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Abstract

Introduction: While whole genome prediction (WGP) methods have recently

demonstrated successes in the prediction of complex genetic diseases, they have not

yet been applied to asthma and related phenotypes. Longitudinal patterns of lung

function differ between asthmatics, but these phenotypes have not been assessed

for heritability or predictive ability. Herein, we assess the heritability and genetic

predictability of asthma-related phenotypes.

Methods: We applied several WGP methods to a well-phenotyped cohort of 832

children with mild-to-moderate asthma from CAMP. We assessed narrow-sense

heritability and predictability for airway hyperresponsiveness, serum immuno-

globulin E, blood eosinophil count, pre- and post-bronchodilator forced

expiratory volume in 1 sec (FEV1), bronchodilator response, steroid responsive-

ness, and longitudinal patterns of lung function (normal growth, reduced growth,

early decline, and their combinations). Prediction accuracy was evaluated using a

training/testing set split of the cohort.

Results: We found that longitudinal lung function phenotypes demonstrated

significant narrow-sense heritability (reduced growth, 95%; normal growth with

early decline, 55%). These same phenotypes also showed significant polygenic

prediction (areas under the curve [AUCs] 56% to 62%). Including additional

demographic covariates in the models increased prediction 4–8%, with reduced

growth increasing from 62% to 66% AUC. We found that prediction with a

genomic relatedness matrix was improved by filtering available SNPs based on

chromatin evidence, and this result extended across cohorts.

Conclusions: Longitudinal reduced lung function growth displayed extremely

high heritability. All phenotypes with significant heritability showed significant

polygenic prediction. Using SNP-prioritization increased prediction across

cohorts. WGPmethods show promise in predicting asthma-related heritable traits.

Introduction

Asthma is a major chronic childhood disease (9% preva-

lence) in the USA [1, 2]. It is a heterogeneous disease, with

varying outcomes and clinical courses, ranging from chronic

airway obstruction [3] to the remission of symptoms

entirely [4]. Forecasting such diverse clinical outcomes

and disease phenotypes is an important goal of personalized

medicine, and one that may be achieved in part with recent

advances in whole-genome prediction (WGP) [5], wherein a

patient’s entire set of single nucleotide polymorphisms

(SNPs) can be used to predict outcomes of interest. The
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extent to which WGP can be successfully applied to features

of asthma and asthma management have yet to be

thoroughly explored.

Adult asthma is associated with an accelerated rate of

decline in forced expiratory volume in 1 sec (FEV1) [6, 7],

and childhood asthmatics have been shown to have lower

lung function than non-asthmatics [8]. For asthmatics,

reduced lung function leads to several adverse outcomes.

Reduced lung function has been associated with increased

incidence of asthma attacks among asthmatics [4]; children

with untreated asthma have shown loss of lung growth

velocity [9]; and low lung function has predicted late-onset

asthma in unaffected adults [10]. Reduced early-life lung

function and a childhood asthma diagnosis independent of

lung function have been linked to later decline in lung

function [11], sometimes leading to chronic airway

obstruction (CAO) and also chronic obstructive pulmonary

disease (COPD) [12]. Furthermore, genetic risk factors for

low FEV1 and low FEV1 to forced vital capacity ratio

(FEV1/FVC) have been shown to also be associated with

greater risk of COPD [13].

The degree to which genetic prediction is possible is

bounded by the heritability of the trait to be predicted [14].

Asthma and associated traits are heritable, with twin

studies establishing the genetic heritability of asthma

incidence to be between 50% and 60% [15], and a recent

twin-study meta analysis determined asthma heritability to

be 53% [16]. Lung function is also heritable [17, 18], with

FEV1 heritability estimated at 32–39%, FVC at 40–41%,

and FEV1/FVC at 46% [19, 20]. Prediction accuracy of a

trait approaches trait heritability, when that accuracy is

measured in r2 or variance explained [21]. However,

prediction of >90% area under the receiver-operating

characteristic curve (AUC) is achievable while explaining

roughly 30% of the variance and 40% of the heritabil-

ity [22]. For example, using the Welcome Trust Case

Control Consortium (WTCCC) data and diseases [23],

which have heritabilities estimated between 60% and 76%,

maximum theoretical AUCs from models using only SNPs

range from 93% to 99% [24].

In WGP many hundreds or thousands, or even all,

available SNPs are used in a machine-learning or regression-

basedmethodology agnostic to their previous associations or

lack thereof to the phenotype of interest. This is an idea that

has gained interest since genetic prediction based on smaller

numbers of robustly associated SNPs has met with an

inability to explain very much of the observed variation or

heritability [25, 26]. Growing evidence suggests that many

complex disorders have polygenic etiologies, based on the

small effects of many thousands of genetic variants [27].

Methodologies that attempt to predict disease risk based on

the combined effects of many SNPs are potentially able to

exploit this genetic architecture [28].

Some authors have obtained significant prediction of

disease or quantitative traits using only a small group of

previously identified SNPs, including efforts predicting body

mass index (57.4% AUC with 12 SNPs [29]), type 2 diabetes

(60% AUC with 18 SNPs [30]), and others reviewed in

Kundu et al. [31]. Recent successes in WGP have resulted in

much higher accuracies, include the prediction of celiac

disease (90% AUC in replication cohorts [22]), oral

mucositis (82% accuracy [32]), and skin cancer risk (64%

AUC [33]). Furthermore, several different authors have

demonstrated accuracy (60–90% AUC) of a variety of WGP

methodologies on the WTCCC diseases (bipolar disorder,

Crohn’s disease, coronary artery disease, hypertension,

rheumatoid arthritis, type 1 and type 2 diabetes) [23, 34–36].

Predicting asthma incidence in young children using a set

of 215 candidate SNPs for prediction has met with limited

success (54% AUC [37]). Using WGP to predict childhood

asthma incidence resulted in an AUC of 54% using between

10,000 and 215,000 SNPs in a simple regression model;

although prediction of childhood wheeze was more accurate

(AUC 58%) [38]. Others have tried to predict asthma-

associated phenotypes such as the bronchodilator response

(BDR, change in pre- and post-bronchodilator administra-

tion FEV1) among asthmatics, but only with two candidate

SNPs [39]. Prediction of reduced FEV1 was attempted with

WGP methods, without success (AUC �52%) [38]. Asthma

exacerbations were significantly predictable with roughly

300 SNPs (66% AUC) [40].

We had two main goals in this work: (1) to determine

whether WGP could accurately predict several asthma-

related phenotypes (pre- and post-bronchodilator FEV1,

airway hyper responsiveness, serum IgE, eosinophils,

longitudinal lung function growth patterns [reduced

growth and/or early decline vs. normal] and steroid

responsiveness); and (2) to compare different WGP

methodologies to identify the most powerful and accurate

methods for prediction of asthma-related phenotypes. We

hypothesized that WGP could be successfully applied to

asthma-related phenotypes of clinical interest in a well-

phenotyped cohort. We further hypothesized that reduced

growth of FEV1 and early decline of FEV1 are traits with

high heritability, and thus can be well-predicted from

WGP methods. We applied several WGP methods to the

Childhood Asthma Management Program (CAMP) cohort

of mild-to-moderate persistent asthmatics, and demon-

strated the utility of prediction based on SNPs to a number

of outcomes within CAMP. Theoretical results suggest that

these phenotypes are predictable with comprehensive,

accurate genotyping in proportion to the heritability of

these traits [14, 21]; and we provided estimates of the

genetic heritability for each of these traits. We also

demonstrated increased prediction with the inclusion of

relevant clinical and demographic covariates.
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Methods

CAMP

We used data from the Childhood Asthma Management

Program (CAMP) [41, 42], a study containing genome-wide

SNP data on 832 unrelated children with mild-to-moderate

asthma enrolled in a randomized clinical trial at ages 5–12.

Genotyping was previously performed at the Channing

Division of Network Medicine using Illumina Quad 610

microarray chips (Illumina, Inc., San Diego, CA). Genotype

data were filtered for quality by limiting investigation to

autosomal SNPs with aminor allele frequency of at least 0.05

and probability of Hardy–Weinberg equilibrium of at least

0.001, using the PLINK2 software [43]. This resulted

in 455,481 SNPs available for WGP and heritability

computation.

We selected a number of relevant asthma-related

phenotypes collected at baseline in the CAMP study: serum

total IgE, eosinophil count (EOS), pre- and post-broncho-

dilator FEV1 (percent-predicted based on age, sex, height,

race), bronchodilator response (BDR, (post-FEV1� pre-

FEV1)/pre-FEV1), airway hyperresponsiveness (AHR, natu-

ral log of methacholine concentration needed for 20%

reduction in FEV1), steroid responsiveness endophenotype

(SRE, as described by Clemmer et al. [44]); and longitudinal

lung growth patterns [3]: Normal Growth only (NG),

Normal Growth with Early Decline (NG-ED), Reduced

Growth only (RG), Reduced Growth with Early Decline

(RG-ED), Early Decline irrespective of normal or reduced

growth (ED-All), and Reduced Growth with or without early

decline (RG-All). Lung growth patterns were observed based

on longitudinal follow-up of 12–16 years in CAMP

continuation studies, while the other phenotypes were

measured at or near randomization. Lung growth patterns

were identified based on smoothed pre-FEV1 spirometry

performed at least annually as follows: normal growth was

identified for subjects who were predominately above the

25th percentile of FEV1 for their age, sex, height, and race/

ethnicity; reduced growth was indicated for subjects bellow

the 25th percentile. Early decline was indicated for subjects at

least 23 years of age at the conclusion of follow up who

demonstrated a premature reduction from peak FEV1

achieved at the end of adolescence or early adulthood.

More details of the longitudinal lung function phenotypes

are available in McGeachie et al. [3].

Assessment of these baseline phenotypes has been

previously described [41, 42]. Briefly, total serum IgE and

peripheral blood total eosinophil counts were measured by

the radioimmunosorbent assays from blood samples

collected during the screening sessions of CAMP. IgE and

eosinophil counts were considered at log10 scale. Spirometry

was performed according to ATS specifications. Baseline

demographic and clinical covariates were also obtained,

including age, sex, height, weight, body-mass index (BMI),

self-reported race/ethnicity, CAMP treatment arm, and

vitamin D. Vitamin D was measured as 25-hydroxyvitamin

D (25(OH)D) levels in serum collected at the time of

enrollment using a radioimmunoassay [45]. Missing values

in data or covariates were imputed with the mean, to bias

toward the null hypothesis of no association.

Additive genetic contribution to heritability if each

phenotype was assessed using a genetic relatedness matrix

[46]. These heritabilities were computed for each phenotype

based on all CAMP SNPs, using the GCTA software

program [46], and following protocols described therein.

Whole genome prediction

We then selected a number of polygenic prediction methods

from the existing literature including na€ve-Bayes models,

Least Absolute Shrinkage and Selection Operator (LASSO)

regression [47], Support VectorMachines (SVM) [48], and a

genetic relatedness matrix (GRM) method based on the

‘‘omic-Kriging’’ method [34] and equivalent to the Genomic

Best Linear Unbiased Predictor (G-BLUP) [5]. These

methods were chosen for their previously demonstrated or

theoretical suitability to prediction tasks including a very

large number of variables. The na€ve-Bayes model includes all

possible predictors, allowing each predictor to have a small

effect on the posterior probability of the data [49], and is

generally a simplified form of Bayesian regression [50].

LASSO regression is a penalized logistic regression method

that limits the number of non-zero parameters used for

prediction. SVMs compute class-separating hyperplanes

from kernel functions based on the dot-products of

predictors for each pair of subjects in the training set.

GRM-based prediction is similar: the GRM is a measure of

similarity between subjects based on the dot products of

their SNPs; then prediction of an unknown subject is

achieved using the weighted sum of the known subjects’

classifications, with weights proportional to the genetic

distance to the unknown subject. LASSO regression was

implemented in the R statistical language using the glmnet

package [51]. All other methods were available or

implemented in MATLAB (v R2014a, The MathWorks,

Natick, MA), using standard MATLAB functions for SVMs

and for na€ve-Bayes models. We used a simple linear kernel

with the SVM. We implemented GRM-based prediction de

novo, following Wheeler et al. [34].

Although some methods can smoothly handle predic-

tion in a continuous domain, to standardize our analysis

we chose to convert continuous phenotypes to binary

phenotypes for prediction by dichotomizing about the

mean. To perform each prediction test, we first split the

CAMP dataset into 75% training and 25% prediction

populations. The 75% were used to train each prediction

M. J. McGeachie et al. WGP, heritability, and asthma
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method, following Wu et al. [52] this was used for both

variable selection (if applicable) and variable weighting (if

applicable). The 25% were used to test each prediction

method, from which we obtained AUCs [53] and convex-

hull AUCs [54]. We used label-permutation testing to

obtain empirical p-values for the difference between those

AUCs and random guessing (AUC 50%). In this way, we

tested in a statistically independent replication cohort.

We then repeated this procedure 25 times and reported the

average AUCs and p-values obtained for each prediction

method. For the GRM-based prediction methods, we also

used leave-one-out (LOO) validation, as follows. It is

efficient to build the GRM on the entire cohort, but then

hold out each participant in turn and use his/her

relationship to the other cohort members to predict

case/control status. This provided both a more robust

model and more robust test of the GRM prediction

methods, while retaining the essential independence of the

test from the training data.

GRM-based prediction methods can easily accommodate

the inclusion of covariates in the prediction of unknown

outcomes. We implemented the covariate GRM method

suggested by Wheeler et al. [34] and performed prediction

including covariates.

To compute the genetic relatedness matrix for use in the

GRM-based methods, we used a weighted sum of SNP

differences as the genomic distance between two subjects

[5, 55]. This summation is typically performed with weights

applied to SNPs based on the inverse-variance of their allele

frequency, which results in rarer alleles being weighted more

heavily. However, any arbitrary weighting scheme can be

used in place or in conjunction with these default weights.

Herein, we considered weighting schemes based on the

method of Croteau-Chonka et al. [56] which prioritizes

SNPs based on likelihood of functional significance

according to demonstrated statistical association with gene

expression levels (i.e., eQTLs), overlap with particular

chromatin states, and high minor allele frequency. This

method gave probability scores between 0% and �12% for

each SNP. We considered three weighting schemes based on

this score: W1 was based on the Croteau-Chonka et al.

scheme; W2 was based only on eQTLs and chromatin state,

and not minor allele frequency; and a binary, thresholding,

Non-Zero Weight (NZW), wherein SNPs given zero weight

in scheme W1 were removed from consideration in the

WGP, resulting in a subset of 259,156 SNPs. The NZW SNP

set was weighted according to the standard inverse-variance

SNP weights.

WGP methods were also tested upon the WTCCC

datasets; these included the GWASes of 2000 cases for

each of bipolar disorder (BD), Crohn’s disease (CD),

coronary artery diseases (CAD), rheumatoid arthritis

(RA), type 1 diabetes (T1D), and type 2 diabetes (T2D),

each one paired together with 3000 shared controls [23]. We

had previously processed and cleaned these data as described

earlier [57]. This resulted in approximately 375k SNPs in

each of these six cohorts.

Results

Characteristics of the CAMP cohort are reported in Table 1.

Eight hundred thirty-two CAMP participants were available,

Table 1. Demographic and descriptive statistics of the CAMP cohort,
used as baseline covariates in the analysis. Measures were taken at or
near randomization during the CAMP trial.

Mean (�s.d.)

Age 8.95 (2.13)
Age at diagnosis 3.08 (2.44)
Sex (N male, %) 505 (60.70%)
CAMP Treatment Group (N steroids, %) 252 (30.29%)
Race (N, %)
Non-Hispanic White 604 (72.60%)
African American 69 (8.3%)
Hispanic 96 (11.5%)
Asian/other 63 (7.6%)

Height (cm) 133.80 (13.82)
Body mass index (kg/m2) 18.22 (3.41)
Vitamin D, 25(OH)D 37.81 (15.60)

Table 2. The 13 asthma-related phenotypes considered in this analysis.
Airway hyperresponsiveness measured by provocative concentration of
methacholine required to effect a 20% reduction in FEV1. Pre- and post-
bronchodilator FEV1 computed as percent predicted using age, sex,
height, and race. Bronchodilator response computed as ((Post-FEV1�
Pre-FEV1)/Pre-FEV1). Steroid responsiveness endophenotype computed
following Clemmer et al. [44] Normal Growth, Reduced Growth, Early
Decline, and related patterns were identified using longitudinal data
according to McGeachie et al. [3].

Mean (�s.d.)

Airway hyperresponsiveness (AHR) .07 (1.17)
Serum total IgE (log10) (IGE) 2.63 (.67)
Eosinophil count (log10) (EOS) 2.50 (.53)
Pre-bronchodilator FEV1 (% predicted) 93.19 (14.20)
Post-bronchodilator FEV1 (% predicted) 102.48 (12.76)
Bronchodilator response (BDR) 9.03 (7.44)
Steroid responsiveness endophenotype (SRE) �.01 (1.29)
Normal growth only (N, %) (NG) 221 (26.56%)
Normal growth with early decline (N, %) (NG-ED) 171 (20.55%)
Reduced growth only (N, %) (RG) 222 (26.68%)
Reduced growth with early decline (N, %) (RG-ED) 177 (21.27%)
Early decline with normal or reduced growth (N, %)
(ED-All)

348 (41.83%)

Reduced growth with or without early decline (N,
%) (RG-All)

399 (47.96%)
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genotyped on 455,480 SNPs that passed quality control

metrics. The cohort was composed of mostly non-Hispanic

white children, and also mostly male children. Average

values of the 13 asthma-related phenotypes investigated

appear in Table 2.

The prediction accuracy of any genetic prediction

methodology is ultimately limited by the heritability of

that trait or phenotype in question [14, 24]. In particular, the

accuracy of the genomic relatedness matrix-based methods

are dependent upon the heritability explained by the SNPs

assayed in the genome-wide scan, upon which the GRM is

constructed [55]. Heritabilities were computed for each

phenotype using the CAMP GWAS (Table 3). In general, the

sample size we had available in CAMP (n¼ 832) is not

sufficient to achieve accurate estimates of heritability using

this method. However, some traits did have significantly

high estimated heritabilities: Reduced Growth-All (95%);

both pre-FEV1 and post-FEV1 (81% and 83%); Normal

Growth with Early Decline (55%); and IgE (53%).

To assess the ability to predict each phenotype in

proportion to its heritability, we performed Whole Genome

Prediction in the entire CAMP cohort using four different

methods (Fig. 1). We tested each method on each asthma

phenotype for significant prediction above random (50%

Area Under the Receiver Operator Characteristic Curve,

AUC, is equivalent to random guessing) in the following

way. We show mean convex-hull AUC on the hold out test

set, with error bars representing the standard deviation. We

use mean p-value for difference between random prediction

(permutation test; label shuffling) to assess significance at a

p< 0.05 threshold. Means are taken across 25 different

random splits of the CAMP cohort into 75% training and

25% testing portions. We found significant prediction for

none of the asthma-related phenotypes using any of these

unadjusted methods.

We additionally performed Whole Genome Prediction

with genomic relatedness matrix-based methods using

several SNP-reweighting schemes. We found improvements

in prediction using the Non-Zero Weight (NZW) SNP set

(Supplemental Fig. S1). This set was composed of all SNPs

given non-zero weights by the procedure proposed by

Croteau-Chonka et al. [56] (seeMethods), although retained

SNPs’ weights were not changed from the inverse-variance

weights used by Yang et al. [46] These results are shown in

Table 3. Additive Genetic Heritability of CAMP phenotypes. These are
computed using the GCTA program [46], which does a computation
based on the GRM to estimate the heritability explained by SNPs in a
genome-wide SNP sample in the cohort. For the 13 phenotypes, we have
computed the heritability contained in the SNPs of the CAMPGWASwith
and without adjustment for genotype principal components. Each
heritability is listed with standard error in parentheses, where � indicates
heritability significantly different from 0 at p< 0.05, and �� is significantly
different from 0 at p< 0.01. NA: heritability estimate did not converge.
Accuracy using the GRM method is listed in AUC, with þ indicating
prediction significantly greater than random (p< 0.05, permutation test).

All SNPs (�Std) All SNPsþPCs (�Std) GRM (AUC, %)

AHR NA .45 (.29) 52.3
IGE .42 (.24)�� .53 (.27)� 58.0þ

EOS .38 (.26) .29 (.32) 54.1
Pre-FEV1 .71 (.22)�� .81 (.22)�� 58.1þ

Post-FEV1 .65 (.24)�� .83 (.22)�� 56.1þ

BDR .52 (.25) .67 (.24)� 53.6
SRE .01 (.05) .00 (.42) 51.1
NG .54 (.22)�� .47 (.27) 59.6þ

NG-ED .41 (.24) .55 (.23)� 56.7þ

RG .38 (.25) .49 (.26) 56.8þ

RG-ED .25 (.20) .17 (.27) 56
ED ALL .25 (.20) .22 (.28) 54.7
RG ALL .94 (.19)�� .95 (.19)�� 61.7þ

Figure 1. Asthma phenotypes predicted by four WGP methods. A
number of WGP methods were used to predict 13 phenotypes in CAMP
asthmatics. SVM, support-vector machine; NB, na€ıve Bayes; GRM,
genetic relatednessmatrix; LASSO, least absolute shrinkage and selection
operator regression; AHR, airway hyperresponsiveness; EOS, eosinophil
count; Pre-FEV1, pre-bronchodilator forced expiratory volume in 1 sec;
Post-FEV1, post-bronchodilator forced expiratory volume in 1 sec; BDR,
bronchodilator response ((Post-FEV1� Pre-FEV1)/Pre-FEV1); SRE, steroid
responsiveness endophenotype; NG, normal FEV1 growth (without early
decline); NG-ED, normal FEV1 growth with early decline; RG, reduced
FEV1 growth (without early decline); RG-ED, reduced FEV1 growth with
early decline; ED All, early FEV1 decline (with normal growth or with
reduced growth); RG All, reduced FEV1 growth (with or without early
decline).

M. J. McGeachie et al. WGP, heritability, and asthma
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Figure 2, where the GRM-based method was able to

significantly predict bronchodilator response.

To obtain tighter bounds on the performance of our GRM

method, we used a Leave-One-Out (LOO) testing strategy.

These results are shown in Table 3, and we found significant

prediction for the GRM in a number of phenotypes (IgE,

pre- and post-FEV1, Normal Growth, Normal Growth with

Early Decline, Reduced Growth, and Reduced Growth with

or without Early Decline).

The GRM-based prediction method, as described by

Wheeler et al. [34], allows easy integration of covariates into

the predictive model. We included covariates for age, age of

asthma diagnosis, sex, CAMP treatment group, height, body

mass index, self-reported race/ethnicity, and vitamin D

serum level (Table 1), as well as the top six genotype

principal components. In general, including covariates in the

GRM models increased their accuracy (Fig. 3), with

covariates resulting in improvements in prediction of all

phenotypes except airway hyperresponsiveness (Fig. 3). In

order to assess the possible effect of racial confounding, we

included self-reported race as a separate covariate with the

GRM, finding that race alone did not increase the GRM’s

predictive ability (Fig. 3).

We also conducted WGP in the non-Hispanic white

subset of the CAMP cohort (n¼ 604). We observed similar

prediction for most phenotypes and methods, but with

increased significant predictions using the Genomic Relat-

edness Matrix and Non-Zero Weight SNP set (Fig. 4).

Eosinophils, post-FEV1, Normal Growth, Reduced Growth

with Early Decline, and Reduced Growth All were all

Figure 2. Asthma phenotypes predicted by four methods, using a
reduced set of SNPs predicted to be of greater functional relevance. SVM,
support-vector machine; NB, na€ıve Bayes; GRM, genetic relatedness
matrix; LASSO, least absolute shrinkage and selection operator regres-
sion; AHR, airway hyperresponsiveness; EOS, eosinophil count; Pre-FEV1,
pre-bronchodilator forced expiratory volume in 1 sec; Post-FEV1, post-
bronchodilator forced expiratory volume in 1 sec; BDR, bronchodilator
response ((Post-FEV1� Pre-FEV1)/Pre-FEV1); SRE, steroid responsiveness
endophenotype; NG, normal FEV1 growth (without early decline); NG-
ED, normal FEV1 growth with early decline; RG, reduced FEV1 growth
(without early decline); RG-ED, reduced FEV1 growth with early decline;
ED All, early FEV1 decline (with normal growth or with reduced growth);
RG All, reduced FEV1 growth (with or without early decline). �Indicate
prediction meeting statistical significance for greater than random
performance (AUC 0.50; p< 0.05, permutation test).

Figure 3. Prediction on CAMP cohort using GRMs with different
covariates included, and a reduced set of Non-Zero Weighted (NZW)
SNPs. GRM, genetic relatedness matrix method using Leave-One-Out
cross validation; AHR, airway hyperresponsiveness; EOS, eosinophil
count; Pre-FEV1, pre-bronchodilator forced expiratory volume in 1 sec;
Post-FEV1, post-bronchodilator forced expiratory volume in 1 sec; BDR,
bronchodilator response ((Post-FEV1� Pre-FEV1)/Pre-FEV1); SRE, steroid
responsiveness endophenotype; NG, normal FEV1 growth (without early
decline); NG-ED, normal FEV1 growth with early decline; RG, reduced
FEV1 growth (without early decline); RG-ED, reduced FEV1 growth with
early decline; ED All, early FEV1 decline (with normal growth or with
reduced growth); RG All, reduced FEV1 growth (with or without early
decline). GRM-only methods for IgE, EOS, post-FEV1, NG, NG-ED, RG,
and RG-All meet statistical significance for greater than random
performance (AUC 0.50; p< 0.05, permutation test). Additionally, all
combinations of the NZW GRM with clinical/demographic covariates
were significant, except AHR and BDR.
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significantly predicted using the GRM in non-Hispanic

whites. Results with other methods (Support Vector

Machine and na€ve Bayes) were non-significant.

To test the generalizability of the Non-Zero Weight SNP

selection procedure, we compared performance inWelcome-

Trust Case Control Consortiumdatasets using thewhole SNP

set and the NZW SNP set (Supplemental Fig. S2). We found

that the NZW strategy was helpful for the Genomic

Relatedness Matrix method (but not na€ve Bayes or Support

Vector Machine), providing on average a 2.25% AUC

increase (min 2.0%, max 2.8%) on each WTCCC disease.

Discussion

Our main result was that the lung function growth patterns

Reduced Growth and Early Decline are both conditions with

strong genetic effects. We found that Reduced Growth-All

was predictable with the greatest AUC of any phenotype;

additionally Reduced Growth with Early Decline and

Reduced Growth only were predictable using a GRM and

in the Non-Zero Weight SNPs non-Hispanic white

subcohort, respectively. We additionally tested several other

asthma-related traits in childhood asthmatics, some of

which displayed significant heritability. In conjunction with

a SNP-prioritizing scheme (i.e., Non-Zero Weighting

following Croteau-Chonka et al. [56]), GRM-basedmethods

achieved significant prediction on all phenotypes for which

significant heritability was assessed (Table 3). Other

methods of Whole Genome Prediction were not as effective.

Poor airway function is an important predictor of

morbidity among asthmatics. Reduced Growth (RG), as

defined here, refers to longitudinal lung function, measured

by FEV1, over a period from childhood to young adulthood

(9–26 years, on average), which is predominantly below the

25% percentile for a person of the same age, sex, race/

ethnicity, and height. While this phenotype has not been

similarly quantified, to our knowledge, in previous studies,

much evidence shows that children with low lung function

tend to remain at low lung function as they age and

grow [58]. Thus, while FEV1 and Forced Vital Capacity may

only be �40% heritable, it is reasonable to think that low

FEV1 has strong genetic components, which agrees with our

heritability result. Furthermore, the very high heritability of

the Reduced Growth pattern led directly to our highest

prediction accuracy for a model including only SNPs on the

Reduced Growth-All phenotype. On the other hand, the

Early Decline phenotype is very difficult to measure

accurately, and was only described in a few previous works,

and in those in association with smoking [59, 60]. Our

results, showing that a Genomic Relatedness Matrix can

predict Early Decline, are important as both Reduced

Growth and Early Decline can lead to chronic airway

obstruction and even COPD [3]. These are consistent with

other studies of the heritability of lung function decline [18],

and shows that Whole Genome Prediction can succeed in

lung function despite the lack of replicable findings in

genome-wide association studies [61].

We included clinical and demographic variables as

additional predictors with GRM-based prediction; in

many previous cases SNPs have been added to clinical and

demographic factors in attempts to observe gains in

prediction with genetic data [62], and this was true in our

investigation as well. This is perhaps an indication that

clinical and demographic data can be used to stratify subjects

according to risk; or in a combined model directly with

genotype to achieve the greatest possible accuracy.

We tested four major methods of Whole Genome

Prediction, and found that LASSO and na€ve Bayes were

Figure 4. Prediction using WGP methods in CAMP non-Hispanic white
subjects only, with a reduced set of NZW SNPs. SVM, support-vector
machine; NB, na€ıve Bayes; GRM, genetic relatedness matrix; LASSO, least
absolute shrinkage and selection operator regression; AHR, airway
hyperresponsiveness; EOS, eosinophil count; Pre-FEV1, pre-bronchodila-
tor forced expiratory volume in 1 sec; Post-FEV1, post-bronchodilator
forced expiratory volume in 1 sec; BDR, bronchodilator response ((Post-
FEV1� Pre-FEV1)/Pre-FEV1); SRE, steroid responsiveness endophenotype;
NG, normal FEV1 growth (without early decline); NG-ED, normal FEV1

growth with early decline; RG, reduced FEV1 growth (without early
decline); RG-ED, reduced FEV1 growth with early decline; ED All, early
FEV1 decline (with normal growth or with reduced growth); RG All,
reduced FEV1 growth (with or without early decline). �Indicate prediction
meeting statistical significance for greater than random performance
(AUC 0.50; p< 0.05, permutation test).
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not successful predictors in this context. Genomic Related-

ness Matrix-based prediction and Support Vector Machine

prediction did well in a number of tasks; with GRMmethod

obtaining statistically significant prediction by our metric in

a number of scenarios. The GRM is also fast and easily

accommodates covariates, SNP weightings, and leave-one-

out prediction; accordingly most of our subsequent analysis

focused on the investigation of GRM-based prediction.

Our results are limited by the application to the asthmatics

in CAMP: one dataset with its own characteristics. These

include inclusion criteria requiring mild or moderate

persistent childhood asthmatics; and exclusion of both

those with very mild asthma and those with severe asthma.

While the measurement of accuracy with hold-out test-sets

or cross-validation schemes is typical in Whole Genome

Prediction studies [22, 35, 63], the greatest test of these

prediction methodologies is to apply them prospectively in

an independent cohort; our results indicate that such test

should result in significant prediction of a number of

longitudinal spirometric phenotypes. Comprehensive lon-

gitudinal lung function pattern phenotypes are difficult to

assess in additional cohorts, although it would be of great

interest to investigate them further.

Genomic prediction of heritable asthma-related clinical

traits, such as reduced lung growth, may be possible purely

with genetic information. The Non-Zero Weight SNP

selection criterion shows improvement in Genomic Relat-

edness Matrix-based prediction in multiple cohorts. We also

show that Whole Genome Prediction may reach clinical

utility by combining demographic covariates with GRM-

based prediction. Longitudinal reduced growth is a

phenotype with extremely high heritability.
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Figure S1. Comparison of four different SNP weighting

schemes with GRM-based prediction. GRM, weighted

according to Yang et al. [55] default; GRM W1, weighted

according to Croteau-Chonka et al. [56]; GRM W2,

weighted according to Croteau-Chonka et al. [56], but

without consideration of SNP minor allele frequency; GRM

NZW, weighted according to Yang et al. [55], but with SNPs

given zero-weight by Croteau-Chonka et al. [56] removed

from consideration.

Figure S2. Whole Genome Prediction results on Welcome

Trust Case Control Cohorts, also using the Non-Zero

Weight SNP set. BD, bipolar disorder; CAD, cardio vascular

disease; CD, Crohn’s disease; RA, rheumatoid arthritis; T1D,

type 1 diabetes; T2D, type 2 diabetes; SVM, support vector

machine; NB, na€ve Bayes model; GRM, genomic relatedness

matrix method.
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