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Viewpoint 

ABSTRACT  Diploid budding yeast (Saccharomyces cerevisiae) can adopt one 

of several alternative differentiation fates in response to nutrient limitation, 

and each of these fates provides distinct biological functions. When different 

strain backgrounds are taken into account, these various fates occur in re-

sponse to similar environmental cues, are regulated by the same signal trans-

duction pathways, and share many of the same master regulators. I propose 

that the relationships between fate choice, environmental cues and signaling 

pathways are not Boolean, but involve graded levels of signals, pathway acti-

vation and master-regulator activity. In the absence of large differences be-

tween environmental cues, small differences in the concentration of cues may 

be reinforced by cell-to-cell signals. These signals are particularly essential for 

fate determination within communities, such as colonies and biofilms, where 

fate choice varies dramatically from one region of the community to another. 

The lack of Boolean relationships between cues, signaling pathways, master 

regulators and cell fates may allow yeast communities to respond appropri-

ately to the wide range of environments they encounter in nature. 
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INTRODUCTION 

A) Alternative cell fates: Biology ain’t always Boolean 

Most tissues contain multipotent stem cells-- i.e. cells able 

to differentiate into one or more cell types. The choice 

between fates depends largely on stimuli from the envi-

ronment/niche of the cell. Often a given fate choice de-

pends on multiple signals - some that promote and some 

that inhibit a particular fate. These observations suggest 

that Boolean logic may apply to cell-fate choice—i.e. a par-

ticular fate is adopted in response to the presence or ab-

sence of a particular combination (or combinations) of 

signals. For example, the lactose operon is active only 

when lactose is present and glucose is absent [1]. However, 

many fate choices do not fit easily into the framework of 

Boolean logic. Given the facile genetics and unmatched 

gene annotation in Saccharomyces cerevisiae [2], this yeast 

has served for many years as a model for the regulation of 

differentiation [3, 4]. The present review focuses on fate 

choices in diploid cells of the budding yeast, S. cerevisiae 

(Baker’s yeast). I propose that many aspects of this choice 

are non-Boolean in nature. 

Diploid yeast can differentiate in multiple ways (Fig. 1). 

In particular, as nutrients become depleted, these cells 

differentiate in at least three distinct ways: 1) they can 

sporulate to form haploid spores (reviewed in [5, 6]), 2) 

they can switch into “pseudohyphal growth” (phg) to grow 

as elongated chains of cells (reviewed in [7-9]), or 3) they 

can enter a stable non-proliferative state known as “quies-

cence” or “stationary phase” where they age and eventual-

ly undergo programmed cell death (reviewed in [10-12].  

The current review focuses on the mechanisms by 

which S. cerevisiae chooses between these several “nutri-

ent-deprivation” fates and the biological functions of each 

choice. Because in nature individual yeast cells typically 

proliferate, differentiate, age and die all within the context 

of multicellular communities such as colonies and biofilms, 

a particular focus of this review is how cell-fate decisions 

occur within these communities.  

 

 

 

 

doi:10.15698/mic2016.08.516 

Received originally: 25.03.2016;  

in revised form: 07.07.2016,  

Accepted 21.07.2016, 

Published 01.08.2016.  

 

Keywords: pseudohyphal growth, 

sporulation, meiosis, quiescence, 

Boolean logic, cell-cell signals, yeast 

communities. 

 

Abbreviatons: 

DPEB – differential patitioning provides 

environmental buffering, 

FC – fermentable carbon source, 

NFC – non-fermentable carbon source, 

PCD – programmed cell death, 

phg – pseudohyphal growth,  

Q – quiescent,  

ROS – reactive oxygen species, 

SEDF – similar environment, different 

fate. 

 



S.M. Honigberg (2016)  Fate choice in yeast 

 
 

OPEN ACCESS | www.microbialcell.com 303 Microbial Cell | August 2016 | Vol. 3 No. 8 

B) Central hypothesis: Similar environment - different 

fates 

The central hypothesis presented in this review is that the 

choice of cell fate of S. cerevisiae is determined by relative-

ly small differences in nutrient environment, which are 

then reinforced by cell-cell signals. I term this central hy-

pothesis the “similar environment, different fate (SEDF)” 

hypothesis. 

The SEDF hypothesis contrasts with a view in which 

each cell fate responds to discrete differences in environ-

mental cues. Cell-fate decisions determined by discrete 

differences in cues can be expressed a Boolean relationship 

between these cues and a given cell fate. An example of a 

Boolean relationship between inputs and outputs is shown 

in Fig. 2A. Boolean logic requires that there are two states 

for each input (e.g. “1” and “0”) with respect to environ-

mental cues. For example, if a response is linked to a 

threshold level (e.g. if a given fate requires the presence of 

a nutrient above a certain concentration), that would also 

be considered Boolean, since there are effectively only two 

states. An example of a non-Boolean relationship between 

input and output is shown in Fig. 2B. In this example the 

range of concentrations of a given cue that activate a par-

ticular cell fate depends on the concentration (not simply 

the presence or absence) of a second cue. Thus, the key 

feature of SEDF is that the relative level of multiple cues 

determines cells fate, not just their presence or absence. 

Either a Boolean or non-Boolean model is consistent 

with the observation that each fate occurs most frequently 

in some environments than others. However, in a Boolean 

model, as mentioned above, the environments that pro-

mote one fate are clearly discrete from the environments 

that promote a different fate. A Boolean relationship is 

represented by a theoretical landscape (Fig. 2Ci). The dis-

crete red and blue peaks in this figure represent two dis-

crete differentiation responses; the two axes represent 

increasing intensity of two environmental cues (e.g. in-

creasing concentration oxygen and nitrogen). In contrast, 

in a non-Boolean model the environments that promote 

each fate can overlap (Fig. 2Ci).  

The landscape corresponding to the “red fate” in Fig. 

2Ci shows an additional feature not allowed in Boolean 

models. Unlike the blue peak, in the red peak the two sig-

nals interact such that the response peak is not symmet-

rical relative to the axes. In other words, the optimal level 

for one cue is different, depending on the level of the sec-

ond cue. 

There are three main reasons to propose yeast cell fate 

follows an SEDF (non-Boolean) rather than a Boolean mod-

el, as discussed throughout this review. First, all 3 types of 

diploid differentiation occur in very similar environments, 

so fate choice is probably determined not by the presence 

or absence of one or more extracellular signals, but by the 

relative amount of these signals, i.e. fate choice cannot be 

represented by Boolean logic. Second, the transcription 

factors and signal transduction pathways that regulate 

yeast cell differentiation are not, either alone or in combi-

nation, specific for only one form of differentiation. Indeed, 

not only is the relationship between fate choice and envi-

ronmental cues not Boolean, neither is the relationship 

between fate choice and the activity of most regulators. 

Third, yeast differentiation fates, despite mechanisms en-

suring their stability, are remarkably flexible without dra-

matic changes in environment. For example, many com-

munities of yeast are partitioned into populations undergo-

ing different fates.  

The main ramification of the SEDF hypothesis is to un-

derline the importance of cell-cell signals in the context of 

yeast communities. As proposed below, the key mecha-

nism that allows SEDF is cell-cell signaling that reinforces 

fate choice. Within these communities, the combination of 

environmental and cell-cell signals allows cell fate choice to 

be coordinated both temporally and spatially. In particular, 

I propose that relatively modest quantitative differences in 

nutrient environment (and signal pathways activity) are 

sufficient to efficiently specify a single cell fate because 

these small differences are reinforced by cell-to-cell signals. 

In the context of the theoretical landscapes described 

above, one can consider that these cell-cell signals allow 

discrete fate peaks even in a very similar environment—

the effectively “sharpen” these peaks (Fig. 2Ciii). As a result, 

FIGURE 1: Alternative fates for diploid 

yeast. S. cerevisiae typically have an 

ovoid shape when proliferating (1), 

and can differentiate to form chains of 

elongated pseudohyphal cells (2), 

rounded quiescent cells that subse-

quently age and succumb to pro-

grammed cell death (3), or tetrad asci, 

i.e. four haploid spores held together 

in an ascal sac (4). 
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SEDF allows different regions of the community to adopt 

complementary fates within a relatively uniform environ-

ment. Furthermore, this type of coordination provides bio-

logical functions to the community that are not available to 

individual cells. As a result, these signals provide functions 

that may echo the origins of communication on this planet. 

 

LESSONS FROM THE WILD  

Before considering the evidence for SEDF, it is useful to 

regard possible differences between yeast found in nature 

(in which fate choices evolved) and yeast in the laboratory 

(in which fate choice can be studied). Recently, it has be-

come clear that natural populations of S. cerevisiae exist 

throughout the world [13-15] and that these natural popu-

lations are different from domesticated yeast populations 

such as industrial or vineyard yeast as well as from clinical 

yeast isolates [16, 17]. In particular, the ability to isolate, 

genotype, and in many cases sequence the genome of 

these natural isolates of S. cerevisiae has revealed at least 

two important features of the evolution of cell fate choice 

in wild yeast - the stability of the diploid state and the di-

versity of ecological niches in which these yeast can be 

found.  

 

A) Natural S. cerevisiae populations are homozygous dip-

loids 

Based on genome analysis of many wild yeast isolates, it is 

clear that the ploidy of S. cerevisiae isolated from natural 

environments is diploid rather than haploid or polyploid 

[18-20]. By way of contrast, in the lab S. cerevisiae readily 

proliferates as haploids, diploids or polyploids. Indeed, 

polyploidy (particularly tetraploidy) is very common among 

industrial and food-processing S. cerevisiae [21, 22], and 

polyploidy and even aneuploidy may occur relatively fre-

quently in response to environmental stress (reviewed in 

[23]).  

The fact that haploid yeast have not been isolated from 

the wild does not necessarily mean that sporulation is rare 

in natural environments. Indeed, yeast strains isolated 

from nature generally sporulate and mate efficiently in the 

laboratory under a range of nutrient conditions [24-26]. 

However, any spores isolated from nature might not be 

recognized as such, since they would probably germinate, 

mate and form diploids as soon as first cultured in the lab.  

There are several reasons that haploids are likely short-

lived intermediates both in nature and when first cultured 

in the lab. In the first place, after sporulation is complete, 

the four haploid products of sporulation, two of each mat-

ing type, are held tightly together in an ascal sac - the rem-

nant of the cell wall of the parent cell. As a result, once 

nutrients are restored, haploids of opposite mating type 

efficiently undergo mating with other spores from the 

same ascus (intra-ascal mating) to restore the diploid state. 

Furthermore, any haploids that fail to mate with their sis-

ter spores would likely mate soon after beginning to prolif-

erate, because most wild yeast are homothallic, meaning 

that a dividing cell produces a daughter cell of the opposite 

mating-type from the mother cell, allowing subsequent 

FIGURE 2: Boolean and non-Boolean relation-

ships between input and output. (A) Boolean 

truth table that represents the relationship 

between all combinations of the presence (1) or 

absence (0) of two possible inputs (A and B) and 

the occurrence of a given output. With respect 

to differentiation choices, examples of inputs 

could be the presence/absence of particular 

environmental cues or the activation/ inactiva-

tion of particular signaling pathways, and ex-

amples of outputs would be the occurrence (1) 

or not (0) of a particular type of differentiation. 

In an authentic Boolean truth table the re-

sponse (as well as signal) would be only “1” or 

“0”, but for the example given, three alternative 

fates (F1-F3) are indicated for conciseness. As a 

result, this table can be considered a collapsed 

stack of truth tables, with one truth table for 

each possible fate. (B) Example of non-Boolean 

relationship between input and output. Rather 

than a given input being present or absent, the 

amount of input affects the output. In the con-

text of differentiation choices, the amount of 

input could reflect the concentration of a par-

ticular environmental cue or the level of activation of a given signaling pathway. Note that in the contrived example shown, when the 

amount of input A is constant, output depends on the amount of input B not merely its presence or absence (compare row 2 and 3). (C) 

Environmental landscape graphs showing theoretical relationship between the efficiency/probability of cell fate (Z-axis) and two environ-

mental variables (X- and Y-axes). The red and blue peaks represent two different cell fates. (i) In a Boolean landscape, fates are discrete, they 

never occur in the same environment, also Boolean response peaks are symmetric relative to the axes, so the blue peak is Boolean and the 

red peak is not. (ii) SEDF model is not Boolean since the two fate response peaks overlap. (iii) Even in the SEDF model, fates can be made 

discrete by reinforcing small differences in environment by cell-cell signaling. 
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mating between mother and daughter. Finally, diploid cells 

proliferate more rapidly than haploid cells under most 

conditions [27], allowing diploids to out-compete haploids 

in the wild. The greater stability of the diploid state in S. 

cerevisiae contrasts with other yeast species such as S. 

pombe and Candida lusitaniae, which are both more stable 

in the haploid state. In these species, meiosis closely fol-

lows mating, rather than the reverse as in S. cerevisiae [28, 

29]. 

One implication of intra-ascal mating in wild yeast is 

that inbreeding between sister spores is much more fre-

quent than outbreeding of unrelated yeast [30]. Also con-

tributing to the low rates of outcrossing is the fact that 

yeast grows and sporulates primarily in clonal communities, 

i.e. starting from a single cell. Consistent with high levels of 

inbreeding in natural populations, analysis of molecular 

polymorphisms including whole-genome sequencing of 

natural isolates reveal them to be largely homozygous. 

Indeed, natural yeast have significantly less heterozygosity 

than clinical or vineyard isolates [31, 32] perhaps because 

of less selection pressure from human associations on the 

natural yeast. Although inbreeding may be the rule for wild 

yeast, genome-wide sequencing indicates that outbreeding 

does occur [30] including between wild and domesticated 

yeast [13]. For example, outbreeding may occur in the gut 

of insect vectors such as wasps [33]. In fact, it has been 

suggested that the ratio of inbreeding to outbreeding can 

be regulated in wild yeast [34]. 

Haploids may be rare in the wild, but their ability to 

proliferate in the laboratory is extremely useful. Haploids 

can be easier to work with than diploids; for example, only 

a single allele must be deleted to eliminate the gene prod-

uct. Furthermore haploids undergo many of the same fate 

choices as diploid cells. For example, haploids can switch 

from budding to filamentous growth, and haploids can 

enter quiescence and age. Although wild-type haploids are 

not normally able to initiate meiosis & sporulation, intro-

duction of certain mutant alleles can bypass these con-

straints [35, 36].  

To return to the evolution of fate choice, since yeast 

found in the wild are almost always largely homozygous 

diploids, it is clear that the nexus for yeast differentiation is 

the diploid cell as nutrients become depleted. Below I de-

scribe how both yeast’s metabolism and its natural habi-

tats provide the environmental cues that trigger differenti-

ation. 

 

B) Natural Saccharomyces habitats are both diverse and 

changeable 

It is useful to consider the natural habitats/ecological nich-

es of yeast in the wild with respect to the biology of fate 

choice. In the lab, yeast differentiate when nutrients be-

coming limited, not only because nutrient depletion slows 

or halts proliferation, but also because it directly promotes 

differentiation. As discussed in this section, it is particularly 

the changes in metabolism and hence nutrient environ-

ment accompanying late stages of growth that promote 

differentiation. 

The crux of S. cerevisiae metabolism is the “Crabtree 

effect” [37]. The Crabtree effect describes the observation 

that when glucose is available, yeast will metabolize (fer-

ment) this sugar completely to ethanol, acetate and other 

non-fermentable carbon sources (NFCs), and these non-

fermentable products are only themselves efficiently me-

tabolized further (via respiration) once glucose is com-

pletely exhausted. This switch from fermentation to respi-

ration, termed the diauxic shift, occurs even when oxygen 

remains plentiful throughout. Not surprisingly, while glu-

cose is plentiful, multiple signal transduction pathways 

respond to this glucose to repress respiratory enzymes and 

metabolism of alternative carbon sources (reviewed in 

[38]). Thus, S. cerevisiae is primarily adapted to proliferate 

on glucose and convert it to non-fermentable carbon. 

Many yeast species do not display the Crabtree effect, 

and it has been suggested that this effect evolved in S. 

cerevisiae and other “Crabtree yeast” as a mechanism to 

out-compete surrounding microbial species because the 

ethanol produced by fermentation and secreted by the 

yeast inhibits the growth of these other species [39]. The 

Crabtree effect is also central to the economic power of S. 

cerevisiae because it allows the production of high levels of 

ethanol during fermentation and high levels of CO2 during 

respiration.   

FIGURE 3: Environmental cues determine cell fate. All three dif-

ferentiation fates occur as nutrients become depleted, and this 

depletion provides at least three environmental cues that control 

differentiation fate as follows. (i) The ratio of non-fermentable 

carbon sources to fermentable carbon sources (NFCs/FCs) affects 

fate, with higher levels of NFCs stimulating sporulation (Sp). The 

arrow + bar shown linking NFCs/FCs to pseudohyphal growth 

(phg) reflects that in some laboratory strain backgrounds phg 

occurs efficiently when a FC source (glucose), is present, whereas 

in other strain backgrounds this differentiation occurs more effi-

ciently in a NFC (acetate). (ii) Alkali increases in the environment 

during late stages of growth, and this alkali promotes both quies-

cence (Q) and sporulation. (iii) Nitrogen and possibly other essen-

tial nutrients (N) inhibit both, sporulation and quiescence. The 

arrow bar connecting N to phg represents that phg occurs most 

efficiently when intermediate levels of N are present, i.e. Phg is 

inefficient at either high N or in the absence of N. 
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Wild yeast have been observed to proliferate in nature 

primarily on plant matter rich in sugars, such as tree exu-

dates or rotting fruit [14, 26]. In contrast, recent isolation 

of S. cerevisiae from sites throughout the world such as soil 

demonstrates that this species is capable of inhabiting a 

wide range of ecological niches that are not rich in glucose 

[15, 40]. It seems likely that in these latter niches, yeast is 

not proliferating and may exist primarily as spores. 

Nutrient environment changes rapidly both during late 

stages of growth and during differentiation itself. During 

late stages of growth, fermentable carbon sources, nitro-

gen and other nutrients become depleted whereas NFCs 

can remain relatively plentiful (Fig. 3). Indeed, both the 

intracellular and extracellular metabolome studies reveal 

dramatic changes in the concentrations of intermediary 

metabolites and amino acids during the diauxic shift [41, 

42]. These changes continue as differentiation progresses. 

For example, analysis of sporulation in transcriptome [38, 

43], proteome [44, 45], and metabolome [46, 47] studies 

indicate that the expression and activity of metabolic en-

zymes continues to fluctuate as sporulation progresses.  

In summary, the biology and natural ecology of yeast 

indicate that yeast is distributed widely, but that it may 

primarily proliferate on fermentable carbon sources (FCs). 

The Crabtree effect ensures that as cells begin to exhaust 

nutrients and slow or cease growth, NFCs remain relatively 

plentiful. As discussed in the Section “Shared environmen-

tal cues & distinct fates”, this nutrient environment is op-

timal for differentiation regardless of the particular fate 

(consistent with SEDF). Thus, both the metabolism and the 

ecology of yeast suggest that yeast evolved such that late 

stages of growth provide the environmental cues neces-

sary for differentiation.  

 

C) A caveat regarding comparing laboratory and natural 

strains  

Regulation of cell differentiation by nutrient environment 

has been studied in many different laboratory strains of 

yeast. It is now evident that these strain backgrounds can 

vary significantly with respect to the relationship between 

environmental cues and differentiation fates. These results 

raise the question of how well fate choice in lab strains 

reflects the fate choices that evolved in the wild. Indeed, 

strain variants with altered differentiation responses may 

have been selected in early laboratory strains, descendants 

of which are now used in most modern laboratories [48]. 

The effect of strain backgrounds on differentiation re-

sponses is a critical consideration when synthesizing data 

from different studies done in different strain backgrounds. 

One example of phenotypic variation between com-

mon laboratory strain backgrounds is sporulation efficiency. 

Moreover, this variation extends to different isolates of 

industrial, clinical and wild yeast. Among some of these 

strains, variation in sporulation efficiency has been traced 

(e.g. by QTL analysis) to allele differences at a relatively 

few loci, e.g. the transcription factor Rme1 [32, 49, 50]. 

Furthermore, sporulation efficiency under a single condi-

tion likely underestimates the variation in sporulation ca-

pacity between strains. As one example, several common 

lab strain backgrounds (e.g. W303 and SK1) sporulate very 

efficiently under optimal conditions but sporulate much 

less efficiently than natural isolates on low concentrations 

of glucose [25]. 

Phg efficiency also varies considerably between strain 

backgrounds - both among laboratory strain backgrounds 

and among natural isolates of yeast [51]. In the strains that 

have been compared, this variation is again largely at-

tributable to one or a few loci; for example, the transcrip-

tion factor Flo8, a master regulator of phg [52-54]. In fact, 

several common laboratory strain backgrounds of yeast 

that lack a functional allele of Flo8 are completely unable 

to undergo phg, but can partially recover this ability when 

Flo8 is restored [55]. As with sporulation, variation in phg 

extends beyond efficiency under optimal conditions. For 

example, in some laboratory strain backgrounds (e.g. 

Ʃ1278b) phg occurs most efficiently in medium containing 

glucose, whereas in other strain backgrounds (e.g. SK1), 

phg occurs most efficiently in NFCs [56-59]. Finally, as with 

phg and sporulation, the rate of ageing in quiescent cells 

varies significantly between different laboratory strains 

[60].  

In addition to allele variation for master regulatory 

genes such as RME1 and FLO8, the responsiveness of signal 

transduction pathways to environmental cues varies signif-

icantly between laboratory strains (reviewed in [61]). Many 

experiments connecting signaling and differentiation 

pathways have been done in only a single strain back-

ground, so it is wise to be circumspect in synthesizing re-

sults based in different strain backgrounds. An equally im-

portant point is that it is unlikely that any single laboratory 

strain background represents the “real” evolved response; 

indeed, the variation between laboratory strains is mir-

rored by variation between natural isolates. 

Obviously, experiments with lab yeast strains have 

driven and will continue to drive most of what we under-

stand about fate choice, as they do for most yeast biology. 

However, in considering the implications of these experi-

ments to fate choice, it is useful to remember possible 

differences between these lab strains and the natural yeast 

strains in which fate choice evolved. 

 

VARYING FATES, VARYING FUNCTIONS 

From a functional viewpoint, a key aspect of the choice 

between cell fates is that each fate has a different biologi-

cal role. In this section, these roles are discussed, especially 

in the context of the nutrient limitation that triggers dip-

loid yeast differentiation. 

 

A) Fate #1: sporulation - sex, food and energy 

The primary function of sporulation is to produce cells 

(haploid spores) that are more resistant to environmental 

stresses than the vegetative cells from which they derive. 

For example, spores resist antimicrobials, high tempera-

tures and prolonged starvation to a much greater extent 

than vegetative cells [62-64]. This resistance derives in 

large part from the thick walls encasing each spore [65, 66]. 

Another aspect of spore resistance is that spores survive 
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the insect gut much better than vegetative or quiescent 

cells [62]. Fruit flies and other insects are thought to be a 

major vector by which yeast spread from one ecological 

niche to another and outbreed to less related strains [67, 

68]. Indeed, it has been proposed that the environment of 

the insect gut is the primary site at which the spore wall 

protects viability [5]. 

Another presumed function of sporulation is to in-

crease genetic diversity in a yeast population as a result of 

meiotic recombination coupled with independent assort-

ment of chromosomes. Indeed, meiotic recombination in 

yeast may also increase genetic variation as a result of in-

creased mutation rates near meiotic recombination sites 

[69]. However, as mentioned earlier, most wild yeast 

communities are clonal populations of largely homozygous 

strains. Yeast meiosis could be important in generating 

diversity after relatively rare out-breeding or mutation 

events by stimulating loss-of-heterozygosity at new alleles. 

In any case, yeast meiosis likely provides a relatively minor 

selective advantage relative to the increased environmen-

tal resistance of spores. 

Sporulation as a response to limiting nutrients is par-

ticularly interesting in the context of the large energy re-

quirement for the sporulation program. For example, en-

ergy is required to express hundreds of gene products re-

quired for meiosis and spore wall formation including 

many, such as spore wall proteins, that are produced to 

very high levels [44, 45, 70-72]. In addition, many of the 

cellular processes required in sporulation have additional 

energy requirements—e.g. DNA replication and chromo-

some segregation. This abundant expenditure of energy in 

response to nutrient limitation has been termed the sporu-

lation “energy paradox” [73, 74].  

It is likely that this apparent paradox is resolved 

through a combination of several mechanisms. In the first 

place, storage carbohydrates, for example glycogen, accu-

mulate during late stages of growth and are subsequently 

utilized for energy during sporulation (reviewed in [75]). 

Indeed, mutants defective in accumulating these storage 

carbohydrates fail to sporulate [76, 77]. In the second 

place, deprivation for nitrogen (or other essential nutri-

ents) when NFC is still abundant allows abundant energy 

production/respiration in the absence of cell division. Thus, 

yeast build environment-resistant spore walls by using 

both internal and external energy sources generated dur-

ing growth.  

 

B) Fate #2: Quiescence - dormancy, ageing & death  

1) Not dead, just quiet. Quiescence is a differentiated state 

in which yeast cease growth (reviewed in [12]) and under-

go genome-wide changes in transcriptional expression and 

chromosome topography [78-80], cytoskeletal organization 

[81] and cytosolic fluidity [82, 83]. Thus, like sporulation, 

quiescence is a response to nutrient deprivation that is 

likely to require an energy investment. One of the major 

functions of quiescence is the same as that of sporulation - 

resistance to environmental stresses. For example, activa-

tion of the Mpk1 cell wall integrity pathway in quiescent 

(Q) cells induces the induction of cell-wall repair genes [84, 

85], and activation of Rim15 kinase in these same cells 

induces stress-resistance genes [86-88]. Quiescence in 

yeast has been studied primarily in haploids but is equally 

available to diploid cells. 

Interestingly, Q diploids are more resistant to environ-

mental stress than growing cells but less resistant than 

spores to environmental stress [5]. Q cells do not remain 

viable indefinitely. As time passes and Q cells age, their 

viability diminishes. Thus, quiescence, aging, and eventual 

death can be considered progressive stages in a single dif-

ferentiation pathway. 

 

2) The universal fate choice— getting older vs. the alterna-

tive. As stated above, cell death occurs naturally as cells 

age. For example, in suspended yeast cultures most cells 

have reached the end of their lifespan approximately 1-3 

weeks after they have ceased growth [63, 89, 90]. Lifespan 

is ended through a programmed cell death (PCD) (reviewed 

in [91-93]).  

PCD in yeast displays many of the same cellular land-

marks as apoptosis in higher organisms, such as DNA frag-

mentation, cell surface changes, and involvement of mito-

chondria and reactive oxygen species (ROS) [94, 95]. For 

this reason, yeast PCD is often referred to as “yeast apop-

tosis”. However, yeast PCD does not utilize all of the same 

regulators as mammalian apoptosis nor the extensive fami-

ly of caspases typical of metazoan apoptosis [96, 97]. In 

this review, to avoid semantic distinctions, I refer to yeast 

apoptosis as PCD.  

Yeast lifespan is limited not only by the period of time 

that elapses after growth ceases (chronological ageing), 

but also by the number of times a mother cell can divide 

before it dies (replicative ageing) (reviewed in [98]). These 

two types of ageing are regulated by many of the same 

pathways (reviewed in [99, 100]), and they are also linked 

in the sense that chronologically aged yeast have shorter 

replicative lifespans than chronologically young cells [101]. 

Nevertheless, the two types of age are not interchangea-

ble; for example, the Sir2 histone deacetylase inhibits rep-

licative ageing, but Sir2 actually stimulates chronological 

ageing in some strain backgrounds and conditions (re-

viewed in [102]). 

In addition to ageing, yeast PCD is also triggered by a 

wide variety of other environmental stresses [103-106]. A 

common feature between ageing and most other triggers 

for PCD in yeast is the accumulation of oxidative and other 

cellular damage. According to one view of ageing, accumu-

lation of damage over time eventually triggers PCD (re-

viewed in [107]). 

What is the relationship of nutrient environment to 

ageing and subsequent cell death? A common feature of 

replicative lifespan control from yeast to metazoans is that 

lifespan is increased when nutrients are limited, i.e. calorie 

restriction [108, 109]. Although the role of calorie re-

striction in lifespan extension is still a matter of debate, 

one idea is that when metabolism is limited, ROS and 

hence oxidative damage are also limited, and as a result 

lifespan is extended [110-113]. A corollary to this hypothe-
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sis is that inducing repair of oxidative stress also extends 

lifespan [114, 115]. 

Regardless of the of PCD trigger, its function in yeast 

and other single-celled organisms has been the subject of 

debate. One idea is that because yeast growth is largely 

clonal, programmed death in one cell could benefit other 

cells with the same genotype, thus providing a selective 

advantage for the genotype. For example, suspended cul-

tures accumulate ROS after prolonged incubation, trigger-

ing PCD in most of the culture and presumably releasing 

enough nutrients from the dying cells to allow a subpopu-

lation of still viable cells to continue growth and acquire 

adaptive mutations [116]. More generally, several investi-

gators have proposed mechanisms by which programmed 

cell death benefits the overall (or average) survival of a 

clonal community in S. cerevisiae [92, 117] and other mi-

croorganisms [118-120]. The specific case of cell fate 

choice (including PCD) within communities is discussed 

further in the section “Shared communities – coordinated 

fates”.  

In summary, quiescence, ageing and PCD can be con-

sidered a single progressive pathway with different func-

tions at earlier stages (e.g. resistance to environmental 

stress) than at later stages (e.g. possible re-distribution of 

nutrients). 

 

C) Fate # 3: Phg- the life of the forager 

1) Overview: looking for a better neighborhood. Phg, like 

both quiescence and sporulation, is a response to dimin-

ished nutrients. However, phg is unique among yeast dip-

loid differentiation fates in that it is also a means of cell 

proliferation.  

One likely function of phg is foraging. Specifically, phg 

allows yeast communities such as colonies to expand and 

access distant nutrients more efficiently than is possible 

when yeast divide through its standard (ovoid) budding 

patterning. Indeed, in many strain backgrounds phg occurs 

only in communities, not in suspended cultures [121]. 

However, in other strain backgrounds pseudohyphae will 

form under certain conditions even in suspended cultures 

[122, 123]. 

At least two types of foraging are associated with 

pseudohyphae: i) extension of chains of elongated yeast 

cells along the surface of the underlying substrate, and ii) 

invasion of these chains into the underlying substrate.  

 

2) Exploring the surface. The first type of foraging is closely 

related to the structure of pseudohyphae as chains of 

elongated cells. These chains radiate out from the perime-

ter of a colony or biofilm along the surface of the agar or 

other hard surface like plastic on which these communities 

grow. Limiting phg to the fringe of the community may be 

the most efficient mechanism to access distant sources of 

food. 

 

3) Exploring below the surface. As yeast colonies mature, 

they sometimes grow into (or “invade”) the underlying 

agar medium. Although invasive growth is often studied in 

haploids, diploids colonies are equally capable of invading 

agar. By the same reasoning as above, invasive growth 

potentially allows access to distal nutrients. In addition, 

invasive growth may provide benefits by anchoring a yeast 

community to its underlying substrate, and invasive growth 

of yeast into fruit and other natural substrates have been 

observed [124]. By analogy, the much longer hyphal and 

pseudohyphal filaments formed by the pathogenic yeast 

Candida albicans are necessary for these yeast to invade 

host tissue and, hence, for pathogenicity (reviewed in 

[125]).   

In theory, the elongated-chain geometry of pseudohy-

phae could provide the force necessary for invasion, but in 

fact the connection between pseudohyphae and invasive 

growth is not straightforward. Most laboratory strains that 

can form pseudohyphae can also invade agar [57, 59, 126]. 

However, many genes have been implicated in one pro-

gram but not the other [127, 128]. Furthermore, in some 

wild and laboratory yeast grown on agar plates, the region 

where colonies invade the agar is not associated with ex-

tensive phg [25].  

 

4) Phg and phg-spectrum phenotypes. Invasiveness is only 

one of a spectrum of wild-type phenotypes that require 

many of the same genes as phg but which do not always 

directly require phg. In particular, these “phg-spectrum” 

phenotypes all depend on expression of flocculins, which 

are a class of lectin-type proteins involved in both cell ad-

hesion and cell signaling [129]. The diversity of flocculin-

dependent phenotypes reflects the variety of communities 

that can form in this species. For example, the FLO11 floc-

culin is required to form “structured colonies”, which have 

with a distinctive lacey appearance [130, 131], “mats”, 

which are large thin colonies formed on low agar (high 

moisture) plates [132], “flors”, which are thin colonies of 

yeast that form on the top of liquid cultures [133], “flocs”, 

which are large clumps of cells that form suspended in 

cultures [58, 134], and “minicolonies” which are biofilm 

like structures that adhere to plastic surfaces submerged in 

medium [56, 133]. Both lab and natural yeast isolates vary 

considerably in their ability to undergo these phg-spectrum 

phenotypes [20, 131]  

 

D) Summary - distinct functions for discrete fates 

As discussed in the Section “Lessons from the wild”, all 

three differentiation fates are a response to a limited-

nutrient environment, but as we saw in the Section “Vary-

ing fates, varying functions”, each fate has distinct func-

tions and costs from the other two cell fates. For example, 

both quiescence and sporulation result in cells that are 

more resistant to the environment, but the higher re-

sistance of spores relative to quiescence comes at the ex-

pense of a sizeable energy investment. Phg, a response to 

less severe nutrient depletion than the other two fates, 

functions more for foraging than for resistance to stress. 

Because fate choices are functionally quite distinct, it is 

striking, as discussed below, that they all respond to many 

of the same environmental cues, signaling pathways, and 

master regulators. 
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OVERLAPPING REGULATORS BUT DISTINCT FATES 

A) Introduction to the master regulators of differentiation  

At one level, differentiation fate is determined by expres-

sion of master regulator(s). Master regulators are gene 

products that are required to initiate differentiation; in-

deed by one definition, a true master regulator is sufficient 

to trigger differentiation when expressed ectopically under 

conditions where that fate is normally suppressed. In a 

Boolean logic system, each fate would be defined by the 

presence or absence of one or more master regulators. 

Indeed, each differentiation pathway in yeast requires one 

or more master regulators and subsequent expression 

changes in hundreds of genes. However, as described be-

low several of these master regulators activate more than 

one differentiation pathway, repress more than one path-

way, or activate one pathway while repressing another (Fig. 

4).  

Phg is regulated by a set of transcription factors includ-

ing Flo8, Ste12, Tec1 and Nrg1, all of which activate tran-

scription of the flocculin gene FLO11 (reviewed in [135]). 

Sporulation is initiated by expression of the Ime4 RNA 

methylase, the Ime1 transcription factor and the Ime2 pro-

tein kinase (reviewed in [5]). Quiescence is activated by 

expression of the Xbp1 transcription factor [78, 79]. 

 

B) Activators of meiosis (IME1, IME2) also activate phg  

Surprisingly, two key master regulators of sporulation, the 

Ime1 transcription factor and Ime2 kinase, are also re-

quired for phg in some laboratory strain backgrounds. In 

particular, these genes are required for phg in the SK1 but 

not the Ʃ1278b background [57]. This result is consistent 

with an observation described above—in SK1, phg (like 

IME1 and IME2 expression) is induced by NFC, but in 

Ʃ1278b phg is induced by glucose, which strongly inhibits 

IME1 and IME2. 

The roles of Ime2 in activating both phg and sporula-

tion in SK1 is broadened further when Ime2 homologs in 

other fungal species are considered. For example, Ime2p 

homologs in Aspergillus nidulans and Neurospora crassa 

activate the development of sexual structures, and Ime2 

homologs in Ustilago maydis and Cryptococcus neoformans 

activate mating and filamentous growth (reviewed in 

[136]). Thus, the idea that a master regulator can control 

more than a single differentiation program extends across 

species. 

 

C) Rme1 and Ime4 activity and the sporulation/phg choice  

Rme1 is a transcriptional activator that inhibits sporulation 

and stimulates phg. Rme1 prevents sporulation in haploid 

cells, a critical function since haploid meiosis is inevitably 

lethal. Rme1, which is expressed at high levels in haploids 

exposed to sporulation conditions, prevents meiosis by 

activating transcription of IRE1 a non-coding gene approx-

imately 1 kb upstream of IME1. Transcription of IRE1 

through the IME1 promoter prevents IME1 transcription 

[137].  

At the same time that Rme1 blocks IME1 transcription 

in haploids, it also activates FLO11 transcription to pro-

mote filamentous growth [138]. Rme1 is also expressed in 

diploids (though at lower levels), and hence may balance 

sporulation and pseudohyphal fates in diploids. For exam-

ple, wild yeast isolates with relatively high Rme1 expres-

sion tend to have low sporulation and high phg, whereas 

strains with relatively low Rme1 expression have the re-

verse tendency [32].  

Not surprisingly, both IME1 and FLO11 are regulated by 

a number of other transcription factors in addition to Rme1. 

Indeed, IME1 and FLO11 have among the largest upstream 

intergenic distance of any yeast gene - consistent with 

these genes having especially complex promoters [139]. 

Multiple nutrient signals are integrated in regulating FLO11 

not only through the transcription factors that bind its 

complex promoter but also through regulating activity of 

the Msb2/MAPK pathway that activates some of these 

transcription factors [135]. 

The expression pattern of IME4 is opposite to that of 

RME1 — IME4 is expressed to higher levels in diploids than 

in haploids [140]. Like IME1, IME4 is regulated by an over-

lapping long noncoding transcript [141, 142]. Furthermore, 

Ime4 also acts opposite to Rme1 in balancing sporulation 

with phg. For example, Ime4 inhibits FLO11 transcript ac-

cumulation while promoting Ime1 transcript accumulation 

[141, 143]. Ime4 is an RNA N-6 adenosine methyltransfer-

ase that likely acts on many hundreds of RNAs [144]. Inter-

estingly, N-6 adenosine methylation also regulates expres-

sion of large gene sets in plants and animals during differ-

 
 

FIGURE 4: Roles of signal transduction pathways and master 

regulators on cell fate. Known relationships between signal 

transduction pathways (filled rectangles), master regulators (open 

rectangles), and cell fate (abbreviations as in Fig. 3). The dotted 

arrow connecting the Ime1 and Ime2 master regulators (Ime1, 2) 

and phg represents that these master regulators are required for 

phg in some strain backgrounds but not in others. It should be 

noted that this diagram is meant as a working model of these 

relationships, other connections between pathways and regula-

tors are likely. 
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entiation and development (reviewed in [145]). Other pro-

teins that (like Ime4) promote sporulation and inhibit phg 

include Bir1, which is homologous to IAP (inducer of apop-

tosis protein) [146], and Spo21, a 67 aa protein that local-

izes to the prospore [147]. 

 

D) Quiescence and sporulation: shared regulator & shared 

properties 

Xbp1 represses transcription of many genes by targeting 

the Rpd3 histone deacetylase to these genes [79]. Interest-

ingly, Xbp1 is not only required for quiescence but also for 

sporulation, at least in part because Xbp1 represses tran-

scription of G1 cyclins [148, 149]. These cyclins not only 

trigger the G1 to S transition, they also repress IME1 tran-

scription and inhibit Ime1p nuclear localization [150, 151]. 

It is not known whether Xbp1 is required for all forms of 

quiescence. 

Most meiotic genes are not induced in quiescent cells, 

but at least some of the same metabolic enzymes and 

stress resistant enzymes are induced in both programs [46, 

152]. For example, trehalose synthesis is required for both 

initiation of meiosis and maintenance of quiescent cell 

viability [76, 153]. Similarly, many proteins required for 

heat shock resistance are induced during both quies-

cence/ageing and sporulation [44, 154, 155]. It is possible 

that cells first enter quiescence and only then may some-

times also initiate sporulation. Alternatively, quiescence 

and sporulation may be mutually exclusive fates that share 

certain common regulators and target genes. 

 

E) Summary  

Master regulators of diploid cell fate do not display Boole-

an-logic relationships to fate choice, i.e. there is not a par-

ticular combination(s) of known master regulators that 

specify each fate (Fig. 4). Instead, the relationship between 

master regulators and cell fate is complex. Indeed, some 

regulators, such as Flo11 regulate only a single fate, 

whereas other regulators (Xbp1, Ime1, and Ime2) activate 

more than one fate. Finally, a third class of regulators 

(Rme1 and Ime4), activate one fate while repressing an-

other. How these master regulators together determine 

fate choice is unknown, but evidence so far indicates that 

their relationship to fate choice is non-Boolean. 

 

SHARED ENVIRONMENTAL CUES & DISTINCT FATES 

A) Introduction: a common environment stimulates each 

fate 

Given that all three diploid differentiation programs occur 

as nutrients become limiting, how does a cell choose be-

tween programs? It is possible that a small difference in 

the concentration of one or more nutrients under these 

conditions would result in passing a concentration thresh-

old required for activation of a single fate choice. This 

would be an example of a cue/fate relationship that could 

be represented a Boolean logic since there are only two 

states relative to the threshold. This section addresses the 

question of whether the evidence allows for a Boolean 

relationship between cues and fate.  

A summary of the relationships between environmen-

tal cues and differentiation pathways is shown in Fig. 3. 

Sporulation occurs under the specific condition of active 

respiration (NFCs being much higher than FCs), high pH, 

and depleted nitrogen and/or other nutrients (reviewed in 

[156, 157]). Quiescence, like sporulation, is triggered by 

the absence of at least one essential growth nutrient and 

alkaline pH, but (unlike sporulation) quiescence does not 

have a requirement for respiration (reviewed in [10, 158]. 

Finally, pseudohyphal differentiation occurs at intermedi-

ate-to-low nitrogen concentrations (reviewed in [135]), can 

also be induced by other cues such as fusel alcohols, and 

also responds to other cues in some strain backgrounds 

(reviewed in [159]).  

 

B) Carbon source  

Yeast can metabolize many different carbon sources, but 

from the point of view of cell differentiation, there are two 

main types of carbon source. The first type is the FCs, in 

particular glucose, which is fermented through glycolysis to 

produce the second class - the NFCs. During late stages of 

growth, NFCs, particularly ethanol and acetate, are metab-

olized to carbon dioxide, and the balance between glucose 

and NFC during late stages of growth is a critical determi-

nant of cell fate (Fig. 3).  

 

1) Carbon source, quiescence and sporulation. Glucose 

even in low concentrations effectively inhibits the initiation 

of meiosis in most laboratory strains. Presumably, sporula-

tion has evolved such that it only initiates after the favored 

carbon source for growth, glucose, is fully metabolized to 

NFCs. For sporulation to initiate, a second cue besides the 

absence of glucose is the presence NFCs. Indeed, sporula-

tion requires not only the energy provided by respiration 

but also the specific presence of a NFC [160], and the con-

tinued presence of NFCs is required even at late stages of 

sporulation [161]. Thus, as the ratio of NFCs to glucose (or 

other FCs) increases at late stages of growth, the environ-

ment becomes increasingly optimized for sporulation (Fig. 

3). 

Quiescence is classically defined as occurring after the 

complete depletion of both NFCs and FCs [12]. However, a 

core set of genes is induced during quiescence regardless 

of which nutrient (C, N or PO4) is limiting [162, 163]. Alt-

hough quiescence can be induced in a range of environ-

ments, extracellular environment strongly influences the 

properties of Q cells. For example, metabolic and other 

biological properties of Q cells vary depending on which 

nutrient is limiting (reviewed in [10, 164]). These different 

properties suggest the existence of multiple types of Q 

cells depending on the presence or absence of particular 

environmental cues. For example, ethanol and acetic acid 

accelerate chronological ageing in Q cells [60, 99, 165, 166].  

 

2) Carbon & phg. A change in the ratio between NFCs and 

glucose likely regulates phg in all strain backgrounds, but 

the optimal NFC/glucose ratio may vary between back-

grounds. For example, phg occurs efficiently in the Ʃ1278b 

background when grown on glucose medium, but is much 
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more efficient in the SK1 background when grown on ace-

tate medium [56, 57]. Several results may help to explain 

this difference. In the first place, even in Ʃ1278b, high con-

centrations of glucose (2%) inhibit haploid filamentous and 

invasive growth [167, 168]. In the second place, assays for 

phg in glucose medium generally involve cells dividing for 

many generations before N limitation triggers phg (termed 

the dimorphic switch) [169]. Thus, at least some glucose 

has been converted to NFCs by the time phg initiates. In 

this respect, increased NFC/glucose ratio during late stages 

of growth may stimulate phg as well as sporulation; though 

the optimal ratio may be lower in Ʃ1278b than in SK1. 

 

C) Nitrogen supply  

1) Nitrogen availability, growth and differentiation. It is 

tempting to neatly classify fate choice in yeast as driven by 

the presence or absence of two or three nutrients; yet, in 

nature yeast must make cell fate decisions across a range 

of different environments. The relative nitrogen availability 

from different sources illustrates this point. Yeast is capa-

ble of assimilating nitrogen from many different sources; 

however, the efficiency of utilizing nitrogen varies consid-

erably depending on the source [170]. For example, am-

monium and glutamine are very good nitrogen sources for 

growth, whereas urea and tryptophan are poor sources. As 

discussed below, nitrogen “quality”, besides affecting 

growth rate, also affects fate choice. 

 

2) Nitrogen and fate choice. In laboratory cultures, nitro-

gen is often the nutrient that becomes limiting during late 

stages of growth. In addition to directly regulating differen-

tiation (see Section “Same signal paths – different fates”), 

nitrogen limitation prevents sufficient G1 cyclin from ac-

cumulating to activate the G1-to-S transition (START). The 

START transition blocks both sporulation and quiescence, 

both of which can only initiate from G1. Furthermore, cy-

clin expression inhibits both transcription of IME1 [150, 

151, 171] and nuclear localization of Ime1 [172]. Similarly, 

cyclin expression also blocks the establishment and 

maintenance of quiescence [79]. Finally, once cells do en-

ter quiescence, higher quality N sources accelerate ageing 

relative to lower quality sources [173].  

An intermediate level of nitrogen is required both for 

phg and many phg-spectrum phenotypes [59]. For example, 

FLO11 is induced when low concentrations of nitrogen are 

present in the medium but repressed both at high nitrogen 

concentrations and when nitrogen is completely absent 

[174]. Similarly, both FLO11 induction and phg require in-

termediate G1 cyclin levels [128]. Thus, phg requires both 

detecting and utilizing intermediate N concentrations [175-

177].   

In summary, nitrogen level/availability regulates cell 

fate, not just its presence or absence or its concentration 

relative to a single threshold. Thus, the role of nitrogen in 

regulating differentiation cannot be represented by a 

Boolean “1” vs. “0” relationship between this cue and cell 

fate. 

 

 

D) The simplest of signals: pH  

1) Extracellular pH fluctuates dramatically during growth. 

Changes in extracellular pH coincide with nutrient deple-

tion and contribute to fate choice. Proliferation is much 

less sensitive to external pH than is differentiation - yeast 

grows efficiently through a broad pH range (pH 3-8) - in 

part because acid pumps provide a relatively uniform in-

tracellular pH regardless of external pH [178]. However, 

extracellular pH does change dramatically during both pro-

liferation and differentiation. During fermentative growth, 

the secretion of organic acids such as acetate and pyruvate 

decreases external pH ≤ 4.0 [166]. In contrast, in media 

containing plentiful nitrogen and other nutrients, subse-

quent respiration of these organic acids during the diauxic 

shift converts these acids to C02, which is either released as 

a gas or solubilized as bicarbonate. As a result, during the 

diauxic shift, extracellular pH increases to ≥ 8.0. In this re-

spect, extracellular pH reflects the ratio of FCs to NFCs 

[179]. Note that if the ratio of glucose to other essential 

nutrients is high enough in the chosen growth medium, 

then glucose will never be exhausted, and cells will not 

undergo either the diauxic shift or the second pH transition. 

 

2) Extracellular pH has complex effects on cell differentia-

tion. Increased extracellular pH during late stages of 

growth stimulates quiescence [180]. Likewise, when Q cells 

are exposed to low pH, their viability (chronological 

lifespan) is strongly diminished [166, 181]. Increased extra-

cellular pH also activates sporulation, and this pH contin-

ues to rise as sporulation progresses [182, 183]. Finally, pH 

has varying effects on phg-spectrum of phenotypes. For 

example, flocculation is stimulated by acidic pH [58, 184, 

185], whereas, invasive growth is stimulated by alkaline pH 

[186].  

 

E) Is it really just all about the food?  

In natural environments, yeast must adapt to temperature 

fluctuations over the course of the day and the course of 

the year. In general, diploid differentiation is more sensi-

tive to temperature than is proliferation. For example, 

most laboratory strains are unable to sporulate at moder-

ately high temperatures (> 34°C) even though growth is 

still efficient at temperatures exceeding 37°C [187]. Simi-

larly, many clinical yeast isolates are able to grow as ovoid 

cells at much higher temperatures than as pseudohyphae 

[188, 189]. Finally, as cells enter quiescence, resistance to 

heat and other stress initially increases and then declines 

as cells age [190, 191]. 

Another aspect of cellular environment is cell-cell con-

tacts. The role of cell-cell contacts in cell-fate decisions is 

most clear for phg, where cell adhesion molecules like the 

flocculin, Flo11, and the mucin, Msb2, are required for 

many phg-spectrum phenotypes (reviewed in [192, 193]). 

Sporulation in minicolonies might also be regulated by cell-

surface contacts, since only the pseudohyphae projecting 

from minicolonies, not cells in the core, are capable of 

sporulating [56]. 

 

 



S.M. Honigberg (2016)  Fate choice in yeast 

 
 

OPEN ACCESS | www.microbialcell.com 312 Microbial Cell | August 2016 | Vol. 3 No. 8 

F) Summary  

Given that all three types of diploid differentiation occur in 

the nutrient-depleted environment characteristic of late 

stages of growth, it is not surprising that the environmental 

cues that regulate them are similar, but there are two 

points worth emphasizing. First, although each pathway 

occurs independently, there is no single combination of the 

presence or absence of cues that unambiguously specifies 

a single fate (Fig. 3). Second, the level or relative concen-

tration of an environmental cue (e.g. ratio of NFCs to FCs 

or low, intermediate or high nitrogen) often correlates 

better with fate choice than simply the presence of that 

cue above some single threshold concentration. Both find-

ings support the SEDF hypothesis and argue against a 

Boolean relationship between cues and fates. 

 

SAME SIGNAL PATHS - DIFFERENT FATES 

A) Overview 

It is striking that all three diploid differentiation pathways 

not only occur in similar nutrient environments but are 

also regulated by the same four major nutrient signal 

transduction pathways (PKA, TorC1, Snf1 and Rim101). As 

with master regulators and environmental cues, in the case 

of signaling pathways, one can imagine pathways in only 

one of two states, ON or OFF, relative to pathway targets 

including differentiation programs. Alternatively, there 

could be multiple or even continuous (graded) pathway 

activity levels. As one example, variable numbers of recep-

tors could result in nearly continuous activity levels. The 

mechanisms and components of signal transduction have 

been discussed in several excellent recent reviews [3, 61, 

194, 195], so this section of the viewpoint focuses only on 

the role of these pathways in regulating fate choice and 

the possibility of a Boolean relationship between signal 

pathways and fate choice (Fig. 4).  

 

B) Complex relationship between signal paths and nutri-

ent signals 

Study of most yeast nutrient signaling pathways initiated 

with a focus on the relationship between a single nutrient 

and a single pathway. For example, the TorC1 pathway is 

primarily activated by nitrogen, the Ras/PKA pathway is 

primarily activated by glucose and the Snf1 pathway is 

primarily repressed by glucose. However, it is now appar-

ent that most nutrient-responsive pathways relay infor-

mation about more than one type of nutrient. For example, 

multiple receptors responding to different classes of lig-

ands can converge to regulate the same signaling pathway. 

The Snf1 pathway exemplifies the ability of a single 

pathway to respond to diverse cues. Although this pathway 

was identified and characterized as active when glucose is 

absent, and is often referred to as the “glucose repression 

pathway”, it also responds to other types of cellular stress 

(reviewed in [196]). For example, in the absence of glucose, 

this pathway responds instead to nitrogen levels [197]. 

Similarly, the TorC1 pathway is not only activated by abun-

dant nitrogen, but also by glucose, by osmotic stress, and 

by other types of cellular stress [198]. Finally, the PKA 

pathway, which is activated in high glucose through the 

Ras branch of the pathway, is also regulated through other 

branches that respond to carbon source, ammonium, ami-

no acids and phosphate (reviewed in [199]). In fact, even 

the Ras branch of the PKA pathway is not regulated solely 

by glucose but is sensitive to acetate levels [200] and may 

respond more generally to cytosolic pH [201, 202].  

 

C) PKA inhibits all three forms of differentiation  

PKA is active during rapid growth in FCs and has reduced 

activity in Q and sporulating cells. In yeast (and metazoans) 

PKA activates both the expression and activity of metabolic 

enzymes required for rapid growth. In addition, PKA re-

presses genes required in non-proliferating, slow growing, 

and respiring cells (e.g. glycogen storage). Thus, PKA activi-

ty is low during all three types of cell differentiation.  

PKA inhibits differentiation through both general 

mechanisms, which repress all three differentiation pro-

grams, and specific mechanisms, which repress only one 

(or two) of the three differentiation choices. One general 

mechanism for inhibition occurs when PKA phosphorylates 

Whi3 protein [203]. Once phosphorylated, Whi3 releases 

CLN3 mRNA, allowing progression of the cell cycle from G1 

to S (START) and corresponding inhibition of quiescence 

and sporulation [203-205].  

Another general mechanism by which PKA inhibits all 

three forms of differentiation is by phosphorylating and 

inactivating Rim15 kinase [206]. Rim15 is required for the 

metabolic changes that accompany quiescence [207] and 

also activates the endosulfine, Igo1, which helps maintain 

mRNA populations during quiescence [208-210]. Rim15 

also activates the Msn2/Msn4 transcription factors, which 

directly activate stress response genes necessary for quies-

cence [86, 211], and Rim15 is also required for the lifespan 

extension caused by calorie restriction [115, 212]. In addi-

tion to its role in quiescence, Rim15 is required for both 

the expression and activity of Ime1 [213-215]. Thus, Rim15 

activates sporulation in part through different mechanisms 

from those it uses to activate quiescence [216]. Finally, 

Rim15 is required for at least some phg-spectrum pheno-

types, such as the formation of structured (lacey) colonies 

[131].  

PKA also inhibits differentiation through regulators 

specific to just one or two differentiation fates. For exam-

ple, PKA phosphorylates and activates the Sok2 transcrip-

tional repressor [217, 218]. Active Sok2 directly represses 

IME1 transcription, hence blocking sporulation [219] Sok2 

also indirectly represses FLO11 and other genes required 

for phg [220, 221]. PKA also specifically inhibits spore mor-

phogenesis by inhibiting Smk1 MAPK, which activates this 

late stage of sporulation [222]. Finally, PKA also specifically 

inhibits both quiescence and phg by directly (and indirect-

ly) inactivating Yak1 kinase [223, 224]. Yak1 is a key activa-

tor of proteins required for quiescence [225, 226] and phg 

[227]. Thus, PKA represses all three forms of diploid cell 

differentiation through an array of general and specific 

mechanisms. 
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D) TorC1 pathway inhibits sporulation and quies-

cence/ageing, but activates phg 

TorC1 is one of two Tor complexes in yeast with largely 

separate roles. When nutrients (especially N) are readily 

available, the TorC1 pathway activates cellular processes 

needed for rapid growth, such as protein translation. At 

the same time, this pathway represses processes induced 

during nutrient limitation such as utilization of poor nitro-

gen sources, autophagy, and the stress response.  

Fully activated TorC1 directly represses both sporula-

tion and entry into quiescence. TorC1 represses these pro-

grams through activating Sch9 kinase, which in turn inhibits 

Rim15 activity/nuclear localization [228]. Thus, the TorC11 

pathway acts in parallel to PKA in repressing Rim15 (re-

viewed in [229]). TorC1 also specifically represses sporula-

tion by preventing nuclear localization/activation of Ime1p 

[172]. Interestingly, a low level of TorC1 is required for 

IME1 expression; thus sporulation only initiates with mod-

erate TorC1 activity [230]. In addition, once cells become 

quiescent, activation of TorC1 diminishes their viability (i.e. 

promotes ageing) [89]. Indeed, calorie restriction slows 

ageing by decreasing Sch9 activity [229, 231, 232].  

In contrast to its role in inhibiting these other differen-

tiation programs, TorC1 stimulates phg through a second 

branch of the TorC1 pathway, which activates the Tap42 

phosphatase [233]. Tap42 in turn stabilizes the Tec1 tran-

scription factor, which binds FLO11 and activates its tran-

scription [234]. Reflecting that optimal phg requires inter-

mediate N concentrations (see Section “Shared environ-

mental cues & distinct fates”), phg (like sporulation) also 

requires an intermediate level of TorC1 activity [174].  

 

E) Snf1 kinase activates all three forms of differentiation 

The Crabtree effect depends on the ability of extracellular 

glucose to repress enzymes required to metabolize other 

carbon sources. As levels of glucose and other nutrients 

decline during late stages of growth, repression of Snf1 

kinase activity is released. Activated Snf1 in turn triggers 

the expression and/or activation of enzymes required for 

respiration and resistance to stress [235-238], and at the 

same time stimulates transcription of genes required for 

differentiation. For example, Snf1 activates FLO11 tran-

scription by phosphorylating Nrg1/Nrg2 transcription fac-

tors [167, 239, 240]. Similarly, Snf1 is required for IME2 

transcription even in the absence of respiration [150]. Fi-

nally, either hyper-activating or deleting Snf1 shortens 

chronological lifespan [115, 241, 242]. Thus, maintaining 

viability during quiescence may require intermediate levels 

of Snf1 activity, similar to the intermediate TorC1 activity 

required for phg and sporulation.   

 

F) The Rim101 pathway activates both filamentous and 

meiotic fates  

The Rim101 pathway is primarily activated by alkaline pH 

(reviewed in [243], and as cells undergo the diauxic shift 

and extracellular pH increases, this pathway stimulates 

both pseudohyphal differentiation and sporulation [186]. 

For example, both FLO11 induction and IME1 induction 

require Rim101 [182, 244-246]. Indeed, a RIM101 poly-

morphism underlies many of the differences between 

Ʃ1278b and S288C transcriptomes during growth [247]. 

 

G) Other pathways and pathway interactions 

The above signaling pathways are unlikely to be the only 

ones regulating differentiation. For example, the Rgt2 

/glucose induction pathway, which is activated by glucose, 

represses Ime2 protein stability [248, 249], the Hog1 MAPK 

pathway, which responds to high osmolarity, inhibits pseu-

dohyphal differentiation [250, 251], and the cell wall integ-

rity (protein kinase C) pathway, which responds to cell-wall 

stress, is required both to maintain quiescent cells [252, 

253] and for pseudohyphal differentiation [254-256]. Final-

ly, the Hac1 (unfolded protein response) pathway, which 

responds to nitrogen starvation, mediates induction of 

both sporulation and phg [257].  

Not only does each of the nutrient-signaling pathways 

in yeast respond to multiple environmental cues, but also 

these pathways are not insulated from one another. In-

stead, the PKA, Snf1, TorC1 and other pathways are dense-

ly intertwined by virtue of shared components and shared 

targets (reviewed in [3, 61, 194]). As just one example, the 

TorC1 pathway stimulates pseudohyphal differentiation in 

part by inhibiting Snf1 kinase [258], whereas the Rim101 

and Snf1 pathways converge in both inhibiting Nrg1, a 

transcriptional activator of FLO11 [259]. Thus, nutrient 

controls on differentiation occur through an intertwined 

network of pathways. 

 

H) Summary: signaling pathways and fate choice  

As can be seen from Fig. 4, there is not a Boolean relation-

ship between the four major nutrient signaling pathways 

and fate choice. In other words, fate choice is not deter-

mined by the ON or OFF state of one or more pathways 

(even relative to a threshold level of activity). Indeed, most 

of these pathways act in the same way on multiple fates. 

One exception is the TorC1 pathway, which activates phg 

while interfering with the other two pathways. However, 

even TorC1 does not act in a strictly Boolean manner, since 

several lines of evidence suggest an intermediate level of 

TorC1 activity, rather than either the fully active or fully 

inactive state is what activates both phg and sporulation. 

More generally, because these pathways regulate initiation 

of all 3 fates, the level of activation of each pathway, ra-

ther than a Boolean state, determines fate choice. Further 

work is required to ask if the activity level of one pathway 

relative to another contributes to fate choice.  

 

FLEXIBILITY & STABILITY IN DIFFERENTIATION CHOICE 

A) Fate choice stability 

Another aspect of the relationship between fate choice 

and environment is the stability and reversibility of this 

choice. At one level, all three types of differentiated cells 

are reversible, in the sense that if sufficient nutrients are 

restored, pseudohyphae, Q cells and asci all re-enter 

standard cell proliferation. Furthermore, under some cir-

cumstances yeast can switch from one fate to another 

without intervening growth as undifferentiated cells. In this 
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section, the SEDF hypothesis will be considered in the con-

text of the stability /reversibility of fate choice. 

 

B) Epigenetic mechanisms stabilize cell fate 

Each fate is in part stabilized by genome-wide epigenetic 

changes. For example, although pseudohyphae can pro-

duce ovoid cells when restored to a very nutrient-rich envi-

ronment, phg is relatively stable to small changes in envi-

ronment [59, 159]. One mechanism for this stability is that 

the FLO11 promoter is bi-stable, i.e. it stays in either the 

ON or OFF state for many cell divisions before switching, 

and this switch depends on chromatin structure and in 

particular on histone modifying enzymes [260, 261] and 

long non-coding RNA [262-264]. FLO11 expression is also 

stabilized by a prion-like form of the transcription factor, 

Mot3. Soluble Mot3 represses FL011 transcript, and this 

repression is released when Mot3 forms heritable prions 

[265]. 

Both quiescence and sporulation are also characterized 

by chromatin modifications. For example, genome-wide 

alterations in histone modification accompany both pro-

gression through sporulation [266, 267], and transcription-

al inactivation after sporulation is complete [268]. Similarly, 

quiescence is characterized by both global changes in his-

tone modification [78, 269], and positioning of RNAPII up-

stream of many genes poised for induction when nutrients 

are restored [270].  

Once cells initiate sporulation, it is only during the early 

stages of this program that the meiotic fate is directly re-

versible. Reversibility in this context means that cells in 

early stages of meiosis can directly re-enter proliferation if 

resupplied with nutrients (“return to growth”). The loss of 

this reversibility, termed “commitment to meiosis”, may 

also have its basis in epigenetics. More specifically, when 

cells in these early stages are resupplied with growth nu-

trients, they exit sporulation and resume cell division; 

however, at about the time of the first meiotic division, 

cells become irreversibly committed to meiosis, meaning 

that they complete sporulation even when resupplied with 

growth nutrients [271, 272]. Commitment to meiosis may 

involve a positive feedback loop regulating transcription of 

NDT80 [273, 274], and as with FLO11, the silenced state of 

NDT80 requires a histone deacetylase [222, 275]. Com-

mitment to meiosis may also involve a second epigenetic 

mechanism — Rim4 forms an amyloid-like protein that 

binds transcripts during sporulation to delay their transla-

tion until late stages of the program [276], and it may be 

that binding of the amyloid to these transcripts also pro-

tects them from degradation after nutrients are resupplied 

[277].  

 

C) When yeast change their fate  

In some circumstances, cells can switch from one differen-

tiation fate to another. For example, the SK1 laboratory 

strain background can switch from meiotic development to 

pseudohyphal development in response to a changing en-

vironment [143]. Even committed meiotic cells, if arrested 

at late stages of meiosis, can eventually re-enter the cell 

division cycle as pseudohyphae [278, 279].  

Even without shifting media or environment, biofilm-

like communities of the SK1 strain background form pseu-

dohyphae at their surface that subsequently undergo a 

further differentiation to form linear asci [56, 57]. Similarly, 

as noted in the Section “Overlapping regulators but distinct 

fates”, the shared expression pattern between quiescence 

and sporulation suggest that cells first enter quiescence 

and then proceed to sporulation, again without being 

transferred to a new environment. These several lines of 

evidence indicate that each of three fates can be temporal-

ly coordinated with at least one other fate.  

 

D) Summary 

A variety of epigenetic mechanisms likely provide stability 

to yeast differentiation fates, but it is interesting that both 

phg and sporulation fates are stabilized by amyloid/prion 

proteins as well as by chromatin modification. Despite 

these mechanisms, differentiating cells can return to undif-

ferentiated proliferation in response to environmental 

changes - in some cases even before differentiation is 

complete. Moreover, yeast can switch from one differenti-

ation pathway to another even in the absence of dramatic 

environmental changes. The reversibility and flexibility of 

fate choice in yeast is another argument that distinct fates 

can occur in a similar environment (SEDF), and against a 

Boolean mechanism of fate choice. 

 

SHARED COMMUNITIES - COORDINATED FATES 

A) Introduction 

Yeast grow in nature as communities, not as suspended 

cultures. Given that different fates respond to the same 

cues and regulators and that these fates sometimes inter-

convert, one might expect that in the same population and 

community, some cells might adopt one fate and some 

cells another. In fact, as described below, this is exactly 

what happens both in communities and suspended cul-

tures. Thus, the question of whether different fates are 

triggered by discrete cues and regulators can be asked in 

the context of yeast populations. As described below, 

communities that contain cells adapting different fates are 

particularly relevant to the SEDF hypothesis.  

 

B) Fate partitioning within populations 

1) Fate choice in cultures. Before discussing fate choice 

within communities, it is worth considering fate choice in 

suspended cultures. Microenvironment can vary between 

different regions of a community, whereas suspended cul-

tures provide the opportunity to measure fate choice with-

in a population with both uniform genotype and uniform 

environment. One aspect revealed in suspended cultures is 

the probabilistic nature of fate choice. That is, depending 

on the conditions of the cultures, a given fraction of the 

culture adapts a particular fate. As described below, the 

probabilistic aspect of fate choice is clearest in cultures in 

which the population in the culture divides into two alter-

native differentiation fates. 

Sporulation is particularly useful in comparing cell fates. 

For most laboratory strains suspended sporulation cultures 

(e.g. media containing only 2% potassium acetate) contains 
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both sporulated and unsporulated cells. The unsporulated 

sub-population likely corresponds to Q cells, since this 

subpopulation can be further subdivided, by cytological 

markers into viable cells, those undergoing PCD, and those 

already dead [280].  

Similar to diploid cultures, haploid suspended cultures 

grown for extended periods form at least two populations 

of cells, designated Q and non-quiescent (NQ) cells. Q cells 

differ from NQ cells in many properties, including density, 

stress resistance, lifespan, transcriptome and proteome 

[152, 281, 282].  

 

2) Examples of the spatial organization of cell fate within 

communities. As they proliferate, yeast naturally form 

tightly packed multi-cellular communities such as colonies 

and biofilms (reviewed in [283, 284]). Strikingly, differenti-

ation is not homogenously distributed throughout the 

community, but instead occurs in specific regions. Below 

are four examples of yeast communities in which cell fate 

is spatially organized in communities either with respect to 

undifferentiated cells or with respect to cells adapting a 

different fate.  

a) Sporulation patterns in diploid colonies: Patterns of 

sporulated cells in colonies are easily visible in embedded 

sections of colonies [182, 285]. Specifically, asci are found 

throughout the top half of mature colonies and also in a 

thin layer of cells near the agar surface. In contrast, asci are 

almost completely absent throughout the broad central 

layer of the colony. Furthermore, the boundaries between 

sporulating and non-sporulating cells are sharply defined, 

and this same pattern is observed in a range of laboratory 

and natural yeast strains. Indeed, strains newly isolated 

from the wild form this pattern on both FCs and NFCs and 

on both synthetic and rich media [25]. 

The underlying layer of unsporulated cells can be con-

sidered a type of quiescent cell, and are termed “feeder 

cells” because they remain viable for many days, increase 

in permeability and stimulate sporulation in the overlying 

cell layer [74]. As discussed in the Section “Cell-cell signals 

in communities determine cell fate”, this stimulation is 

thought to occur because feeder cells provide nutrients to 

overlying cells, with the increased permeability dependent 

on induction of the CWI pathway.  

b) Upper (U) and Lower (L) cell layers in haploid colo-

nies: Haploid colonies form a similar pattern of differentia-

tion as the diploid colonies described above, although of 

course they do not sporulate. Haploid colonies form two 

sharply defined layers of cells-- termed U and L cells [286, 

287]. U cells differ from L cells with respect to size, mor-

phology, metabolism, gene expression, and viability.  

c) Sexual reproduction on the fringe: Both phg and 

sporulation occur specifically at the edge of some commu-

nities. For example, small colonies forming on agar media 

limiting for nitrogen (microcolonies) form a core of (typical-

ly-shaped) ovoid yeast with only the outer surface of the 

colony containing chains of pseudohyphae projecting from 

the colony [59]. Similarly, minicolonies, biofilm-like com-

munities growing on plastic surfaces submerged in medium, 

switch from typical yeast divisions at the early stages of cell 

growth to phg at the periphery as the growth begins to 

slow [56]. Biofilms formed by pathogenic yeast such as C. 

albicans form a similar pattern in that the underlying layer 

of cells is comprised of ovoid cells, whereas the top layer 

consists of hyphae [288, 289].  

As described above, the SK1 strain background both 

sporulates and undergoes phg very efficiently. As men-

tioned in the Section “Flexibility & stability in differentia-

tion choice”, the pseudohyphae at the periphery of SK1 

microcolonies and minicolonies subsequently sporulate to 

form linear 2-, 3, and 4-spore asci [56, 57]. In minicolonies, 

the timing of the transition from phg to sporulation has 

been followed by time-lapse microscopy. In these commu-

nities sporulation occurs synchronously around the colony 

edge but never in the interior of the colony. Furthermore, 

if phg is blocked, sporulation is also prevented [56]. Thus in 

these communities, phg and meiotic differentiation are 

sequential, rather than alternative, fates. 

d) PCD patterning in colonies: Like sporulation and 

pseudohyphal differentiation, PCD does not occur uniform-

ly throughout communities. In spot colonies growing on a 

NFC for 1-3 weeks, apoptosis occurs mostly in the cells that 

form the core of the colony. In contrast, cells on the rim 

and outer surface of the colony maintain high viability 

[290]. It is possible that the high levels of PCD in the core 

increase the survival or growth among cells at the rim of 

the same colony, perhaps by providing scarce resources 

from the PCD region to the viable region [291].  

 

3) Sharp boundaries as a common characteristic of com-

munity patterning. A striking characteristic of pattern for-

mation in both colonies and biofilms is the sharply defined 

boundary surrounding regions of differentiation (reviewed 

in [284]). These boundaries can be visualized not only with 

respect to cytological markers like apoptosis, spore for-

mation, and phg as described above, but also by patterns 

of gene expression [74, 182, 286, 287]. Indeed, on one side 

of a boundary, cells differentiate very efficiently to one 

fate, whereas neighboring cells in contact with these cells 

but on the other side of the boundary differentiate equally 

efficiently but to a different fate.  

 

C) Summary 

The SEDF hypothesis, that cells can adopt different fates in 

similar environments, is strongly supported by the sharp 

boundaries observed between neighboring regions of a 

yeast community. That is, cells on either side of a boundary 

share roughly the same environment but adopt distinct 

fates. In contrast, these boundaries are not easy to recon-

cile with a Boolean model of fate choice. In the next sec-

tion we discuss one mechanism allowing SEDF - cell-to-cell 

signals. 
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CELL-CELL SIGNALS IN COMMUNITIES DETERMINE CELL 

FATE 

A) Introduction: role of cell-cell signals in cell fate and 

patterning 

As described above, pseudohyphal differentiation, quies-

cence/aging and sporulation occur under similar conditions 

(SEDF), are regulated by many of the same signaling path-

ways and master regulators, and often occur together in 

the same community. Taken together these results argue 

against a Boolean relationship between input and cell fate. 

Given this, how do neighboring cells along a boundary effi-

ciently adopt different fates, and how has yeast evolved to 

make the correct fate choice across the wide spectrum of 

environments found in nature? As discussed below, one 

possible answer to both of these questions is cell-to-cell 

signaling.  

Signals between individual yeast cells within communi-

ties are typically small diffusible molecules (reviewed in 

[284]). Below I consider two broad classes of cell-cell sig-

nals in yeast: 1) “enlistment” signals, which are produced 

by differentiating cells within one region of a community to 

stimulate cells within the same region to adopt the same 

fate, and 2) “diplomatic signals”, which are produced by 

differentiating cells in one region of the community to in-

fluence cells in an adjoining region to adopt a different fate.  

 

B) Enlistment signals—intercellular feedback stimulates 

differentiation & patterning 

Enlistment signals, by reinforcing the same fate choice in 

neighboring cells, contribute to the spatial organization of 

communities such that many of the cells within one region 

of the community adopt the same fate.  

 

1) Alkali signals and sporulation patterning. As described in 

the Section “Shared environmental cues & distinct fates” 

above, respiration of organic acids during late stages of 

growth and during sporulation leads to an increase in ex-

tracellular pH, which in turn stimulates sporulation in other 

cells of the same population. In colonies, after a narrow 

layer of cells near the center initiates sporulation, the re-

sulting alkalization progressively drives expansion of the 

sporulating region upward to eventually include the entire 

top half of the colony [182]. This wave of sporulation de-

pends on the Rim101 pathway both to sense and to pro-

duce alkali—suggesting an intercellular positive feedback 

loop involving pH signals.  

 

2) Aromatic alcohols and pseudohyphal patterning. Regula-

tion of the dimorphic switch in microcolonies also involves 

metabolites and an intercellular positive feedback loop 

[292]. In the case of phg, these signals include the aromatic 

alcohols phenylethanol and tryptophol. These alcohols are 

produced and secreted during phg, and in turn stimulate 

phg in surrounding cells. Moreover, extracellular tryp-

tophol induces further synthesis of tryptophol within 

pseudohyphal cells, which further amplifies the feedback 

loop [292].  

 

3) Role of ammonium in cycles of proliferation & quies-

cence. Another example of a cell-cell signal that operates in 

yeast communities is the ammonium produced by haploid 

colonies after ≥ 14 d of growth. Cells on the surface of 

these aged colonies produce ammonium to much higher 

levels than cells in the core of these colonies [290, 293]. At 

the same time, surface cells induce expression of the ATO1 

ammonium exporter [294]. Ammonium contributes to the 

survival of surface cells and to a new cycle of proliferation 

at the edge of the colony [295]. Because surface cells both 

produce and respond to ammonium, ammonium is another 

example of enlistment signals acting through an intercellu-

lar positive feedback loop. Indeed, ammonium can diffuse 

from one colony to its neighbors, synchronizing these col-

onies with respect to their growth/quiescence cycles [296].  

In summary, enlistment signals such as alkali, aromatic 

alcohols or ammonium may all act through a common 

mechanism—an intercellular positive-feedback loop. The 

role of these signals varies; of the three signals discussed 

above, one activates sporulation, another activates phg, 

and a third activates proliferation. These feedback loops 

FIGURE 5: Recruitment and diplo-

matic signals combine to partition 

colonies into regions adopting dif-

ferent fates. (i) After growth of colo-

ny is complete, cells in the underlying 

cell layer (beige) differentiate into a 

type of quiescent cells termed “feed-

er cells”. Feeder cells (designated by 

a chef’s hat) remain viable but have 

increased permeability, allowing 

them to provide nutrients and/or 

other signals (red arrows) to the 

overlying layer of cells (light blue). (ii) 

These “diplomatic signals” between 

regions of the yeast community pro-

mote sporulation in upper layer cells near the border (tetrad asci are shown in magenta). As these first cells sporulate, continued respiration 

of acetate in these cells causes alkalization of the microenvironment. The alkali produced by sporulating cells is a “recruitment signal” (blue 

arrows) to trigger sporulation in surrounding cells in this layer. (iii) This intercellular positive feedback loop involving sporulation and alka-

lization results in an upward wave of sporulation eventually including the entire upper region of the colony. 
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amplify relatively small differences in nutrient microenvi-

ronment to generate larger environmental differences. In 

this respect, intercellular positive feedback loops contrib-

ute to community pattern formation by localizing cell-cell 

signals to specific regions of a community.  

 

C) Diplomatic signals—crossing boundaries to influence 

behavior 

1) The Rlm1 paradigm and the DPEB hypothesis. In contrast 

to enlistment signals, diplomatic signals occur between 

community regions adopting different fates. An example of 

this second type of cell-to-cell signal occurs in sporulating 

colonies, where activation of the Rlm1 transcription factor 

in feeder cells stimulates sporulation in an overlying layer 

of cells through a cell non-autonomous mechanism [74]. 

Thus, sporulating colonies contain both recruitment and 

diplomatic signals (Fig. 5).  

This type of diplomatic signal may allow yeast colonies 

to sporulate in a wider range of environments than possi-

ble for individual cells, a hypothesis termed, “differential 

partitioning provides environmental buffering” or DPEB [73, 

74]. According to this hypothesis, under optimal sporula-

tion conditions, the colony is partitioned such that there 

are relatively few cells allocated to the feeder cell fate. In 

contrast, under suboptimal sporulation conditions, a 

greater portion of the colony is given over to the feeder 

cell fate, and overall colony sporulation is highly depend-

ent on the nutrients and/or signals provided by these 

feeder cells. Thus, increasing the proportion of feeder cells 

buffers sporulation efficiency in suboptimal environments. 

Differential partitioning is a form of phenotypic plasticity 

within communities that is related in some ways to task 

allocation in social organisms such as ant, termite and bee 

species [297, 298]. 

 

2) Last gasp diplomatic signal. Another example of signals 

between different regions of the same colony may occur in 

the haploid colonies undergoing age-triggered PCD de-

scribed in the Section “Shared communities – coordinated 

fates”. In these colonies, PCD in the colony core is postu-

lated to provide nutrients to continued cell proliferation at 

the colony’s rim [290]. Because intracellular ROS levels, 

including H2O2, which is relatively stable in an extracellular 

environment, rise in core cells even at relatively early stag-

es of development [299, 300], it is possible that peroxide is 

a diplomatic signal. Thus diplomatic signals, either from 

feeder cells or PCD cells, may contribute to forming and 

maintaining the sharp boundaries between regions under-

going alternative fates. 

 

D) Summary: Boolean logic and cell-cell signals 

In several types of yeast communities, closely neighboring 

cells on either side of a boundary adopt alternative fates 

consistent with the SEDF hypothesis but not Boolean mod-

els. For yeast to adapt distinct fates in the very similar nu-

trient environments on either side of a boundary, cell-cell 

signals are likely essential. The cell-cell signals so far identi-

fied may represent only a fraction of the signals operating 

in yeast communities.  

Enlistment and diplomatic cell-cell signals cooperate to 

reinforce small differences in the nutrient microenviron-

ment and are likely important to both establish and main-

tain boundaries. For example, enlistment signals within 

one region of a community can amplify differences via in-

tercellular positive feedback loops; whereas, diplomatic 

signals between neighboring regions can help enforce the 

sharp boundary between regions. Similar mechanisms are 

critical to forming boundaries between tissues during met-

azoan development [301, 302]. Finally, cell-cell signals can 

provide biological function not available to individual cells, 

such as buffering the efficiency of a differentiation pro-

gram against unfavorable environments (DPEB). 

 

ORIGINS OF COMMUNICATION & OF MULTICELLULAR-

ITY  

A) Looking backwards: ancient communities & the birth of 

communication 

What are the broader implications of the non-Boolean 

SEDF hypothesis and the biological function of pattern 

formation in yeast communities? Organized patterns with-

in microbial communities date back to the earliest life on 

earth. For example, stromatolite fossils from billions (109) 

of years ago provide evidence of organization within cya-

nobacteria communities (reviewed in [303, 304]).  

The selection pressure for communication to evolve in 

microbes can be placed in the context of the more compli-

cated forms of communication that evolved in complex 

organisms. In this respect, it is relevant that some of the 

most successful metazoan species on earth as judged by 

total biomass (e.g. humans, termites and ants), are those 

with highly developed modes of communication. It has 

been suggested that the “simple multicellularity” that ex-

ists in microbial communities differs from the “complex 

multicellularity” characteristic of plants and animals be-

cause of two properties present only in complex organ-

isms: 1) many cells in complex systems do not make con-

tact with the external environment, and 2) high levels of 

cell-cell communication [305, 306]. However, a close look 

at the biology of yeast communities calls these distinctions 

into question. 

 

B) The advantages of communication & community 

Cell signaling between yeast cells hints at the advantages 

gained from the evolution of communication. In this re-

spect, most of the signaling molecules discussed above 

share two common characteristics. First, they are im-

portant in regulating cell differentiation. Second, they act 

within the context of a community of yeast, often to parti-

tion this community into different regions adopting distinct 

cell fates.  

One of the main advantages to yeast of growing within 

a community may lie in the ability of a community to parti-

tion into regions adopting different fates; these regions 

may cooperate to allow greater biological function than is 

possible for individual cells. For example, limiting pseudo-

hyphal and meiotic differentiation to the edge of minicolo-

nies and microcolonies maximizes the ability of spores to 
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disperse from the colony [56, 57]. As a second example, in 

colonies the underlying layer of differentiated feeder cells 

presumably provides nutrients necessary for sporulation in 

the overlying cell layer, which again is more optimal for 

spore dispersal. Finally, PCD in the core of a haploid colony 

may provide the nutrients that allow proliferation at the 

colony’s rim. Note that because natural yeast communities 

are largely clonal, the survival of the genotype depends on 

the overall survival of the colony, rather than competition 

between S. cerevisiae genotypes in the same community. 

To extrapolate further, the likely clonal nature of early mi-

crobial communities may have led not only to the evolu-

tion of the first cell-cell signals on earth but also to the first 

pattern formation.  

 

C) Model for co-evolution of signaling and multicellularity 

1) From response to communication. The ability of organ-

isms to respond to their environment is expected even in 

the earliest life forms. Cell-to-cell signals in modern yeast 

may yield insight into these ancient signals. In particular, 

many yeast cell-cell signals are simply metabolites pro-

duced by nearby organisms such as alkali generated during 

respiration or ammonium produced by Q cells. Thus, the 

earliest form of communication between organisms may 

have evolved as metabolic byproducts coordinating growth 

with differentiation.  

 

2) From communication to organization. Cell-cell signals in 

yeast not only regulate cell-fate, they also organize com-

munities such that different regions adopt different fates. 

By analogy, the response to primordial cell-cell signals may 

have evolved such that variation in signal concentration 

across a community contributed to the organization of this 

community and hence increased fitness.  

 

3) From organization to multicellularity. The patterning of 

cell types in microbial communities may presage cell type 

patterning within complex multicellular organisms. Indeed, 

it is conceivable that the earliest multicellular organisms 

evolved from microbial species with relatively sophisticat-

ed cell type patterns. Conversely, patterning in modern 

microorganisms may provide a useful model for some of 

the fundamental principles guiding pattern formation in all 

organisms. 

 

CONCLUSIONS 

A) Biology ain’t always Boolean  

Similar environmental cues promote each of three alterna-

tive differentiation fates (SEDF), and these cues act 

through many of the same signal transduction pathways 

and master regulators to control fate choice. Thus, a Bool-

ean representation tracking the presence or absence of a 

given cue or cues (or a discrete threshold) is not sufficient 

to describe the relationship between environmental cues 

and fate choice. Similarly, the relationship between fate 

choice and signal pathway/master regulator activity also 

cannot be accurately represented by Boolean logic.  

 

B) Graded and specialized responses  

So how is fate chosen? In the first place, it is likely that 

signal transduction pathways are not simply ON or OFF, but 

have a graded range of activities. By this view, the relative 

level of activity of signaling pathways determines cells fate 

as is seen for the TorC1 pathway. For example, the number 

of activated receptors may vary depending on the concen-

tration of ligand. Indeed, the same signaling pathway might 

regulate different targets depending on its level of activity. 

In any case, the activity of a given signal transduction 

pathway likely also depends on interactions with other 

signaling pathways. 

 

C) Cell-cell signals reinforce differences and provide flexi-

bility 

A second aspect to the choice of differentiation fates is 

provided by cell-cell signals. Relatively small differences in 

the microenvironment around cells can be reinforced or 

amplified by both recruitment and diplomatic cell-cell sig-

nals. These signals organize yeast communities into coop-

erative assemblies such that programs such as differentia-

tion or proliferation occur more efficiently than is possible 

for individual cells. Of particular note is the ability of com-

munities to adjust the allocation of cells to different fates 

within the community depending on the environment 

(DPEB). In microorganisms as in more complex organisms, 

cell-to-cell signals are fundamental to life and may be near-

ly as ancient. 
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