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Binary decisions of agents coupled in networks can often be classified
into two types: “coordination,” where an agent takes an action if
enough neighbors are using that action, as in the spread of social
norms, innovations, and viral epidemics, and “anticoordination,”
where toomany neighbors taking a particular action causes an agent
to take the opposite action, as in traffic congestion, crowd disper-
sion, and division of labor. Both of these cases can be modeled using
linear-threshold–based dynamics, and a fundamental question is
whether the individuals in such networks are likely to reach decisions
with which they are satisfied. We show that, in the coordination
case, and perhaps more surprisingly, also in the anticoordination
case, the agents will indeed always tend to reach satisfactory deci-
sions, that is, the network will almost surely reach an equilibrium
state. This holds for every network topology and every distribution
of thresholds, for both asynchronous and partially synchronous de-
cision-making updates. These results reveal that irregular network
topology, population heterogeneity, and partial synchrony are not
sufficient to cause cycles or nonconvergence in linear-threshold dy-
namics; rather, other factors such as imitation or the coexistence of
coordinating and anticoordinating agents must play a role.
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The sharing of resources, division of labor, and dispersion of
crowds represent a few examples of collective behaviors that

can emerge on networks of interacting agents when the adoption
of a particular action by too many individuals deters others from
adopting that action. On the other hand, when individuals’ taking
an action makes it more likely that others will adopt that action,
behaviors such as the spread of social norms, technological in-
novations, and viral infections can occur. In either case, various
factors are thought to contribute to the emergence of such col-
lective behaviors, including network topology, interaction payoffs,
strategy update rules, and population diversity (1–3). In particular,
when agents can take one of a finite number of states at a given
time, whether by voluntary decisions or involuntary reactions, the
fundamental questions include (i) whether the agents will eventu-
ally settle on a fixed state/action, (ii) which distribution of actions
the network will converge to, and (iii) how long it will take for the
network to converge. Although most of the literature focuses on the
second and especially third questions, particularly for homogeneous
populations where individuals share the same utility function (4–7),
the first question is perhaps more fundamental because it deals with
convergence at the agent level. Undoubtedly, this action settling is
crucial to a wide range of decision-making populations, from col-
lective nest selection by ants (8) to stabilization of financial markets
(9). Moreover, without establishing such convergence, answers to
questions ii and iii cannot be used to design policies at the local or
neighborhood level (10), which may help to improve cost efficiency
by targeting influential nodes in a complex network.
“Best-response dynamics” is one of the most widely used

models to study the types of problems mentioned above; this is
due in part to its rational nature as well as its broad applicability.
Indeed, recent experimental studies have shown that humans
often use myopic best responses when making decisions in social

networks (11). The idea behind best-response dynamics is sim-
ple: in a network of interacting agents, each agent takes the
action that results in the best cumulative outcome against its
neighbors. This framework is frequently considered in a game-
theoretic context (12–15), but its impact is further broadened by
the fact that when there are two available actions for each agent,
it is equivalent to a “linear-threshold model” (16). This comes
with an alternative yet also intuitive interpretation: when a suf-
ficient fraction of my neighbors are taking action A, I will also
take action A. The reverse is also possible: if too many of my
neighbors are taking action A, I will switch to action B. We call
agents of the former type “coordinating” and the latter, “anti-
coordinating,” according to the standard coordination and anti-
coordination games, which are also sometimes referred to as
games of strategic complements and strategic substitutes, re-
spectively (17). These switches may be considered voluntary as in
changing an opinion, preference, or habit, or involuntary, as
getting infected by virus or defaulting on a loan. In general, the
thresholds of the agents need not be the same, and this is equiv-
alent to agents having asymmetric payoffs in the corresponding
matrix game. Depending on the application, this can represent
differences in the willingness to follow a crowd, susceptibility to
infection, perceived value of interactions, and many other indi-
vidual characteristics (18). Variation in thresholds can thus be
thought of as heterogeneity of a population.
The linear-threshold model was first motivated and dis-

cussed by Mark Granovetter (18) in the context of fully con-
nected networks, with an example of how the incitement of riots
in crowds depends critically on the distribution of individual
thresholds that will cause each person to join the riot. Since
then, a rich literature has developed around questions related to
stability and convergence of best-response dynamics in matrix
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games on well-mixed populations (19, 20). Convergence of ho-
mogeneous well-mixed populations under more general non-
matrix games has been established in ref. 21 in the context of
congestion games, using potential functions. The convergence
properties of networks with arbitrary structure has also been
investigated under various conditions, particularly in the ho-
mogeneous (symmetric) case (22–24). Recently in ref. 17, a
combination of mean-field approximations and simulations
were used to show that synchronous best-response dynamics
in symmetric coordination or anticoordination games tend to
always converge to Nash equilibria. However, in the case of
asymmetric coordination games, it was shown in ref. 25 that
synchronous best-response dynamics may not converge to a
single action but rather to a cycle of alternating actions. Sym-
metry thus seems to be a significant factor in the convergence of
the threshold model, but we will show that asynchrony perhaps
plays an even more important role, because regardless of the
symmetry, the network always converges in the asynchronous
case. In addition to making the convergence more likely, com-
pared with synchronous models, asynchronous dynamics can
provide a more realistic model of the timeline over which
independent agents make decisions and receive information,
and they are particularly suitable when the payoff dynamics can
be thought of as fast compared with the update dynamics. For
example, decisions on matters such as which product to buy,
which political party to vote for, or which traffic route to take
may be the culmination of many individual interactions. Nev-
ertheless, our results do not require that only one agent can
update at a time; in fact, we show that even small asynchronous
perturbations to fully synchronous dynamics lead to equilibrium
convergence.
In this paper, we show that every network consisting of anti-

coordinating agents with asynchronous best-response dynamics
will eventually reach an equilibrium state, even if each agent has
a different threshold. Moreover, we show that the same result
holds for networks of coordinating agents. As a corollary, we
establish the existence of pure-strategy Nash equilibria in both
cases for arbitrary networks and arbitrary payoffs. On the
question of convergence time, we show that, in such networks,
the total number of strategy switches is no greater than six times
the number of edges in the network. In the case of partial synchrony,
when a random number of agents can update simultaneously,
we show that the network still almost surely reaches an equi-
librium. It follows that irregular network topology, population
heterogeneity, and synchrony of decisions between two or more
agents (as long as random asynchronous updating is not com-
pletely excluded) are not sufficient to cause nonconvergence or
cycles in best-response dynamics; rather, possible causes include
the occasional use of non–best-response strategies, randomiza-
tion, or a mixture of coordinating and anticoordinating agents.
Indeed, we provide a small example demonstrating the pos-
sibility of cycles in networks containing both coordinating and
anticoordinating agents.

Asynchronous Best-Response Dynamics
Consider an undirected network G= ðV, EÞ where the nodes
V = f1, . . . ,ng correspond to agents and each edge in the set
E ⊆V ×V represents a 2-player game between neighboring agents.
Each agent i∈V chooses pure strategies from a binary set Sd
fA,Bg and receives a payoff upon completion of game according
to the matrix:

A B
A
B

�
ai bi
ci di

�
, ai, bi, ci, di ∈R.

The dynamics take place over a sequence of discrete time
k= 0,1,2, . . .. Let xiðkÞ∈S denote the strategy of agent i at time

k, and denote the number of neighbors of agent i playing A and B
at time k by nAi ðkÞ and nBi ðkÞ, respectively. When there is no ambi-
guity, we may sometimes omit the time k for compactness of nota-
tion. The total payoffs to each agent i at time k are accumulated
over all neighbors, and are therefore equal to ainAi ðkÞ+ binBi ðkÞ
when xiðkÞ=A, or cinAi ðkÞ+ dinBi ðkÞ when xiðkÞ=B.
In asynchronous (myopic) best-response dynamics, one agent at

a time becomes active and chooses a single action to play against
all neighbors. The active agent at time k updates at time k+ 1 to
the strategy that achieves the highest total payoff, that is, is the
best response, against the strategies of its neighbors at time k:

xiðk+ 1Þ=
8<
:

A, if   ainAi + binBi > cinAi + dinBi
B, if   ainAi + binBi < cinAi + dinBi
zi, if   ainAi + binBi = cinAi + dinBi

.

In the case that strategies A and B result in equal payoffs, both
strategies are best responses and we use the notation zi, which is
defined to be A, B, or xiðkÞ, to allow for several possibilities for
this equality case. Note that we do not require all agents to have
the same zi. That is, when both A and B are best responses, some
agents may choose A, others may choose B, and others may keep
their current strategy; however, the agents cannot change their
choice of zi over time.
It is convenient to rewrite these dynamics in terms of the number

of neighbors playing each strategy. Let degi denote the total
number of neighbors of agent i. We can simplify the conditions
above by using the fact that nBi = degi − nAi and rearranging terms:

ainAi + bi
�
degi − nAi

�
> cinAi + di

�
degi − nAi

�
nAi ðai − ci + di − biÞ> degiðdi − biÞ

δinAi > γidegi,

where δidai − ci + di − bi and γiddi − bi. The cases of “<” and
“=” can be handled similarly. Consider the case when δi ≠ 0, and
let τidγi=δi denote a “threshold” for agent i. Depending on the
sign of δi, we have two possible types of best-response update
rules. If δi > 0, the update rule is given by the following:

xiðk+ 1Þ=
8<
:

A if   nAi ðkÞ> τi degi
B if   nAi ðkÞ< τi degi
zi if   nAi ðkÞ= τi degi

. [1]

These agents switch to strategy A if a sufficient fraction of neigh-
bors are using that strategy, and likewise for strategy B. On the
other hand, for δi < 0, if a sufficient fraction of neighbors are
playing A, the agent will switch to B, and vice versa. This update
rule is given by the following:

xiðk+ 1Þ=
8<
:

A if   nAi ðkÞ< τi degi
B if   nAi ðkÞ> τi degi
zi if   nAi ðkÞ= τi degi

. [2]

In the case that τi ∉ ½0,1�, it is straightforward to show that there
exists a strictly dominant strategy, and the update rule Eq. 1 or
2 is equivalent to one in which τi ∈ f0,1g and zi ∈ fA,Bg. The
same holds for when δi = 0. Agents for which δi ≥ 0 are called
coordinating and can be modeled by Eq. 1. Agents for which
δi ≤ 0 are called anticoordinating and can be modeled by Eq. 2.
Therefore, every agent can be described as a coordinating or an
anticoordinating agent (or both).
Let ΓdðG, τ, f+, −, ± gÞ denote a “network game,” which

consists of the network G, a vector of agent thresholds τ=
ðτ1, . . . , τnÞ⊤, and one of +, −, or ±, corresponding to the cases of
all coordinating, all anticoordinating, or a mixture of both types
of agents, respectively. The dynamics in Eqs. 1 and 2 are in the
form of the standard linear-threshold model (18). An equilib-
rium state in the threshold model is a state in which the number
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of A-neighbors of each agent does not violate the threshold that
would cause them to change strategies. For example, in a net-
work of anticoordinating agents in which zi =B for all i, this
means that for each agent i∈V, xiðkÞ=A implies nAi ðkÞ< τidegi
and xiðkÞ=B implies nAi ðkÞ≥ τidegi. Note that this notion of
equilibrium is equivalent to a pure-strategy Nash equilibrium in
the corresponding network game.

Convergence Results
We investigate the equilibrium convergence properties of the
agent-based threshold models in Eqs. 1 and 2 that we defined in
the previous section.
Before providing the main results, we precisely define the

nature of the asynchronous dynamics. We require only that at
any given time step, each agent is guaranteed to be active at
some finite future time. Let ik denote the agent who is active
at time k and let ðikÞ∞k=0 denote a sequence of active agents. We
say that such a sequence is “persistent” if for every agent j∈V
and every time k≥ 0, there exists some finite later time k′> k at
which agent j is again active (ik′ = j).

Assumption 1. Every activation sequence driving the dynamics in
Eq. 1 or Eq. 2 is persistent.

Remark 1. In stochastic settings, Assumption 1 holds almost surely
whenever agents activate infinitely many times with probability
one, for example, if each agent activates at a rate determined by
a Poisson process.
We divide the convergence analysis into two main parts cor-

responding to the cases of anticoordinating and coordinating
agents. In what follows, we use 1 to denote the n-dimensional
vector containing all ones. We refer the reader to SI Appendix for
the detailed proofs of the results.

All Agents Are Anticoordinating
Theorem 1. Every network of anticoordinating agents who update
asynchronously under Assumption 1 will reach an equilibrium state
in finite time.
The sketch of the proof is as follows. We begin by showing

that an arbitrary network game Γ= ðG, ð1=2Þ1, − Þ consisting of
anticoordinating agents in which the threshold of each agent is
1=2 will reach an equilibrium in finite time. Then we extend the
result to a heterogeneous-threshold network game Γ= ðG, τ, − Þ
by constructing a homogeneous-threshold “augmented” network
game Γ̂= ðĜ, ð1=2Þ1, − Þ that is dynamically equivalent to Γ. We
complete the proof by showing that if the augmented network
game Γ̂ reaches an equilibrium, then Γ does as well. The fol-
lowing lemma establishes convergence of the homogeneous-
threshold network game ðG, ð1=2Þ1, − Þ.
Lemma 1. Every network of anticoordinating agents who update
asynchronously under Assumption 1, with τi = 1=2 for each agent
i∈V, will reach an equilibrium state in finite time.
The proof of the lemma revolves around the following po-

tential function:

ΦiðkÞ=
�
nAi ðkÞ− n̂Ai if   xiðkÞ=A
n̂Ai + 1− nAi ðkÞ if   xiðkÞ=B

,

where n̂Ai denotes the maximum number of A-neighbors of agent
i that will not cause agent i to switch to B when playing A. The
proof follows from the fact that the function is lower bounded
and decreases every time an agent in the network switches
strategies.
To motivate our approach for extending this result to an ar-

bitrary distribution of thresholds, consider for example an agent
i with 4 neighbors whose threshold is 1=3. When playing A, this
agent can tolerate up to 1 A-neighbor (Fig. 1A), but 2 or more

will cause a switch to B. Similarly, when playing B, the agent
needs at least 2 A-neighbors to remain playing B, whereas 1 or
fewer will cause a switch to A. Now consider an agent î whose
threshold is 1=2 but who has one additional neighbor who always
plays A, for a total of 5 neighbors, as shown in Fig. 1B. When
playing A, this agent can tolerate up to 2 A-neighbors before
switching to B, and as a B-agent needs at least 3 A-neighbors,
whereas 2 or fewer will cause a switch to A. Notice, however,
that with respect to the original 4 neighbors, the dynamics of
agents i and î are indistinguishable. It turns out that whenever
τi < 1=2, by adding a sufficient number of fixed A-neighbors,
we can always construct a dual node îwith threshold 1=2 whose
dynamics are equivalent to the dynamics of the original node i.
Moreover, if τi > 1=2, we can achieve the same result by adding
fixed B-neighbors. To ensure that the added nodes do not change
strategies, we simply add two opposite strategy neighbors to
these nodes (Fig. 1C). It is then straightforward to show that
the strategies of all added nodes remain constant. We now for-
malize this argument for arbitrary networks of anticoordinat-
ing agents, using some techniques similar to those that have already
proven useful in studying the convergence of synchronous net-
works (25).
We define the “augmented network game” Γ̂dðĜ, ð1=2Þ1, − Þ

based on Γ as follows. Let Ĝ= ðV̂, ÊÞ. Define a “V-block”
as a triplet of nodes fv1, v2, v3g⊆ V̂ along with the edges
ffv1, v2g, fv1, v3gg⊆ Ê. For each agent i∈V, we introduce a “dual
agent” î∈ V̂ with the same initial strategy, that is, x̂ið0Þ= xið0Þ,
and with ẑi = zi. Corresponding to each dual agent î, there are mi
number of V-blocks in Ĝ such that the v1-node of each block is
connected to î, with mi being defined as follows: if τi = 1=2, then
mi = 0; otherwise, mi depends on which one of the following
three conditions on τi holds:

mi =

8>>>>><
>>>>>:

jð1− 2τiÞdegij τi degi ∈Z

jdegi − r− 1j ∃r∈ 2Z :
r
2
< τi degi <

r+ 1
2

jdegi − rj ∃r∈ 2Z+ 1 :
r
2
≤ τi degi <

r+ 1
2

,

where 2Z and 2Z+ 1 denote the set of even and odd numbers,
respectively. If τi < 1=2, then the initial strategies of each V-block
connected to the dual agent î are xv1ð0Þ=A and xv2ð0Þ= xv3ð0Þ=B;
and if τi > 1=2, then xv1ð0Þ=B and xv2ð0Þ= xv3ð0Þ=A. In total, V̂
has n+

Pn
i=1mi agents, the thresholds of all of which are set to

1=2. For Ê, in addition to the edges for the V-blocks, there is an
edge between any two dual agents î and ĵ in V̂, if and only if there is
an edge between i and j in V.
Next, we show that if whenever an agent in G activates, its dual

in Ĝ also activates (while neglecting the time steps that a V-block

A B C

Fig. 1. (A and B) Agents i and î have thresholds τi = 1=3 and τî = 1=2, but
because an extra A-neighbor has been added to î, they are dynamically
equivalent. (C) To ensure that the added node does not switch, two B
neighbors are added who also will not switch, forming a V-block.
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agent is active), then the dynamics of each node in G are the same
as the dynamics of its dual node in Ĝ (again while neglecting the
time steps that a V-block agent is active). Then Theorem 1 can be
proven accordingly.
As a result of Theorem 1, we have the following corollary,

which to the best of our knowledge has not been shown in the
literature to date.

Corollary 1. Every network of anticoordinating agents admits a pure-
strategy Nash equilibrium.

All Agents Are Coordinating
Theorem 2. Every network of coordinating agents who update
asynchronously under Assumption 1 will reach an equilibrium state
in finite time.
The proof of Theorem 2 follows similar steps as the anti-

coordinating case. The key difference is that the potential function
becomes the following:

ΦiðkÞ=
8<
:

�nAi − nAi ðkÞ if   xiðkÞ=A
nAi ðkÞ− �nAi + 1 if   xiðkÞ=B

, [3]

where �nAi is defined as the minimum number of A-neighbors
required for an A-playing agent to continue playing A. The max-
imum number of A-neighbors that a B agent can tolerate before
switching to A is then given by �nAi − 1. We refer the reader to SI
Appendix for a complete proof of the theorem.
Theorem 2 also leads to a corollary on existence of equilibria

for networks of coordinating agents, but in this case we confirm
an already known result (e.g., ref. 26).

Corollary 2. Every network of coordinating agents admits a pure-
strategy Nash equilibrium.
The following corollary follows directly from Theorem 1

and Theorem 2, and the fact that a network of homogeneous
agents can always be described as all coordinating or all
anticoordinating.

Corollary 3. Every network of homogenous agents who update
asynchronously under Assumption 1 will reach an equilibrium state
in finite time.

Coordinating and Anticoordinating Agents Coexist. Given the pre-
vious two results, the natural question arises of what we can say
about convergence when both coordinating and anticoordinating
agents are present in a network. Although there may be partic-
ular configurations that converge, we can demonstrate that this
will not hold in general with a simple example on a network
consisting of only two agents connected to each other, namely a
path of length one, that is, Vdf1,2g, Edfð1,2Þ, ð2,1Þg. Suppose
that agent 1 is coordinating, agent 2 is anticoordinating, and their
thresholds are both equal to 1=2. Given their respective update
rules in Eqs. 1 and 2, agent 1 will always switch to match agent 2
while agent 2 will always switch to oppose the strategy of agent 1.
In other words, the following transitions will occur with proba-
bility one: ðA,AÞ→ ðA,BÞ→ ðB,BÞ→ ðB,AÞ→ ðA,AÞ, resulting in
a neverending cycle. This formulation is equivalent to a repeated
version of the well-known matching pennies game. From this,
we can conclude that convergence is not a trivial result to be
expected in all cases, and can only be guaranteed when all agents
are either coordinating or anticoordinating.

Convergence Time. The following corollary follows from the fact
that the potential function ΦðkÞ is bounded from above and
below and decreases by at least one every time an agent switches
strategies.

Corollary 4. Every network of all coordinating or all anticoordinating
agents will reach an equilibrium state after no more than 6jEj
agent switches.
This implies that agents cannot switch an arbitrary number

of times before the network reaches equilibrium. It follows
that when agent activation times are independent and iden-
tically distributed, the upper bound on the expected time to
reach equilibrium is linear in the number of edges in the
network.

Synchronous and Partially Synchronous Updating
So far, any network of all coordinating or all anticoordinating
agents is shown to reach an equilibrium state, as long as the
agents update asynchronously. However, the importance of
asynchronous updating to the convergence results remains an
open problem. In this section, we show that, although full syn-
chrony may not always result in convergence, the results indeed
still hold for partial synchrony, in which a random number of
agents update at each time step.

Synchronous Updating. We show that networks in which updates
are fully synchronous may never reach an equilibrium state, by
presenting counterexamples with only two agents.
First, suppose that both agents are anticoordinating and start

from the strategy vector ðA,AÞ. The agents update synchro-
nously, that is, at each time step, both agents activate and update
their strategies according to the update rule in Eq. 2. Therefore,
the dynamics will be deterministic, and the following transitions
will occur on the strategies of the agents: ðA,AÞ→ ðB,BÞ→ ðA,AÞ,
resulting in a cycle of length 2.
Now suppose that both agents are coordinating and they start

from the strategy vector ðA,BÞ. Following the update rule in Eq.
1, the following transitions take place under the synchronous
updating: ðA,BÞ→ ðB,AÞ→ ðA,BÞ, again resulting in a cycle of
length 2.
The above examples prove that equilibrium convergence is no

longer guaranteed if the agents update in full synchrony. How-
ever, it is known that any network game governed by synchro-
nous best-response dynamics will reach a cycle of length at most
2, even when both coordinating and anticoordinating agents
coexist in the network (27).

Partially Synchronous Updating. To understand what happens in
the case of partially synchronous updates, we need to relax the
assumption that only one agent can update at a given time. We
must therefore decouple the activation sequence from the dis-
crete-time dynamics, and consider the activations to occur in
continuous time. Let ftjg∞j=1 denote a sequence of times and
fijg∞j=1, a sequence of agents such that agent ij activates at time tj.
Fig. 2 shows the relationship of the discrete time steps with the
agent activation sequence.
It is now possible that multiple agents update between con-

secutive time steps. In particular, all agents who are active in the
time interval ½k, k+ 1Þ update at time k+ 1 based on the state of
the network at time k. Let Ak denote the set of all agents who are

Fig. 2. In the partially synchronous update model, multiple agents can
activate in a single discrete time step. All agents who are active in the
absolute time interval ½k, k+ 1Þ update at time k+ 1 based on the in-
formation at time k. The colors red, blue, and green represent three dif-
ferent agents.
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active during the time interval ½k, k+ 1Þ. We can express the
partially synchronous dynamics as follows:

xiðk+ 1Þ=
�
xbri ðkÞ if   i∈Ak
xiðkÞ otherwise

,

where xbri ðkÞ denotes the best response of agent i to the strategies
of its neighbors at time k. To provide a general framework
for independent stochastic activation sequences, we make the
following assumption.

Assumption 2. The interactivation times for each agent are drawn
from mutually independent probability distributions with support
on R≥0.
One standard model that satisfies Assumption 2 is to use ex-

ponential distributions with mean 1=λ. This represents the case in
which each agent updates according to a Poisson clock with rate
λ, and the expected number of agents updating in one unit of
time is λn.
From the previous sections, we know that the best-response

dynamics do not necessarily converge to an equilibrium when
the updating is synchronous, yet do converge when the updating
is asynchronous. Therefore, the natural question arising is the
following: how much asynchrony do the partially synchronous
best-response dynamics need for convergence? It turns out that,
even under the relatively mild assumption on the partially syn-
chronous updates in Assumption 2, we still have convergence to
an equilibrium state almost surely.

Theorem 3. Every network of all coordinating or all anticoordinating
agents who update with partially synchronous dynamics that satisfy
Assumption 2 almost surely reaches an equilibrium state in finite
time.
To prove the theorem, we model the network game as a

Markov chain and show that it is absorbing (28). We refer the
reader to SI Appendix for a detailed proof.
Note that one technically equivalent but perhaps less

practical modeling of the partially synchronous updates would
be to simply assume that at each time step k= 0,1, . . ., a ran-
dom number of random agents activate simultaneously and
then update at k+ 1. In other words, there is a fixed proba-
bility that a particular group of agents activate simultaneously
at every time step. Then Theorem 3 still holds because the
probability that each agent activates asynchronously is boun-
ded below by a positive constant. From a broader point of
view, Theorem 3 holds whenever random asynchronous acti-
vations are not completely excluded from the partially syn-
chronous dynamics. Convergence, however, may not be achieved

for particular nonrandom activation sequences, as discussed in
the following.

Zero-Probability Nonconvergence. We now show that Theorem 3
holds only almost surely. In other words, there exist activation
sequences generated under Assumption 2 that do not result
in equilibrium convergence; however, the probability of such
sequences happening is zero. Consider the network game
Γ= ðG, ð1=2Þ1, + Þwhere G and the initial strategies xð0Þ are as in
Fig. 3A. First, we show that if any single agent activates when
the strategy state equals xð0Þ, then there exists a finite sequence
of agent activations that return the state to xð0Þ. Consider the
case when agent 1 activates exclusively at k= 0 (Fig. 3A), and
hence, switches to B at k= 1. Then if agents 2, 3, 4, 6 activate at
k= 1 and agents 1, 2, 3, 4, 6 at k= 2, the strategy state returns
to xð0Þ at k= 3, that is, xð3Þ= xð0Þ; the process is shown in Fig. 3
B–D. Denote the corresponding activation subsequence by
α1 = ðf1g, f2,3,4,6g, f1,2,3,4,6gÞ. Similarly, as shown in Fig. 4,
there exists an activation sequence that returns the state of
the system to xð0Þ when agent 2 activates at k= 0. The corre-
sponding activation subsequence would be α2 = ðf2g, f1,3,4,5,6g,
f1,2,3,4,5,6gÞ. Moreover, due to the symmetric distribution of
the strategies xð0Þ in the network, the same can be shown for
when agents 3, 4, or 6 are activated at k= 0 (which are similar to
agents 1, 2, and 5, respectively). Denote the corresponding ac-
tivation subsequences by α3, α4, and α6. Now consider the event
X made by α1 and α2 as follows:

X = ðxiÞ∞i=1, xi ∈ fα1, α2g.

Any activation sequence in X can be generated under Assump-
tion 2 and has the property that all agents activate exclusively
infinitely many times. However, no sequence in X results in con-
vergence of the network game Γ. However, this does not contra-
dict Theorem 3 because P½X �= 0, under Assumption 2.

Concluding Remarks
We have shown that arbitrary networks consisting of all coordi-
nating or all anticoordinating agents who update with asynchronous
best responses will reach equilibrium in finite time. Moreover, when
updates are partially synchronous, we have shown that the network
still almost surely reaches an equilibrium under mild conditions on
the independence and randomness of agent updates. For the case of
anticoordinating agents, these results have important implications in
social contexts where individuals prefer an action only if a small
enough portion of neighbors are using that action, for example,
deciding which route to take to avoid traffic congestion, vol-
unteering for a dangerous but important public service posi-
tion, contributing money or time toward a crowd-sourced
project, etc. For coordinating agents, the results apply to social
contexts where each agents prefer an action only if a sufficient

A B C D

Fig. 3. (A–D) Strategy evolution in the network game Γ= ðG, ð1=2Þ1, + Þ
under the activation subsequence α1 = ðf1g, f2,3,4,6g, f1,2,3,4,6gÞ. Red
circles indicate those nodes that are activated at the corresponding
time step.

A B C D

Fig. 4. (A–D) Strategy evolution in the network game Γ= ðG, ð1=2Þ1, + Þ
under the activation subsequence α2 = ðf2g, f1,3,4,5,6g, f1,2,3,4,5,6gÞ.
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number of neighbors are using that action, for example, the spread
of social behaviors, technological innovations, viral infections. Our
results suggest that, in both cases, no matter how different the
individuals are, which neighbors affect their decisions, or how
many simultaneous decisions are made, everyone will tend to
settle on a particular action with which they are satisfied. This
means that the presence of cycles or nonconvergence must result
from other factors such as imitation or other unmodeled effects

in the update dynamics, or a mixture of coordinating and anti-
coordinating agents. These results also open the door to charac-
terizing the equilibria and investigating possibilities for payoff-
based incentive control of the network.
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