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Abstract

Differential expression (DE) analysis is commonly used to identify biomarker candidates that have 

significant changes in their expression levels between distinct biological groups. One drawback of 

DE analysis is that it only considers the changes on single biomolecule level. Recently, differential 

network (DN) analysis has become popular due to its capability to measure the changes on 

biomolecular pair level. In DN analysis, network is typically built based on correlation and 

biomarker candidates are selected by investigating the network topology. However, correlation 

tends to generate over-complicated networks and the selection of biomarker candidates purely 

based on network topology ignores the changes on single biomolecule level. In this paper, we 

propose a novel approach, INDEED, that builds sparse differential network based on partial 

correlation and integrates DE and DN analyses for biomarker discovery. We applied this approach 

on real proteomic and glycomic data generated by liquid chromatography coupled with mass 

spectrometry for hepatocellular carcinoma (HCC) biomarker discovery study. For each omic data, 

we used one dataset to select biomarker candidates, built a disease classifier and evaluated the 

performance of the classifier on an independent dataset. The biomarker candidates, selected by 

INDEED, were more reproducible across independent datasets, and led to a higher classification 

accuracy in predicting HCC cases and cirrhotic controls compared with those selected by separate 

DE and DN analyses. INDEED also identified some candidates previously reported to be relevant 

to HCC, such as intercellular adhesion molecule 2 (ICAM2) and c4b-binding protein alpha chain 

(C4BPA), which were missed by both DE and DN analyses. In addition, we applied INDEED for 

survival time prediction based on transcriptomic data acquired by analysis of samples from breast 

cancer patients. We selected biomarker candidates and built a regression model for survival time 

prediction based on a gene expression dataset and patients’ survival records. We evaluated the 
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performance of the regression model on an independent dataset. Compared with the biomarker 

candidates selected by DE and DN analyses, those selected through INDEED led to more accurate 

survival time prediction.
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Differential expression analysis; differential network analysis; transcriptomics; proteomics; 
glycomics

1 Introduction

Recent advances in high-throughput technique enable the generation of a large amount of 

omic data such as genomics, transcriptomics, proteomics, metabolomics, glycomics, etc. 

These data have been investigated to understand the mechanism of diseases or discover 

biomarkers. Typically, differential expression (DE) analysis (e.g., student’s t-test, ANOVA, 

etc.) is performed to identify biomolecules (e.g., genes, proteins, metabolites, glycans, etc.) 

with significant changes in their expression levels between distinct biological groups (e.g., 

cases vs. controls, treated and untreated samples, etc.). However, DE analysis on 

independent studies for the same clinical types of patients often led to different sets of 

significant biomolecules and had only few in common [1]. This may be attributed to the fact 

that biomolecules are members of strongly intertwined biological pathways and highly 

interactive with each other. Without considering the interactions between them, DE analysis 

could lead to misleading results [2].

Network-based methods are useful to study the interactions among biomolecules [3–6]. A 

network is constructed with nodes representing biomolecules and edges indicating the 

interactions between them. There has been a growing interest in differential network (DN) 

analysis recently [7–9]. In a differential network, the connection represents a statistically 

significant change in the pairwise association between two biomolecules on distinct groups. 

Its goal is to identify sub-networks (i.e., connected biomolecules) that are dysfunctional in a 

given disease state. The conventional way to measure the pairwise association is based on 

correlation. A drawback for using correlation is that correlation confounds direct and 

indirect associations [10]. For example, a strong correlation between x1 and x2 as well as x2 

and x3 (direct associations) is very likely to introduce a relatively weak but still significantly 

strong correlation between x1 and x3 (indirect association). When the number of 

biomolecules is large, correlation tends to generate over-complicated networks, impacting 

the selection of reliable biomarker candidates in the subsequent analysis. Therefore, refined 

measurements that can distinguish direct and indirect associations are desirable in generating 

a sparse differential network that can benefit both network visualization and biomarker 

discovery.

Given a differential network, a straightforward way to select biomarker candidates is based 

on node degree (i.e., the number of connections for each node) [11]. The assumption is that 

biomolecules that have a strongly altered connectivity between distinct biological groups 

might play an important role in the disease under study [12]. While the underlying 

assumption seems reasonable, this simple method does not consider the changes on 
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expression levels of individual biomolecules between distinct biological groups. In fact, DE 

and DN analyses investigate omic data from two separate but complementary perspectives: 

the former focuses on the change of single biomolecule in its mean expression level while 

the latter concentrates on the change in pairwise association for a biomolecular pair. 

Therefore, an approach that can integrate DE and DN analyses is likely to discover more 

reliable biomarkers by considering the difference between distinct biological groups on both 

single biomolecule and biomolecular pair levels.

In this paper, we propose a novel approach, INDEED (INtegrated DiffErential Expression 

and Differential network analysis), to integrate DE and DN analyses for biomarker discovery 

(Figure 1). Given an omic dataset, DE analysis is first performed to obtain p-value, which 

indicates the change of single biomolecule between distinct biological groups. Then, a 

differential network is built based on partial correlation, which can distinguish between 

direct and indirect associations when evaluating the change of pairwise association on a 

biomolecular pair between distinct biological groups. Activity scores are computed based on 

p-values and the topology of the differential network. Finally, biomolecules are prioritized 

by their activity scores for biomarker candidate selection. We show the application of 

INDEED through proteomic and glycomic data we previously acquired in our liver cancer 

biomarker discovery studies [13, 14]. We also apply INDEED on transcriptomic data we 

downloaded from online repository for breast cancer study [15, 16].

The rest of the paper is organized as follows. Section 2 introduces INDEED. Section 3 

presents the performance of INDEED on real proteomic, glycomic, and transcriptomic data. 

Finally, Section 4 summarizes our work and discusses possible future extensions.

2 Material and methods

2.1 INDEED

Figure 2 shows the framework of INDEED. It includes four steps: 1), performing DE 

analysis to obtain p-value for each biomolecule; 2), building a differential network by 

evaluating the changes in partial correlation for each biomolecular pair between distinct 

biological groups; 3), computing the activity score for each biomolecule based on p-values 

from DE analysis and the topology of the differential network; 4), prioritizing the 

biomolecules with the activity score.

Specifically, in step 1, DE analysis is typically performed through student’s t-test, ANOVA, 

logistic regression or LASSO based method. Its aim is to detect the change in the expression 

level (i.e., p-value) of a single biomolecule between distinct biological groups.

In step 2, we build a differential network. Unlike the conventional way of using correlation 

to measure the pairwise association, we can obtain a sparse differential network by using 

partial correlation. This is due to the fact that conventional correlation confounds direct and 

indirect associations, while partial correlation can remove the effect of other biomolecules 

when evaluating a biomolecular pair [10, 17]. While correlation can be computed from 

covariance matrix, partial correlation can be computed from inverse covariance matrix (i.e., 

precision matrix Θ) as shown in Equation 1 [10].
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(1)

where pcij represents the partial correlation between xi and xj, and θij ∈ Θ.

Due to the ‘large p small n’ problem in omic data, the precision matrix Θ is non-trivial to 

compute since the covariance matrix is singular. Graphical LASSO algorithm is widely used 

to efficiently estimate Θ by solving the following optimization problem shown in Equation 2 

[18, 19].

(2)

where Θ ≻ 0 is the constraint that Θ has to be positive definite, S is the sample covariance 

matrix, tr denotes trace, the sum of the diagonal elements in a matrix, ||Θ||1 represents the ℓ1 

norm of Θ, the sum of the absolute values of all the elements in Θ, and λ is the tuning 

parameter controlling the sparsity of Θ.

We perform graphical LASSO on distinct biological groups to obtain group-specific 

precision matrices (i.e., Θ1 and Θ2). The sparsity parameters λ1 and λ2 in graphical LASSO 

as shown in Equations 3-1 and 3-2 are tuned by cross validation using one standard error 

rule. By applying one standard error rule, we can achieve the simplest (most regularized) 

model whose error is within one standard deviation of the minimal error. Based on our 

experience, other techniques such as Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and stability selection [20], are either prone to data under-

fitting, leading to very large λ (e.g., AIC, BIC) or computationally very intensive (e.g., 

stability selection).

(3-1)

(3-2)

From the group-specific precision matrices Θ1 and Θ2, we compute the partial correlation 

for each biomolecular pair in distinct biological groups  and  as shown in Equation 

4 [10].
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(4)

The change for each biomolecular pair in partial correlations between distinct biological 

groups is calculated as shown in Equation 5.

(5)

To evaluate the statistical significance of Δpcij ≠ 0, we conduct a permutation test by 

randomly permuting the sample labels in distinct biological groups for each biomolecule, 

applying graphical LASSO under the same sparsity parameters previously used λ̃1 = λ1, λ̃2 

= λ2 and finally computing , and . This procedure is repeated 1000 times to 

obtain an empirical distribution of . Δpcij ≠ 0 is considered statistically significant if 

Δpcij falls into the 2.5% tails on either end of the empirical distribution curve for . To 

build a differential network, we assign a connection between xi and xj when Δpcij ≠ 0 is 

statistically significant.

In step 3, p-value (pk) for each biomolecule is converted into z-score (|zk|) as shown in 

Equation 6. An activity score (sk) is defined as the summation of |zk| and the z-scores for all 

its neighbors in the differential network, as shown in Equation 7. A higher activity score 

indicates that the corresponding biomolecule has more neighbors connected in the 

differential network and their p-values are more statistically significant.

(6)

where ϕ−1 is the inverse cumulative distribution function of the standard Gaussian 

distribution.

(7)

where nei indicates xk and its neighbors in the differential network.

Finally, in step 4, biomolecules are prioritized based on the activity score sk and the top 

ranking biomolecules are selected as biomarker candidates.
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2.2 Evaluation of INDEED using proteomic data

The proteomic datasets were acquired by analysis of proteins in sera from hepatocellular 

carcinoma (HCC) cases and liver cirrhotic controls [13]. Briefly, adult patients were 

recruited from MedStar Georgetown University Hospital (GU cohort) in Washington, DC, 

USA and the Tanta University Hospital (TU cohort) in Tanta, Egypt. The GU cohort is 

comprised of 116 subjects (57 HCC cases and 59 liver cirrhotic controls) and the TU cohort 

consists of 89 subjects (40 HCC cases and 49 liver cirrhotic controls). We used liquid 

chromatography coupled with mass spectrometry (LC-MS) for both untargeted and targeted 

analyses of sera from subjects in the GU and TU cohorts. Proteins that are statistically 

significant between the two groups were selected from the untargeted proteomic data. A 

total of 101 proteins were then evaluated in sera from the GU and TU cohorts through 

targeted quantitation using multiple reaction monitoring (MRM). More details on 

experiment design and statistical analysis can be found in [13].

Our goal is to obtain a prioritized list of proteins using INDEED in one cohort, select the top 

ranking proteins to build a disease classifier and evaluate the performance of these proteins 

and the classifier on the other cohort with independent subjects. GU cohort was used as the 

training set for the selection of proteins and the built of the classifier, since it has more 

subjects and almost the same number of HCC cases and liver cirrhotic controls. In contrast, 

TU cohort was used as the testing set.

We performed student’s t-test on the GU cohort to investigate the changes on the expression 

level of individual proteins between HCC cases and liver cirrhotic controls. For each protein, 

we obtained a p-value (pk) from student’s t-test. The group-specific matrix (i.e., HCC cases 

or liver cirrhotic controls) from GU cohort was then used as the input for graphical LASSO 

algorithm to obtain the group-specific precision matrices (Θ1 and Θ2 for HCC and cirrhotic 

groups, respectively). In graphical LASSO, we performed 5-fold cross validation and chose 

the optimal tuning parameter λ in Equation 3-1 and 3-2 by one standard error rule as shown 

in Figure 3.

From Θ1 and Θ2, we computed the partial correlation for each biomolecular pair in HCC and 

cirrhotic groups  and  (Equation 4) and the change for pairwise partial correlation 

between the two groups Δpcij (Equation 5). To evaluate the statistical significance of Δpcij ≠ 

0, we conducted permutation test as explained in Section 2.1. To build a differential network, 

we assigned a connection between xi and xj, when Δpcij ≠ 0 is statistically significant.

We mapped the p-values (pk) for each protein onto the differential network as shown in 

Figure 4, computed the activity score (sk) for each protein, as defined in Equations 6 and 7, 

and prioritized the 101 proteins according to their activity scores in a decreasing order.

To evaluate the performance of INDEED, we also prioritized the 101 proteins according to 

DE analysis (i.e., the p-values from student’s t-test) and DN analysis. In DN analysis, we 

used the differential network in Figure 4 and prioritized the proteins according to the node 

degree of each protein (i.e., how many neighbors one node is connected to). The top ranking 

proteins from the three prioritized lists were used to train three logistic regression classifiers 

and tested their performances on the independent testing dataset.
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2.3 Evaluation of INDEED using glycomic data

The glycomic datasets were acquired by analysis of glycans in sera from HCC cases and 

liver cirrhotic controls [14]. Similar to the proteomic datasets, adult patients were recruited 

from MedStar Georgetown University Hospital (GU cohort) in Washington, DC, USA and 

the Tanta University Hospital (TU cohort) in Tanta, Egypt. The GU cohort is comprised of 

94 subjects (48 HCC cases and 46 patients with liver cirrhosis) and the TU cohort consists of 

89 subjects (40 HCC cases and 49 liver cirrhotic controls). Both untargeted and targeted 

analyses were conducted by using LC-MS in the GU and TU cohorts. Glycans that are 

statistically significant between the HCC and cirrhotic groups were selected from the 

untargeted glycomic data. A total of 82 glycans were then evaluated in sera from the GU and 

TU cohorts through targeted quantitation using MRM. More details on experiment design 

and statistical analysis can be found in [14].

Similar to the approach we used for evaluating INDEED on proteomic data, we used GU 

cohort as the training set and TU cohort as the testing set. We performed ANOVA to 

investigate the changes on the expression level of individual glycans between HCC cases 

and liver cirrhotic controls. For each glycan, we obtained a p-value (pk) from ANOVA. Then 

the differential network was built by performing graphical LASSO on HCC and cirrhotic 

groups separately, computing partial correlation for each glycan pair and evaluating the 

statistical significance of the change on the pairwise partial correlation between HCC and 

cirrhotic groups using permutation test. Once the differential network was built, we mapped 

p-values (pk) onto the differential network and computed the activity score (sk) for each 

glycan. At last, we prioritized the 82 glycans according to their activity scores in a 

decreasing order. To evaluate the performance of INDEED, we also prioritized the 82 

glycans according to DE analysis (i.e., the p-values from ANOVA) and DN analysis (i.e., 

node degrees). The top ranking glycans from the three prioritized lists were used to train 

three logistic regression classifiers. We tested the performances of the classifiers on the 

independent testing dataset.

2.4 Evaluation of INDEED using transcriptomic data

The transcriptomic data consist of two microarray datasets previously acquired in breast 

cancer studies: van de Vijver et al.’s and Pawitan et al.’s datasets [15, 16]. The former 

includes 295 patients with their survival records, and was used for training. Pawitan et al.’s 

dataset contains 159 patients, together with their survival records, and was used for 

independent testing. Both datasets are available at PRECOG website (https://

precog.stanford.edu/), an online repository for querying cancer gene expression and clinical 

data, and have been properly preprocessed for subsequent statistical analysis [21]. The raw 

data are also available at R package seventyGeneData and Gene Expression Omnibus 

(GSE1456), respectively [22].

With proteomic and glycomic data in Sections 2.3 and 2.4, we evaluated INDEED by 

obtaining a prioritized list of proteins/glycans based on one dataset (i.e., GU cohort), 

selected top ranking ones to build a disease classifier, and tested the performance of the 

classifier on the independent dataset (i.e., TU cohort). For transcriptomic data, we evaluated 

INDEED by building a regression model for survival time prediction. We first conducted 
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univariate analysis on van de Vijver et al.’s dataset to select a list of statistically significant 

genes based on their expression values and the survival time across patients using univariate 

Cox regression model. For each gene, we obtained a p-value (pk) and selected statistically 

significant genes for subsequent analysis. In order to build a differential network, we 

excluded patients with less than 5-year follow-up time from the van de Vijver et al.’s dataset. 

Among the remaining patients, 91 with less than 5-year survival during the follow-up time 

were considered high risk group while the other 196 formed the low risk group. The 

differential network was built by performing graphical LASSO on high and low risk groups 

separately using the pre-selected genes, computing partial correlation for each gene pair, and 

evaluating the statistical significance of the change on the pairwise partial correlation 

between high and low risk groups using permutation test. Once the differential network was 

built, we mapped p-values (pk) onto the differential network and computed the activity score 

(sk) for each pre-selected gene. At last, we prioritized the pre-selected genes according to 

their activity scores in a decreasing order. To evaluate the performance of INDEED, we 

prioritized the pre-selected genes according to DE (i.e., the p-values from univariate Cox 

regression model) and DN (i.e., node degrees) analyses. The top ranking genes from the 

three prioritized lists were used to train three multivariate Cox regression models and to test 

their performance on the independent testing dataset.

3 Results and discussion

3.1 Proteomic datasets

Figure 3 shows our choice of λ1 = 0.106 (HCC group) and λ2 = 0.125 (cirrhotic group) in 

performing graphical LASSO to obtain group-specific precision matrices (Θ1 and Θ2 for 

HCC and cirrhotic groups, respectively).

The differential network built based on partial correlation is shown in Figure 4. Table S-1 in 

supplementary material lists all the 101 proteins together with their adjusted p-values, 

activity scores and node degrees. Proteins are named after their corresponding gene symbols.

We performed DE analysis, DN analysis, and INDEED on GU cohort initially. Using 

student’s t-test, 45 proteins with adjusted p-values less than 0.05 were selected in DE 

analysis. The inflation of Type I error was controlled by the false discovery rate (FDR) using 

the Benjamini-Hochberg procedure. To make a fair comparison, we also selected the top 45 

proteins based on DN analysis (i.e., node degrees) and INDEED (i.e., activity scores). We 

conducted student’s t-test on the TU cohort to select a total of 39 proteins whose adjusted p-

values were less than 0.05. We compared the overlap of the 45 proteins selected based on 

DE analysis, DN analysis and INDEED on GU cohort, with the 39 proteins selected by 

student’s t-test on the TU cohort. The result is shown in Table 1, where the number of 

overlapping proteins are 21, 17, and 25 for DE analysis, DN analysis and INDEED, 

respectively. Here the 39 proteins selected by student’s t-test on the TU cohort are used to 

approximate the ground truth to evaluate the reproducibility of the protein biomarker 

candidates selected based on DE analysis, DN analysis and INDEED from GU cohort. As 

expected, INDEED can select biomarker candidates that are more reproducible across GU 

and TU cohorts.
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Figure 5 shows a Venn diagram of the 21, 17, and 25 overlapping proteins selected by DE 

analysis, DN analysis and INDEED from GU cohort. Two proteins, intercellular adhesion 

molecule 2 (ICAM2) and c4b-binding protein alpha chain (C4BPA) are unique to INDEED. 

We further investigated these two proteins by their relevance to HCC studies from the past 

literatures. ICAM2 has been previously reported as a liver cirrhosis signature in plasma that 

can be used as a potential predictive biomarker for HCC among hepatitis B virus (HBV) 

carriers [23]. C4BPA has also been previously reported as one of the 14 protein biomarkers 

for HCC based on a study comparing HCC cases with healthy controls and the HBV group 

[24]. The literature survey has confirmed the prospective of using INDEED to select HCC 

related biomarker candidates that can be missed by DE and DN analyses.

To make more comprehensive comparisons among DE analysis, DN analysis, and INDEED, 

we trained three logistic regression classifiers on GU cohort using the 45 proteins from DE 

analysis, DN analysis and INDEED in Table 1, and tested the classifiers on the TU cohort. 

To overcome the potential over-fitting problem, we first performed a LASSO based logistic 

regression using R package, glmnet, to select the most relevant biomarker candidates among 

the 45 proteins in Table 1 [25]. The sparsity parameter was tuned based on the leave-one-out 

cross validation procedure. This led to 10, 10, and 13 proteins for DE analysis, DN analysis, 

and INDEED, respectively, as shown in Table 2. We then refitted the logistic regression 

classifiers using the above 10, 10, and 13 proteins and tested the classifiers on the TU 

cohort. The classification accuracy for the logistic regression classifiers on TU cohort are 

0.64, 0.64, and 0.69 for DE analysis, DN analysis and INDEED, respectively. We also 

plotted the ROC curves associated with DE analysis, DN analysis and INDEED, as shown in 

Figure 6. The AUC for DE analysis, DN analysis and INDEED are 0.68, 0.65 and 0.71, 

respectively.

3.2 Glycomic datasets

Figure S-1 in the supplementary material shows our chose of λ1 = 0.066 (HCC group) and 

λ2 = 0.057 (cirrhotic group) in performing graphical LASSO to obtain group-specific 

precision matrices (Θ1 and Θ2 for HCC and cirrhotic groups, respectively). Figure S-2 shows 

the differential network built based on partial correlation. Table S-2 lists all 82 glycans 

together with their p-values, activity scores and node degrees.

We performed DE analysis, DN analysis, and INDEED on GU cohort. Using ANOVA, 11 

glycans with p-values less than 0.1 were selected in DE analysis. To make a fair comparison, 

we selected the top 11 glycans based on DN analysis (i.e., node degrees) and INDEED (i.e., 

activity scores) (Table S-3). We then trained three logistic regression classifiers on GU 

cohort using the 11 glycans from DE analysis, DN analysis and INDEED in Table S-3, and 

tested the classifiers on the TU cohort. The same procedure as the proteomic data has been 

applied for the glycomic data. Briefly, we first performed a LASSO based logistic regression 

to select the most relevant biomarker candidates among the 11 glycans in Table S-3. This led 

to 4, 2, and 5 glycans for DE analysis, DN analysis, and INDEED, respectively, as shown in 

Table 3. We then refitted logistic regression classifiers using the above 4, 2, and 5 glycans 

and tested the classifiers on the TU cohort. The classification accuracy for the logistic 

regression classifiers on TU cohort are 0.58, 0.56, and 0.63 for DE analysis, DN analysis 
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and INDEED, respectively. We also plotted the ROC curves associated with DE analysis, 

DN analysis, and INDEED, as shown in Figure 7. The AUC for DE analysis, DN analysis 

and INDEED are 0.64, 0.59 and 0.67, respectively.

3.3 Transcriptomic datasets

We performed univariate analysis on van de Vijver et al.’s dataset to select a list of 

statistically significant genes based on their expression value and the survival time across 

patients using univariate Cox regression model. This led to a total of 402 genes whose 

adjusted p-values were less than 0.05 after correcting for multiple testing based on FDR. 

Using cross-validation similar to Figures 3 and S-1, we chose λ1 = 0.103 (high risk group) 

and λ2 = 0.074 (low risk group) in performing graphical LASSO to obtain group-specific 

precision matrices (Θ1 and Θ2 for high and low risk groups, respectively). Table S-4 lists all 

402 genes together with their p-values, activity scores, and node degrees.

We performed DE analysis, DN analysis, and INDEED to prioritize the 402 genes based on 

their p-values, node degrees, and activity scores, respectively. From the three prioritized 

lists, the top 50 genes were selected to train three multivariate Cox regression models for 

survival time prediction. In training each multivariate Cox regression model, we used 

LASSO to select the most relevant biomarker candidates among the 50 genes. This led to 16, 

23, and 22 genes selected by DE analysis, DN analysis, and INDEED, respectively, as 

shown in Table 4. We then refitted the multivariate Cox regression models using the above 

16, 23, and 22 genes and tested their performance on the independent Pawitan et al.’s 

dataset. Figure 8 presents survival curves associated with DE analysis, DN analysis, and 

INDEED based on Kaplan-Meier survival analysis. As shown in the figure, INDEED 

yielded the best performance (log rank p-value=5.64e−5, hazard ratio=4.12), compared to 

DE analysis (log rank p-value=0.0024, hazard ratio=2.75) and DN analysis (log rank p-

value=0.00065, hazard ratio=3.16).

In summary, DE and DN analyses identify biomarker candidates from two complementary 

perspectives: the former investigates the change of single biomolecule in its expression level 

between distinct biological groups, while the latter focuses on the change at the 

biomolecular pair level. The improved performance of INDEED is attributed to its capability 

to simultaneously consider the changes between cases and controls on individual 

biomolecule and bimolecular pair levels, while DE and DN analyses can only capture 

changes on one of the two levels.

4 Conclusions

In this work, we propose a novel approach, INDEED, to build a sparse differential network 

based on partial correlation for better visualization, and integrate DE and DN analyses for 

biomarker discovery. The application of INDEED on real transcriptomic, proteomic and 

glycomic data revealed its potential to select biomarker candidates that are more 

reproducible across independent studies, and led to improved classification and regression 

accuracy when compared with DE and DN analyses, separately. Future work includes 

developing an R package to share INDEED with the scientific community and extending 

INDEED to integrate multiple omic data of various types for biomarker discovery.
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• A novel approach, INDEED, that integrates differential expression and 

differential network analyses is proposed for biomarker discovery using 

omic data.

• INDEED builds sparse differential network based on partial correlation 

for better network visualization.

• Transcriptomic, proteomic and glycomic datasets from cancer patients 

demonstrate INDEED’s improved performance in solving classification 

and regression tasks, compared with separate differential expression 

and differential network analyses.
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Figure 1. 
An overview of INDEED. The input is data matrix of one omic type (e.g., transcriptomics, 

proteomics, metabolomics) and the output is a prioritized list based on the activity score 

defined within INDEED.
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Figure 2. 
The framework of INDEED. In differential network analysis, the network is built based on 

partial correlation (pc).

Zuo et al. Page 15

Methods. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Error curves to choose optimal tuning parameter λ using 5-fold cross validation by one 

standard error rule for HCC and cirrhotic groups on proteomic data. The blue line indicates 

the one standard error for the minimum λ in the direction of increasing regularization.
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Figure 4. 
Differential network. Node color indicates the significance level of the individual protein 

between the HCC and cirrhotic groups. Orange edge represents a significantly positive 

change on partial correlation (pc) of a protein pair from HCC to cirrhotic groups while green 

one indicates a significantly negative change.
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Figure 5. 
Venn diagram for the 21, 17 and 25 overlapping proteins from differential expression (DE) 

analysis, differential network (DN) analysis and INDEED on GU cohort in Table 1. Proteins 

ICAM2 and C4BPA are unique to INDEED.
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Figure 6. 
ROC curves associated with differential expression (DE) analysis, differential network (DN) 

analysis and INDEED when training a logistic regression classifier on GU cohort and testing 

it on TU cohort for proteomic data. The AUC are 0.68, 0.65 and 0.71 for DE analysis, DN 

analysis and INDEED, respectively.
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Figure 7. 
ROC curves associated with differential expression (DE) analysis, differential network (DN) 

analysis, and INDEED when training a logistic regression classifier on GU cohort and 

testing it on TU cohort for glycomic data. The AUC are 0.64, 0.59 and 0.67 for DE analysis, 

DN analysis and INDEED, respectively.
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Figure 8. 
Survival curves for A) differential expression (DE) analysis, B) differential network (DN) 

analysis, and C) INDEED.
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Table 2

The 10, 10, 13 proteins selected by LASSO based logistic regression for differential expression (DE) analysis, 

differential network (DN) analysis and INDEED on GU cohort.

DE analysis (10) DN analysis (10) INDEED (13)

FCN3 F12 FCN3

IGHA2 FCN3 F12

CLEC3B A2M SERPING1

SERPINA7 SERPING1 A2M

CLU FCGBP VASN

PTGDS IGFBP6 IGFBP6

AFM GPLD1 FCGBP

LYZ HABP2 PON1

VASN TIMP1 APOA4

FCGBP AFP PROZ

CLU

B2M

CST3
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Table 3

The 4, 2, 5 glycans selected by LASSO based logistic regression classifier for differential expression (DE) 

analysis, differential network (DN) analysis and INDEED on GU cohort. Glycans are characterized by the 

number of five monosaccharides: GlcNAc, mannose, galactose, fucose, and NeuNAc.

DE analysis (4) DN analysis (2) INDEED (5)

[43100] [34101] [53212]

[53000] [53100] [34101]

[53411] [33101]

[53111] [53411]

[43202]

Methods. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zuo et al. Page 25

Table 4

The 16, 23, 22 genes selected by LASSO based multivariate Cox regression models for differential expression 

(DE) analysis, differential network (DN) analysis and INDEED on van de Vijver et al.’s dataset.

DE analysis (16) DN analysis (23) INDEED (22)

QSOX2 LRIG1 SPEF1 ZWINT MED11

UBE2C ZWINT PLK2 CCNA2 ODF2

POLD1 MASTL C20ORF24 SIK3 DSCR6

BIRC5 CSNK1D TBC1D8 LZTFL1 NEIL1

PSMA7 CHMP1A DSCR6 ABCB6 JMJD1C

SPC25 STK32B JMJD1C PSMC4 GPI

MYBL2 SIK3 GPI PKMYT1

CCNE2 HMGB3 PSMB2

WDR62 ABCB6 RRM2

E2F7 VPS4A DLX2

CENPA PSMB2 DSN1

TIMELESS DLX2 PTTG1/PTTG2

TK1 LYPD6 SAC3D1

KIF20A STC2 TROAP

CKAP5 BNIP3L TIMELESS

C15ORF42 PTTG1/PTTG2 NUP93
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