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Timing and periodicity of influenza epidemics
Ottar N. Bjørnstada,b,1 and Cecile Viboudc

Although the annual cycle of summers and winters is a
long-resolved mystery of astronomy, the annual antipo-
dal waxing and waning of influenza epidemics is still
an unresolved question in epidemiology. In 1981,
R. E. Hope-Simpson, an astute British physician who
maintained and analyzed detailed records of his patients
and their diseases for more than three decades, ob-
served that “Influenza outbreaks are globally ubiquitous
and epidemics move smoothly to and fro across the sur-
face of the earth almost every year in a sinuous curve that
runs parallel with the ‘midsummer’ curve of vertical solar
radiation. . .” (1). In PNAS Deyle et al. (2) combine con-
vergent cross-mappingwith empirical dynamicmodeling
to elucidate the nonlinear roles of absolute humidity and
temperature in explaining influenza’s “sinuous curve that
runs parallel with the ‘midsummer’” across the globe (1).

Understanding interepidemic intervals and timing of
outbreaks has been a focus of mathematical epidemiol-
ogists for more than 50 y (3, 4). Acute immunizing infec-
tions have internal cyclic clockworks determined by the
overcompensatory predator/prey-like interaction that re-
sults from slow susceptible recruitment, through births
and loss of immunity, and rapid susceptible depletion
from transmission during epidemics. The internal clock
depends on traits of both the pathogen and the host and
determines the frequency of oscillations we expect to
see in the presence of random perturbations to the dis-
ease dynamics (3). The “flu” is a recurrent menace—and
sometime scourge—caused by cocirculating strains of
influenza A and B viruses, which at the strain-aggregate
level can be modeled using the “susceptible-infected-
recovered-(re)suceptible” compartmental model (5). For
influenza, the internal interepidemic period is usually in
the 10- to 16-mo range depending on the infectious
period and transmissibility (the basic reproductive ratio,
R0) of each strain (Fig. 1A). The prediction is that, in the
absence of extrinsic forcing, the flu peak would slowly
drift across the seasons. When it appeared in the 2003/
2004 winter, the influenza A/H3N2/Fujian strain had an
estimated R0 of 2.0 (6) and an infectious period of about
3 d. With these epidemiological parameters, the natural
tendency would be for the peak to be gradually delayed

by 5–6 wk each year (“0” in Fig. 1A). In contrast, a time-
series analysis of influenza in Israel since 2000 estimates
R0 to be 2.9 (5). Combined with recent estimates of 3.8 d
of significant viral shedding from volunteer studies (7),
theory predicts that the influenza season should acceler-
ate by 4–5 wk each year (“X” in Fig. 1A). Such consider-
ations prompt the long-studied question of why—when
timing of the influenza peak varies by several months
among years—it is (almost) always centered inmidwinter
in temperate areas of the world, and 6 mo out of phase
between the northern and southern hemispheres’ higher
latitude regions, a question to which Deyle et al. (2)
contribute an important global perspective.

The general answer of why epidemics entrain on an
annual (or biennial/triennial) cycle has long been known
to involve “seasonal forcing” (as opposed to random
perturbations), whereby annually recurring changes in
host susceptibility, behaviors, or the environment interact
with the internal dynamic clockwork (8). Hope-Simpson’s
hypothesis that seasonal shifts in solar radiation may
awaken the influenza virus following long periods of sum-
mertime latency (1) was not correct, but his original thesis
that influenza seasonality must be explicable, spurred a
myriad of hypotheses involving seasonal changes in host
susceptibility, virus survival and transmissibility, or human
contact patterns, and inspired research on the role of en-
vironmental factors asmediators of such changes.Manyof
these intriguing hypotheses appear to have been scientific
dead-ends, but temperature-dependence in viral trans-
mission (9) and droplet-modulation from absolute humid-
ity (10) have emerged as likely contributors to—what
mathematical epidemiologists would dub—influenza’s
“forced pendulum.” Deyle et al. (2) use cross-mapping
and empirical dynamic modeling to show that these two
hypothesized drivers are consistent with patterns of influ-
enza incidences across latitudes as reported in global sur-
veillance datasets over the last two decades. This is an
important validation of the likely importance of these fac-
tors at the global scale.

“Empirical dynamic modeling” is a recent catch
phrase for a set of statistical tools that has been used
for forecasting and analysis of dynamical systems when
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the laws driving the system are imperfectly understood. The broad
idea is to combine rich time-series data with nonparametric autor-
egression [such as nearest-neighbors (11), splines (12), or local
polynomials (13)] to dissect the mechanisms at play. The notion of
“nonparametric regression“ goes back at least to the early 1950s
Nadaraya–Watson method (14), but the idea that such models may
be used in a recursive fashion and for the purpose of understanding
disease dynamics was first proposed by Sugihara et al. in the late
1980s—as what may now be seen as one of the earliest data-mining
tools—to search for chaotic irregularities among noisy cyclic fluctu-
ations of infectious diseases (11). These methods have, for more
than 30 y, repeatedly lingered at the cutting edge of statistical ep-
idemiology (12, 15) yet have seemingly never broken away from a
relatively narrow niche market. An important feature of this array of
methods is that they are less susceptible to spurious relations among
auto-correlated time series, which often complicates epidemio-
logic research to understand the role of environmental factors on
infectious disease dynamics. An important strength (or perhaps

weakness?) is the ability to perform dynamic forecasts even in the
absence of mechanistic assumptions.

Although the typical “flu season” may be well associated with
wintertime in the public’s mind, it is—from an epidemiological point
of view—relatively sloppy; during the last three decades seasonal
influenza has peaked anywhere between November and March in
the United States. In contrast, historical measles epidemics almost
always peaked in November or December. The antipodal lock of
influenza onto the annual calendar is also historically imperfect.
Pandemics, in particular, appear to throw a complete wrench in
the timing and periodicity of “the flu season.” As a case in point,
during the 2009 pandemic, what would generally be expected
to be a regional seasonal wave was instead a tripunctuated
spring–fall–winter wave (Fig. 1B), with a sharp drop of transmission
during the summermonths when schools were out. This phenomenon
of predictable changes in transmission associated with opening and
closing of schools is called “term-time forcing” in epidemiology (4). It
is intriguing that when influenza loses its lock on the environmental
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Fig. 1. (A) Interepidemic intervals (in weeks) as a function of the infectious period and basic reproductive ratio predicted by the susceptible-
infected-recovered-(re)suceptible model, assuming immunity lasts for 4 y. The square represents a current consensus range of parameters
relevant to influenza. The “O” is specific parameters reported by Yang et al. (6) and the “X” is from Axelsen et al. (5). (B) Influenza incidence by
subtype in Mexico following the 2009 pandemic (gray shading) and subsequent seasonal epidemics. (C ) Historical influenza-like illness from
Iceland, showing a transition from biannual to annual epidemics.
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clock, it appears to gain the influence of children’s behavioral clock,
which is the dominant modulator of dynamics of most immunizing
childhood infections (4). It is as if epidemics of acute respiratory
infections are determined either by earth’s annual waxing and wan-
ing relation with the sun, or by children’s seasonal waxing and wan-
ing relation with their schools. This term-time effect is presumably
more pronounced in pandemic periods because of a preponder-
ance of infections in immuno-naïve children. The shift in seasonality
associated with pandemic seasons also appears to change patterns
of spatial spread (16).

A further example of atypical influenza periodicity is seen in early
20th century influenza records in Iceland where, between 1916 and
1940, incidence of influenza-like illness exhibited a 2-y cycle (Fig.
1C). These longer influenza cycles may be associated with geo-
graphic isolation leading to sporadic winter introductions, as bien-
nial cycles gave way to annual epidemics in the modern era of air
travel. Alternatively, these multiyear influenza cycles could be be-
cause of interference between Iceland’s internal flu clockwork and
deep environmental fluctuations, echoing patterns seen in respira-
tory syncytial virus epidemics in the northern United States (17).
Understanding flu anomalies will likely be a very interesting en-
deavor once the broadbrush patterns are pinned down.

Another prism by which the subtleties of influenza’s weakly
forced pendulum may be seen is from subtropical locales, some
of which experience semiannual resurgences of influenza in winter
and spring/summer, as is the case in Hong-Kong or Shanghai (18). It
will be interesting to learn whether these could be related to non-
linearities in the absolute humidity response, or whether these rep-
resent geographic cross-roads in areas of low seasonal forcing
combined with robust coupling to regions subject to pure annual
influenza cycles, aligned with winters in the northern (Northern

China, Europe and North America) and southern hemispheres
(Southern China, Australia). At the end of the spectrum of ob-
served periodicities, a relatively remote subtropical island like
Madagascar does not appear to experience influenza cycles
entrained on any type of regular periodicity, based on analysis
of long-term epidemiological records (19). Future analyses may
shed light on the complexity of the interplay among environmen-
tal factors, population coupling, and the occasional term-time
forcing, in fine-tuning seasonality of epidemic and pandemic in-
fluenza globally. For this, it may be necessary to disaggregate
influenza records by subtypes, as transmission patterns—and
thereby seasonal forcing—are subtype-dependent (18, 20). For
example, multiannual cycles may occur in subtype-specific time
series as immunity builds up to a particular influenza strain, even if
aggregate dynamics are annual (Fig. 1B). Finally, subnational anal-
yses of large countries could inform research on the drivers of in-
fluenza seasonality, especially in climatologically diverse environments
with complex and fast-changing population coupling, such as China
and Brazil (18).

Deyle et al.’s (2) findings come at a period of great interest in
forecasting infectious disease dynamics at the local, regional, and
global scales. The next challengewill be to reconcile nonparametric
approaches of the kind proposed by Deyle et al. (2), with mecha-
nistic transmission models to improve our ability to model and
anticipate future major perturbations—because of cluster jumps
or pandemic replacements—of the global influenza system.
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