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Abstract

IL2-inducible T-cell kinase (ITK), a member of the Tec family tyrosine kinases, is the predominant 

Tec kinase in T cells and natural killer (NK) cells mediating T cell receptor (TCR) and Fc receptor 

(Fc R) initiated signal transduction. ITK deficiency results in impaired T and NK cell functions, 

leading to various disorders including malignancies, inflammation, and autoimmune diseases. In 

this mini-review, the role of ITK in T cell signaling and the development of small molecule 

inhibitors of ITK for the treatment of T-cell related disorders is examined.
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Introduction

The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family tyrosine kinases 

play important roles in mediating intracellular signaling in hematopoietic cells [1]. They 

consist of five members: Tec, Bruton’s tyrosine kinase (BTK), IL2-inducible T-cell kinase 

(ITK, also known as EMT or TSK), resting lymphocyte kinase (RLK, also known as TXK) 

and bone marrow-expressed kinase (BMX, also known as ETK). BTK is an essential 

regulator of B cell receptor (BCR)-initiated signaling pathways [2, 3]. Three Tec kinases 

including ITK, RLK and TEC are expressed in T lymphocytes. ITK is expressed at the 

highest level in naïve T cells and thymocytes, followed by RLK and then TEC [4]. Their 

expression levels possibly contribute to their relative importance in T cells. Itk-/- mice have 

profound defects in T-cell development and function; combined deletion of ITK and RLK 

worsens these defects [5-7]; however, no major defects in T cells have been described in 

Tec-/- mice [8]. During CD4+ T cell differentiation, ITK is expressed in both T helper type 1 

(Th1) and T helper type 2 (Th2) cells with an upregulated level in Th2 cells, while RLK is 

expressed only in Th1 cells but not in Th2 cells, suggesting a critical role of ITK in the 

differentiation and function of Th2 cells [9]. ITK has also been shown to be important for 

the development of invariant natural killer T (NKT) αβ cells and NKT-like γδ T cells 

besides conventional T-cells [10, 11]. In natural killer (NK) cells, ITK positively regulates 
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Fc receptor (FcR) - induced granule release, calcium mobilization, and cytotoxicity but 

negatively regulates natural killer group 2, member D (NKG2D)-initiated signaling [12]. 

These studies implicate an essential role of ITK in T and NK cell development and function, 

and therefore developing small molecular inhibitors of ITK for treatment of T and NK cell 

related diseases would be attractive.

Domain structure of ITK

The ITK gene, discovered in 1992 [13, 14], is chromosomally localized at 5q31-32 position 

in humans [15]. ITK protein is a 72 kDa kinase expressed in T cells, NK cells and mast 

cells, and it contains five distinct domains including pleckstrin homology (PH), Tec 

homology (TH), Src homology 3 (SH3), Src homology 2 (SH2) and Src homology 1 (SH1) 

(Figure 1) [16, 17]. The PH domain is at the amino terminal of ITK and helps the protein to 

bind phosphorylated lipids on the membrane [18, 19]. The TH domain exhibits the familial 

recognition of ITK and contains a proline rich region (PRR) which is necessary for binding 

the SH3 domain [20, 21]. The SH3 domain binds to the PRR in the TH domain, resulting in 

the auto-inhibited state of ITK, while the SH2 domain enables protein-protein interactions 

and allows ITK to bind with phospholipase Cγ1 (PLCγ1) [22-25]. Therefore, ITK is 

activated by mutations or deletions in the SH3 domain and inactivated by mutations and 

deletions in the SH2 domain. At the carboxyl terminus of ITK is the SH1 domain which 

contains ITK’s kinase activity resides and adenosine 5’-triphosphate (ATP) binding pocket 

[26]. Known targets of this domain include PLCγ1 [27], T-bet [28], Tim-3 [29] and TFII-I 

[30].

ITK-mediated TCR signaling pathways

ITK is a critical mediator of T cell receptor (TCR) signaling (Figure 2). Upon TCR 

stimulation, the TCR interacts with peptide-MHC complex presented on antigen presenting 

cells, leading to the activation of lymphocyte-specific protein tyrosine kinase (LCK) and 

phosphatidylinositol 3-kinase (PI3K), two important molecules for the activation of ITK [26, 

31, 32]. Activation of LCK results in phosphorylation of the CD3 immunoreceptor tyrosine-

based activation motifs (ITAMs) and the recruitment of Zeta-chain-associated protein kinase 

70 (ZAP70) to activated ITAMs [33], and then these two kinases phosphorylate downstream 

adaptors linker for activation of T cells (LAT) and SH2 domain-containing leukocyte protein 

of 76 kDa (SLP-76) [34, 35]. Following PI3K activation, ITK is brought from the cytoplasm 

to the plasma membrane via the interaction between its PH domain and the PI3K 

phosphorylated phospholipids in the plasma membrane [36, 37]. There, ITK interacts with 

the activated complex of SLP-76 and LAT adaptors via its SH2 and SH3 domains, leading to 

its phosphorylation on the activation loop (Y511) by Lck [26, 38-40].

Activated ITK autophosphorylates Y180 in its SH3 domain and phosphorylates its 

downstream target PLCγ1 (Figure 2) [41, 42]. Autophosphorylated Y180 modulates the 

binding of ITK to different protein targets. Activated PLCγ1 hydrolyzes 

phosphatidylinositol biphosphate (PIP2) to produce inositol-3-phosphate (IP3) and 

diacylglycerol (DAG), two critical second messengers in TCR signaling [43]. IP3 binds to 

receptors on intracellular organelles and causes Ca2+ release from the intracellular store, 
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leading to sustained Ca2+ influx and downstream activation of transcription factors including 

nuclear factor of activated T-cells (NFAT) [6, 7, 44]. DAG activates two signal pathways. 

One is the mitogen activated protein kinase (MAPK) pathway which leads to the activation 

of extracellular signal regulated kinase (ERK) and the other is the Protein Kinase C (PKC) 

pathway which activates nuclear factor-kappaB (NF-κB) and c-Jun amino-terminal kinase 

(JNK) [45, 46].

The role of ITK in T cell development and differentiation

Numerous studies have shown that ITK deficiency results in defects in T cell development. 

Itk knockout mice have impaired T cell activation, decreased numbers of mature 

thymocytes, reduced cell proliferation, lower ratios of CD4+:CD8+ T cells, and defects in 

thymic selection [5, 7, 44]. These phenotypes are worsened in Itk/Rlk double knockout 

mice, indicating functional compensation between these Tec kinases [7]. ITK deficiency 

affects not only conventional T lymphocytes but also innate T cells [47, 48]. Studies show 

that though total CD4+ T cells and conventional CD8+ T cells are reduced in Itk-/- mice, the 

total number of CD8+ T cells remains normal due to the existence of innate CD8+ T cells 

emanating from Itk knockout mice [49, 50].

ITK also regulates the differentiation of T helper cells including Th1, Th2, T helper 17 

(Th17) and relatively normal levels of Th1 cytokines such as interferon gamma (IFNγ) but 

reduced Th2 cytokine including interleukin (IL)-4, IL-5 and IL-13, therefore, T cells in these 

mice preferentially develop into Th1 cells [9, 51, 52]. Itk-/- T cells also produce reduced 

IL-17A which regulates Th17 differentiation [53]. In addition, a new study identifies ITK as 

a critical regulator of the balance between Th17 and Treg cells by showing that Itk-/- CD4+ T 

cells preferentially develop into Treg cells [54].

ITK and T cell disorders

Due to the critical role of ITK in T cell development and differentiation, disregulated ITK 

causes T cell related disorders.

Allergy and hypersensitivity

Itk knockout mice display reduced Th2 cells and Th2-type cytokines, and Th2 cells are 

important in the pathogenesis of inflammatory diseases including allergic asthma and atopic 

dermatitis, making ITK a potential therapeutic target in these diseases [55, 56]. Patients with 

allergic asthma have increased Th2 cells and Th2 cytokines which lead to lung inflammation 

[55]; Atopic dermatitis is caused by an excess of Th2 response and patients with atopic 

dermatitis have an increased expression level of ITK [57, 58].

Infection

Itk knockout mice have been shown to effectively clear parasites such as Leishmania major, 
Nippostrongylus brasiliensis and Schistosome mansonii. Infections with these pathogens 

elicit a strong Th2 response and are not cleared because of the lack of Th1 response. Mice 

without ITK display strong Th1 responses and produce normal levels of Th1 cytokines 
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including IFN-γ, therefore, they efficiently clear the infections by these pathogens [7, 44, 

51].

Itk-/- mice have increased memory like CD8+ T cells with innate function, and thereby they 

have increased anti-bacterial responses to infection with Listeria monocytogenes [50]. 

However, Itk regulatory T cells (TReg). Itk deficient CD4+ T cells produce deficiency also 

affects cytotoxic CD8+ T cells, leading to impaired anti-viral immune responses [59, 60]. Itk 

mutations in the SH2 domain have been reported in patients with Epstein - Barr virus related 

lymphoproliferative diseases [61, 62], which may also be related to impaired cytotoxic 

CD8+ T cell response.

Human immunodeficiency virus (HIV) is a retrovirus causing acquired immunodeficiency 

syndrome (AIDS). ITK has been shown to be an important factor in regulating the infection 

and replication of HIV [63]. Critical activators of HIV transcription including NFAT, NFκB 

and activator protein 1 (AP-1) are regulated by ITK [64]. In addition, the assembly and 

release of HIV viral particles is influenced by ITK via its regulation on actin cytoskeleton 

rearrangement [65-67].

Autoimmune diseases

Autoimmune diseases are caused by the activation of self-reactive T cells resulting in 

impaired organ function. ITK positively regulates Th17 cells which mediate autoimmune 

disorders including experimental autoimmune encephalomyelitis (EAE) [68, 69]. As a 

downstream mediator of the B7-CD28 co-stimulatory pathway, ITK also plays an important 

role in controlling the migration of auto-reactive T cells [70].

T cell malignancies

ITK has been shown to be up-regulated and aberrantly activated in T-cell malignancies [71, 

72], and its downstream targets including NFAT, NFκB and MAPK are involved in the 

pathogenesis of T-cell malignancies [73]. Targeting the ITK-dependent IL-2 receptor 

(CD25) signaling pathway in T- cell lymphomas / leukemias with anti-CD25 monoclonal 

antibodies has shown promising efficiency [74]. These results indicate that ITK is a potential 

therapeutic target for T cell malignancies. Recently, a chromosomal translocation between 

Itk and spleen tyrosine kinase (Syk) leading to T-cell lymphoma was identified [75-77]. This 

translocation fuses the PH and TH domain from ITK to the SYK kinase domain, resulting in 

activated SYK. The activation of ITK-SYK fusion protein is dependent on PI3k signaling 

[78], suggesting that PI3K inhibitors may be effective in treating ITK-SYK initiated T-cell 

lymphoma [79, 80].

ITK inhibitors

Numerous lines of evidence suggest ITK as a potential therapeutic target in various diseases 

and demonstrate the importance of developing small molecule inhibitors of ITK. With the 

exception of Ibrutinib, the first FDA approved ITK inhibitor; the majority of small molecule 

ITK inhibitors are still in the early stages of development
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Aminothiazole based ITK inhibitors

By screening compound libraries and analyzing structure and activity relationships (SAR), 

two aminothiazole based molecule inhibitors of ITK, BMS-488516 and BMS-509744, were 

identified [81-83]. They are ATP competitive inhibitors, indicating their binding to the ATP 

binding site of the ITK kinase domain. These two ITK inhibitors had more than 200-fold 

selectivity versus other Tec family tyrosine kinases and potently inhibited ITK with half 

maximal inhibitory concentration (IC50) values of 96 nM and 19 nM, respectively. Both 

compounds inhibited TCR-induced PLCγ1 phosphorylation, T-cell proliferation, calcium 

mobilization and IL-2 production. BMS-509744 efficiently suppressed lung inflammation in 

a mouse model of allergic asthma.

Benzimidazole based ITK inhibitors

The benzimidazole series of compound 1 was identified by high throughput screening [84]. 

It is an ATP competitive and has an IC50 value of 12 nM in the ITK enzyme assay. Further 

modifications improved the selectivity, potency and drug-like properties including stability 

and oral administration. Compound 10n and 10o inhibited IL-2 production with an IC50 of 

240 nM and 690 nM, respectively, in a human whole blood assay. Oral administration of 

compound 10n inhibited the production of IL-2 and IL-4 in a mouse model of T cell 

activation induced by anti-CD3 [85].

Aminopyrimidine based ITK inhibitors

Compound 44 is a potent small molecule inhibitor of ITK identified by high-throughput 

screening of a library containing 468,462 compounds [58]. It has an IC50 of 65 nM in 

inhibiting ITK kinase activity. Compound 44 inhibited the secretion of IL-2 and IFN-γ and 

the proliferation of activated T cells. In two models of inflammatory skin diseases, 

compound 44 significantly reduced skin inflammation.

6.4 3-aminopyride-2-ones based ITK inhibitors

This is a new series of ITK inhibitors identified by structure-based design, starting from 3-

aminopyride-2-ones, a fragment designed de novo [86]. Among various derivatives, the 

compound 7v represented the best ITK inhibitor with good potency and selectivity.

Indolylndazole based ITK inhibitors

ITK inhibitor 11o was identified based on indolylndazole libraries [87]. It had enzymatic 

activity at 11 nM and cellular activity at 20 nM. In an anti-CD3-induced IL-2 mouse model, 

intravenous or oral administration of 11o (10mg/kg) inhibited IL-2 secretion, and this drug 

was well tolerated without obvious side effects.

CTA056

CTA056, 7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-

g]quinoxalin-6(5H)-one, was developed through screening a library comprising 9600 

compounds, followed by molecular modeling and analysis of SAR [88]. It showed the 

highest inhibition toward ITK with an IC50 of 100 nM, followed by BTK with an IC50 of 

400 nM. CTA056 treatment in T cells inhibited the phosphorylation of ITK and its 
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downstream targets including PLCγ1 and reduced the secretion of IL-2 and IFN-γ. CTA056 

selectively targeted malignant T cells expressing ITK, including acute lymphoblastic T-cell 

leukemia and cutaneous T-cell lymphoma. In a xenograft model of T cell leukemia, CTA056 

treatment (5 mg/kg, twice a week, intratumoral injection) prevented tumor growth.

6.7 ITK inhibitors targeting cysteine-442 in the ATP pocket

Ibrutinib is an irreversible inhibitor of BTK and ITK [89, 90]. It binds to cysteine-481 

residue in BTK or cysteine-442 residue in ITK and inhibits downstream activation of BCR 

or TCR, respectively. After TCR stimulation in primary CD4+ T cells and Jurkat T cells, 

Ibrutinib inhibited activation of PLCγ1, NFAT, JunB and IKBα which are ITK downstream 

targets [89]. Interestingly, ibrutinib specifically inhibited Th2 T cell activation and Th2-type 

cytokine release and provided a selective advantage to Th1 and CD8+ T cells which express 

RLK beside ITK. The inhibitory effect of ibrunitib on ITK was further validated in primary 

CLL samples and several murine models of CLL, parasitic infection (Leishmania major) and 

infectious disease (Listeria monocytogenes) [89]. Ibrutinib has shown significant clinical 

activity in the treatment of mantel cell lymphoma (MCL) and CLL [91-93], and been 

approved by the U.S. Food and Drug Administration (FDA) for the treatment of these two 

malignancies.

Compound 12 is another irreversible ITK inhibitor targeting Cysteine-442 in the ATP pocket 

[94]. In activated human peripheral blood mononucleated cells (PBMCs), compound 12 had 

the most potency at inhibiting IL-12, followed by IFNγ, IL-13 and IL-17. The inhibition of 

T cell activation by compound 12 was demonstrated in a rat model by inhaled delivery of 

this drug. The inhibitory effect of compound 12 on Th1, Th2 and Th17 T cells suggests that 

it might also inhibit RLK, which needs verification by further study.

Other ITK inhibitors

ITK inhibitors based on pyrazolyl-indole [95] or thienopyrazole [33] were described in 

previous studies. Rosmarinic acid, a natural compound, was also shown to inhibit activation 

of ITK, PLCγ1, NFAT and Ca2+ mobilization [35]. Instead of targeting the ATP site in ITK, 

inhibitors targeting ITK allosteric sites were discovered and characterized [96].

Conclusion

Intensive studies have demonstrated the essential role of ITK in T cell development and 

differentiation, implicating ITK as a potent therapeutic target in various diseases including 

Th2 cell related immunodeficiency and inflammation. The success of ibrutinib, a BTK/ITK-

targeting inhibitor, in the treatment of B-cell leukemia and lymphoma encourages the 

development of such targeted therapy in T-cell related diseases. Though a number of ITK 

inhibitors have been discovered, most of them are still in their early stages of development 

and more effort is needed before their application in clinic. In addition, due to a 

compensatory role of RLK to ITK in Th1 T cells, development of dual inhibitors targeting 

both ITK and RLK will be important.
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Figure 1. 
Domain structure of ITK. ITK protein contains five distinct domains including pleckstrin 

homology (PH), Tec homology (TH), Src homology 3 (SH3), Src homology 2 (SH2) and Src 

homology 1 (SH1)
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Figure 2. ITK-mediated T cell receptor (TCR) signaling pathway
Upon TCR stimulation, TCR interacts with peptide-MHC complex presented on antigen 

presenting cells, leading to the activation of LCK and PI3K. Activation of LCK results in 

phosphorylation of the CD3 immunoreceptor tyrosine-based activation motifs (ITAMs) as 

well as ZAP70 and downstream adaptors LAT and SLP-76. Following PI3K activation, ITK 

is brought from the cytoplasm to the plasma membrane. There, ITK interacts with the 

activated complex of SLP-76 and LAT adaptors, leading to its phophorylation on the 

activation loop (Y511) by Lck. Activated ITK autophosphorylates Y180 in its SH3 domain 

and phosphorylates its downstream target PLCγ1. Activated PLCγ1 hydrolyzes PIP2 to 

produce inositol-3-phosphate (IP3) and diacylglycerol (DAG). IP3 binds to receptors on 

intracellular organelles and cause Ca2+ release from the intracellular store, leading to 

sustained Ca2+ influx and downstream activation of transcription factors including NFAT. 

DAG activates two signal pathways. One is mitogen activated protein kinase (MAPK) 

pathway which leads to the activation of extracellular signal regulated kinase (ERK) and the 

other one is Protein Kinase C (PKC). pathway which activates nuclear factor-kappaB (NF-

κB) and c-Jun amino-terminal kinase (JNK).
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