct target
of miR-502.16,17 In support of this concept, breast cancer patients
with lower level of miR-502 have high level of Set8.17 Moreover,
the low expression ratio of miR-502 to Set8 mRNA is correlated to
relatively poor overall survival in breast cancer patients.17 Consis-
tent with the findings, treatment withmiR-502 inhibited cell prolif-
eration and cell cycle and retarded cell migration, invasion and
EMT partly through inhibition of Set8.17 Another elegant study
discovered that miR-7 inhibited cell invasion and sensitized tumor
cells to DNA damages in part through targeting Set8 in breast can-
cer cells.18 Interestingly, a polymorphism at the miR-502 binding
site in the 30 UTR of the Set8 gene is associated with the outcome
of various types of human cancers including small-cell lung cancer,
ovarian cancer, hepatocellular carcinoma, cervical cancer, and
non-Hodgkin’s lymphoma.19-21 These experimental evidences
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together suggest a possible oncogenic role for Set8 in facilitating
tumorigenesis.

It is known that ubiquitination leads to degradation of pro-
teins, which controls a plethora of cellular functions such as
cell proliferation, cell cycle and survival.22-25 This process is cat-
alyzed by a group of enzymes including ubiquitin activating
enzyme (E1), an ubiquitin-conjugating enzyme (E2), and an
ubiquitin ligase (E3). It is noteworthy that the E3 can specifi-
cally determine the substrates for ubiquitination and more than
600 E3 ligases have been reported in human genome.26,27

Among these E3 enzymes, the CRLs are the largest E3 ligase
family in eukaryotes.28 It has been known that Cullins act as a
scaffold protein, and its C-terminus is associated with the
RING finger protein RBX1/ROC1 or RBX2/ROC2. The N-ter-
minal region of Cullins binds with Cullin-specific adaptor pro-
tein to target diverse substrates.29,30 Furthermore, CRLs activity
is regulated by Nedd8 post-translational modification known
as neddylation. Interestingly, this process can be reversed by
COP9 signalosome (CSN)-mediated deneddylation, leading to
inactivation of CRLs.30-32

Among eight Cullins (CUL1-7 and PARC), Cullin4 (CUL4) has
been well studied. Cullin4 consists of 2 members, CUL4A and
CUL4B, which share extensively sequence homology and func-
tional redundancy.28,30 CUL4 is expressed aberrantly in a wide
range of human tumors and involves in tumor-related changes
including cell cycle, DNA damage repair, histone methylation and
oncoproteins turnover.28,30 In particular, the aberrant expression of
CUL4A has been identified in breast cancer, squamous cell carci-
noma, pleural mesothelioma and non-small cell lung cancer.33-37

Intriguingly, CUL4A induced EMT and promoted cancer metasta-
sis in part via regulation of ZEB1 (zinc finger E-box-binding home-
box 1) expression.38 Strikingly, overexpression of CUL4 is
associated with poor outcome in node-negative breast cancer.39 In
support of this notion, depletion of CUL4A inhibited cell prolifera-
tion, colony formation and breast cancer development.40 Notably,
Liu et al. generated Cul4a conditional knockout mice and found
that skin-specific Cul4a ablation enhanced resistance to UV-
induced skin carcinogenesis due to potential augmentation of cellu-
lar DNA repair proficiency.41 Moreover, transgenic mice with cre-
inducible overexpression of the Cul4a gene exhibited hyperplasia.42

Therefore, CUL4A could play an oncogenic role in the
tumorigenesis.

Emerging evidence has suggested that the abnormal cell
cycle is a common feature of cancer cells. Remarkably, CRL4
has been validated to control cell cycle through regulation of
multiple proteins including cell cycle proteins (Cyclins), cyclin-
dependent kinases (CDKs), and cyclin-dependent kinase inhib-
itors (CDKIs), which are critical for cell cycle process.30 For
example, Cyclin E is a key regulator of the entry from G1 phase
to S phase and its aberrant expression is observed in several
types of human cancers.43,44 Studies have discovered that CRL4
regulated the degradation of Cyclin E.45,46 Overexpression of
CRL4 decreased Cyclin E protein level, while down-regulation
of CRL4 increased Cyclin E expression.45,46 Clearly, p21 is an
inhibitor of CDK and prevents the occurrence of the S phase as
well as regulates the tumor development and progression.47

Consistently, silencing CRL4 by its siRNA increased the level of
p21, indicating that CRL4 may regulate p21 expression.48,49 In
addition, p27 and p16, 2 key CDKIs, are also regulated by

CRL4.46,50,51 These reports indicate that CRL4 exerts its onco-
genic function partly through dysregulation of cell cycle.

b-TRCP (beta-transducin repeats containing proteins) belongs
to the SCF (Skp1-Cullin-1-F-box protein) type of E3 ligase com-
plexes. The SCF ligase complex included Skp1, Cullin-1, Rbx1/
Roc1, and one of the 69 F-box proteins. Notably, b-TRCP recog-
nizes the consensus sequence D-pS-G-X-X-pS (X represents any
amino acid) degron of substrates.52 Moreover, phosphorylation of
both serine residues by specific kinases is required for b-TRCP-
mediated degradation.52 Dysregulation of b-TRCP is involved in
regulation of several cellular processed such as cell cycle, apoptosis,
invasion, and tumorigenesis through recognizing specific sub-
strates including EMI-1 (early mitotic inhibitor-1),53,54 Wee1,55

and Cdc25A (cell division cycle 25 homolog A).56,57 For example,
the degradation of EMI-1 by b-TRCP induced mitotic catastro-
phe.53,54 b-TRCP targeted Wee1, a Cdc2 inhibitory kinase, leading
to abnormal mitosis.55 Biologically, b-TRCP regulated Cdc25A to
promote the cell cycle progression.56,57 Moreover, b-TRCP recog-
nized and degraded BTG (B-cell translocation gene) and thus con-
trolled the cell cycle and cell proliferation.58 The centriolar protein
Plk4 (polo-like kinase 4) is a regulator of centriole biogenesis, and
b-TRCP can bind and degrade Plk4, which is phosphorylated by
itself.59,60 Another elegant report shows that Plk1 can phosphory-
late Bora and promote its degradation by b-TRCP, leading to sub-
sequent regulation of mitotic progression.61 Similarly, b-TRCP was
reported to regulate centrosome separation partly via targeting
CEP68 for degradation.62 Interestingly, after exposure toUV irradi-
ation, Securin is degraded by b-TRCP and results in cell cycle
arrest.63 Moreover, REST (repressor element-1-silencing transcrip-
tion factor), which participates in cell cycle, is also degraded by
b-TRCP.64 In line with this observation, b-TRCP-mediated degra-
dation of Claspin is important for the efficient and timely termina-
tion of the DNA replication checkpoint.65 Intriguingly, inhibition
of Claspin proteolysis led to subsequent activation of Chk1 and
attenuated the recovery from the DNA replication stress response,
thereby delaying entry into mitosis.65 These findings strongly sug-
gest that b-TRCP plays a critical role in regulation of cell cycle
progression.

A number of evidence indicates that b-TRCP could be an
oncoprotein in certain types of human cancers. In support of this
notion, overexpression of b-TRCP has been observed in a variety
of human cancers such as colorectal cancer,66 hepatoblastoma,67

pancreatic cancer,68 and melanoma.69 Consistent with an onco-
genic role in human cancers, b-TRCP enhanced cell growth and
tumor growth in mice.70,71 Surprisingly, studies have argued that
b-TRCP could also play tumor suppressive role in a tissue-specific
manner. In keeping with this note, mutations of b-TRCP were
observed in several human cancers including gastric cancer,72,73

prostate cancer74 and breast cancer.75 Since b-TRCP targets both
oncoproteins and tumor suppressors for proteolysis, b-TRCP
could play an oncogenic or tumor suppressive role in the tissue-
specific or cellular context-dependent manner. Without a doubt,
conditional engineered animal models are necessary to further
parse the exact function of b-TRCP in tumorigenesis.

As we described before, Set8 is a cell-cycle-regulated enzyme
and promotes chromatin compaction.10 CRL4 E3 ligase ubiqui-
tinated and degraded Set8 in S phase of the cell cycle, which
required the interaction between PCNA and Set8.13,14 The inhi-
bition of the CRL4-Cdt2-PCNA-Set8 degradation axis delayed
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the progression from G2 phase and cell proliferation.13,14

Moreover, the dysregulation of the CRL4-Cdt2-PCNA-
Set8 axis led to DNA damage and induction of p53 and p53-
transactivated proapoptotic genes.13 Additionally, depletion
of CRL4 (or Cdt2) increased Set8 stability and the level of aber-
rant H4K20me1. A checkpoint-mediated G2 arrest happened
due to the dysregulation of Set8, and destruction of Set8 pre-
served genome stability through preventing aberrant chromatin
compaction during DNA synthesis.14 Furthermore, the ultravi-
olet irradiation accelerated the degradation of Set8 in the CRL4
(Cdt2) ubiquitination way.76 Interestingly, there is a cross-regu-
lation between Cullin 4 and Cullin 1 E3 ubiquitin ligases. For
example, Cdt2 is autoubiquitylated by the CRL4A E3 ubiquitin
ligase and it is also additionally polyubiquitylated and degraded
by CRL1-FBXO11.77 CRL1 (FBXO11)-mediated degradation of
Cdt2 promoted the stabilization of Set8 and p21.77 The degra-
dation of Cdt2 also stimulated the migration of epithelial cells
and subsequently the stabilization of Set8.77 One study showed
that Cdt2 is a prognostic marker and a therapeutic target in
melanoma. With the treatment of pevonedistat, Cdt2 is sup-
pressed and melanoma cell growth is promoted due to the sta-
bilization of Set8.78 Taken together, these results demonstrate
that CRL4 (Cdt2)-dependent cell-cycle regulation of Set8 for
the maintenance of cell viability and chromatin compaction.

Importantly, Set8 has been reported to be degraded after UV
exposure, but the exact mechanism remains largely unclear.
Our study first investigated that Set8 interacts with the
SCFb-TRCP E3 ligase complex.79 The co-immunoprecipitation
experiments are performed to find that exogenously expressed
Set8 was associated with endogenous b-TRCP1, and b-TRCP1
mutant (R474A) reduced the interaction between the b-TRCP1
and Set8.52 Moreover, our results indicated that Set8 interacted
with SCF components including Skp1 and Rbx1.79 Importantly,
depletion of endogenous b-TRCP extended the half-life of
endogenous Set8 protein and increased the level of Set8 protein.
In support of the notion that both Cullin1 and Cullin 4 are
involved in controlling Set8 stability, the protein level of Set8
was upregulated after depletion of either Cullin1 or Cullin4. It
is known that substrates are phosphorylated by kinase and then
degraded in the SCF type of E3 ligases-dependent way.52,80 We
found that CKI (casein kinase I) phosphorylated Set8 at Ser253
and subsequently triggered its destruction by SCFb-TRCP, sug-
gesting that CKI could be a key upstream kinase to govern Set8
degradation.79 Consistently, the inactivation of CKI also dis-
rupted the interaction between Set8 and b-TRCP1.

Previous studies showed that Set8 levels are significantly
reduced after DNA damage.13,14 In line with this concept, we also
observed that the levels of endogenous Set8 are significantly
reduced in cells after UV treatment.79 Intriguingly, UV-triggered
reduction of Set8 was partially reversed by depletion of endogenous
b-TRCP1. Biologically, overexpression of Set8 inhibited cell prolif-
eration.14 In line with this notion, we also found that ectopic
expression of Set8WT inhibited cell proliferation, while the Set8S253A

mutants caused a more marked effect in cell proliferation inhibi-
tion.79 Accumulating evidence indicated that acute expression of
an oncogene such as Ha-Ras,81 Akt,82,83 BRAF84,85 or HIF (hyp-
oxia-inducible factor 1),86 could lead to cell growth arrest but not
accelerate cell proliferation. This phenomenon is called OIS (ono-
cogene-induced senescence). In concert with these observations,

deletion of tumor suppressor PTEN (phosphatase and tensin homo-
log 10)87,88 or VHL (Von Hippel-lindau)89 also led to the onset of
senescence, which could be due to the aberrant expression of pAkt
and HIF oncoproteins. Ectopic expression of BRAF directly caused
senescence in melanocytes.84 Logically, the disruption of CRL4cdt2

or the SCFb-TRCP pathway led to Set8 stabilization, and subse-
quently triggered cell growth arrest partly via OISmechanism.

In summary, there are at least 2major ways for Set8 degradation
during the cell cycle transitions. Importantly, different E3 ligases
could regulate different cell cycle regulators such as p21, Cdt2, and
Set8. Set8 could be governed by Skp2 and b-TRCP in G1 phase,
whereas Set8 destruction is controlled by CRL4cdt2 in S phase
(Fig. 1). Although these findings dissect the regulation of Set8 by 3
E3 ligases, how these ligases fine-tune the control of the timely
destruction of Set8 to ensure proper cell cycle process is not eluci-
dated. Moreover, tissue specific knockout mice or transgenic mice
are required to further determine contribution of Set8 in tumori-
genesis. As Set8 is tightly associated with tumorigenesis, targeting
Set8 could be a potential strategy for the treatment of human can-
cers. To this end, one study has discovered that Set8 could be regu-
lated by estradiol and bisphenol A in ovarian cancer cells.90

Moreover, a natural compound curcumin has been reported to
exert its anti-tumor activity through regulation of Set8 in pancre-
atic cancer.91 Further investigations are needed to develop and dis-
cover new safer inhibitors of Set8 for human cancer patients with
overexpressing Set8.
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Figure 1. A schematic model illustrating how b-TRCP, Skp2 and Cdt2 govern the
protein stability of Set8 during the cell cycle procession. In G1 phase, Set8 could
be controlled by SCFSkp2 and SCFb-TRCP. However, in S phase, Set8 destruction is
largely governed by CRL4Cdt2.
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