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Abstract

Background—DNA methylation is a heritable covalent modification that is developmentally 

regulated and is critical in tissue-type definition. Although genotype-phenotype correlations have 

been described for different subtypes of renal cell carcinoma (RCC), it is unknown if DNA 

methylation profiles correlate with morphological or ontology based phenotypes. Here we test the 

hypothesis that DNA methylation signatures can discriminate between putative precursor cells in 

the nephron.
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Experimental designs—We performed deep profiling of DNA methylation and transcriptome 

in diverse histopathological RCC subtypes and validated DNA methylation in an independent 

dataset as well as in The Cancer Genome Atlas Clear Cell and Chromophobe Renal Cell 

Carcinoma Datasets.

Results—Our data provide the first mapping of methylome epi-signature and indicates that RCC 

subtypes can be grouped into two major epi-clusters: C1 which encompasses clear-cell RCC, 

papillary RCC, mucinous and spindle cell carcinomas and translocation RCC; C2 which comprises 

oncocytoma and chromophobe RCC. Interestingly, C1 epi-cluster displayed three fold more 

hypermethylation as compared to C2 epi-cluster. Of note, differentially methylated regions 

between C1 and C2 epi-clusters occur in gene bodies and intergenic regions, instead of gene 

promoters. Transcriptome analysis of C1 epi-cluster suggests a functional convergence on 

Polycomb targets, whereas C2 epi-cluster displays DNA methylation defects. Furthermore, we 

find that our epigenetic ontogeny signature is associated with worse outcomes of patients with 

clear-cell RCC.

Conclusion—Our data defines the epi-clusters that can discriminate between distinct RCC 

subtypes and for the first time define the epigenetic basis for proximal versus distal tubule derived 

kidney tumors.
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Introduction

Renal cell carcinoma (RCC) is a heterogeneous disease with at least 12 subtypes of RCC 

based on the World Health Organization (WHO) classification, with distinct clinical 

outcomes ranging from malignant (ie clear cell RCC, papillary RCC) to benign (ie 

oncocytoma)(1). For both clear-cell RCC (ccRCC) and papillary RCC (pRCC), patients can 

present with either localized or metastatic disease and median overall survivals for the most 

common histology ccRCC is approximately 2 years (2, 3). Chromophobe RCC is usually 

indolent with a greater than 90% 10-year cancer specific overall survival, although some 

patients can develop metastases (3, 4).

Ontogenetically, each RCC subtype is classified on morphological and histological 

biomarkers; however some biomarkers can be expressed in more than one subtype making 

classification difficult (5-7). The precursor cell in the renal tubular system can impact the 

RCC subtype with studies suggesting that ccRCC and pRCC arise from the proximal tubules 

and oncocytoma and chromophobe arise from the distal tubules (8, 9). Given the common 

precursor cells that give rise to RCC, regulatory factors that maintain normal cell identity 

and cell proliferation may influence the RCC phenotype (5-7, 10). DNA methylation is a key 

DNA modification that allows proper regulation of gene expression and stable gene 

silencing allowing to define cell state (11). The importance of DNA methylation alterations 

in cancer has been extensively studied, with the discovery of both hypermethylation within 

promoter regions of certain tumor-suppressor genes and long-range hypomethylation which 
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broadly contributes to cell transformation (12, 13). DNA methylation is considered to be 

stable, when compared to gene expression (14).

We hypothesized that we could identify a DNA methylation signature that discriminates 

between benign and malignant RCC. In this manuscript, we applied for the first time, to our 

knowledge, next-generation sequencing to study targeted DNA methylation in subtypes of 

RCC. Our analysis reveals two distinct RCC epi-clusters consistent each with their cell 

ontogeny.

Patients and Methods

Patient characteristics and tumor selection

Patient samples for the training set were related to 22 primary renal cell carcinomas with 

different histologies treated at the University of Texas, MD Anderson Cancer Center. 

Specimens were gathered in accordance with the institutional policies. All patients provided 

written informed consent. The study was approved by MD Anderson Cancer Center 

institutional review board. DNA was obtained exclusively from frozen nephrectomy, and 

none of the patient had been treated with chemotherapy or radiation prior to surgery. Tumors 

were selected solely on the basis of availability. Furthermore, DNA was extracted from 2 

specimens of normal kidney tissue adjacent to renal cancers. Overall, our cohort included 3 

ccRCC, 5 pRCC (3 type I and 2 type II), 5 tRCC confirmed cytogenetically, 2 oncocytomas, 

3 chromophobes, 2 MTS and 2 RCC with sarcomatoid differentiation. All the hematoxylin 

and eosin-stained (HES) slides from surgical specimens have been reviewed by one 

uropathologist (F.T.). Out of the 22 cases, RNA was available for 11 cases including 2 

oncocytoma, 3 chromophobe, 2 tRCC, 1 ccRCC, 2 papillary type 1 and 1 MTS. The clinical 

annotations of those samples are provided in Table 1.

For the validation dataset, 41 new samples including 4 normal kidneys and 37 tumor 

samples were collected from Pitié-Salpêtrière Hospital. Specimens were gathered in 

accordance with the institutional policies. All patients provided written informed consent. 

The study was approved by Pitié-Salpêtrière ethical committee. Distribution of tumor 

samples in this independent dataset was as follows: clear-cell RCC (n=16), chromophobe 

RCC (n=6), oncocytoma (n=8), papillary type II RCC (n=6) and translocation RCC (n=1).

Digital Restriction Enzyme Analysis of Methylation

Analysis of DNA methylation was performed using Digital Restriction Enzyme Analysis of 

Methylation (DREAM), which is based on sequential DNA digestion with a pair of 

methylation-blocked and methylation-tolerant restriction enzymes SmaI/XmaI. These end 

sequences are repaired and then analyzed by ultra-deep next-generation sequencing; 

thereafter, the methylation status of each individual CCCGGG sites across the genome can 

be determined quantitatively (15). Sequencing was performed using Illumina Hiseq2000 at 

MD Anderson core facility. Mapping tags and algorithm of analysis have been previously 

reported (15, 16).
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Genome annotation of DREAM data and statistical analysis

Genomic regions were defined according to NCBI coordinates downloaded from the UCSC 

web site (hg18 version). Promoters were defined as regions between −2000 bp from the 

transcription start site (TSS) to +2000 bp from TSS for each Refseq transcript. To calculate a 

gene promoter methylation, we averaged the methylation level of all CpG sites located 

between −2000bp and 2000bp from TSS.

To calculate CpG sites differentially methylated between C1 and C2 epi-clusters, a t-test was 

performed and CG sites were ranked according to their smallest p-value. A p-value less than 

0.05 was considered as statistically significant.

RNA sequencing and analysis

RNA extraction for 11 RCC samples, for which materials were available, was done using the 

RNeasy Kit (Qiagen) according to the manufacturer's instructions. RNA sequencing was 

performed using Illumina Hiseq2000 according to manufacturer instructions and after 

library preparation according to the NuGen Ovation RNA-Seq System V2 protocol. For the 

analysis, we first counted the overlaps between the mapped reads and genomic features, such 

as genes/exons using htseq-count script distributed with the HTSeq package. We then 

performed between-sample normalization when testing for differential expression. To do so, 

we used the scaling factor normalization method as it preserves the count nature of the data 

and has been shown to be an effective means of improving the detection of differential 

expression (17). To perform the normalization and the test for differential expression with a 

negative binomial model between conditions, we chose to use the Bioconductor package 

DESeq (version 1.11.0)(18). Specifically, for each gene, a generalized linear model (GLM) 

was fit to compare the expressions of the 2 epi-clusters C1 and C2. The Benjamini-Hochberg 

method was used to control the false discovery rate (FDR) (19).

Pathway analysis tools

GREAT prediction was performed using default settings (20). We first define the 

differentially methylated regions (DMR) as genomic regions located at + and −50 base pair 

from differentially methylated CpG sites. The background used was genomic regions 

covered by DREAM. A significantly enriched pathway was defined as the one with at least 

ten hyperforeground genes, a fold change of at least 2 and a qFDR less than 0.05.

For Ingenuity Pathway Analysis (IPA), default settings were used to analyze genes 

differentially expressed between C1 and C2 epi-clusters. Pathways differentially expressed 

were ranked according to their smallest p-values and were considered statistically significant 

if their p-value was less than 0.05.

Unsupervised clustering for promoter DNA methylation

Hierarchical clustering analysis was performed for CpG sites located in promoters CGI and 

outside CGI, with at least 10 tags of coverage across samples, using the Pearson correlation 

coefficient as the distance metric and Ward's linkage rule.
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Analysis of gene expression between C1 and C2 epi-clusters

We performed unsupervised hierarchical clustering using all genes of the 11 RCC samples 

for which RNA seq were available. For Gene Set Enrichment Analysis (GSEA), gene sets 

were downloaded from the Broad Institute MSigDB website (21). Gene set permutations 

were used to determine statistical enrichment of the gene sets using the differentially 

expressed genes between C1 and C2 epi-clusters. Association of C1 and C2 epi-clusters 

expression patterns with those of specific regions of the nephron was done as previously 

reported (22) using data sets of Cheval et al. (23).

Validation using The Cancer Genome Atlas datasets

We extracted TCGA data from 271 samples of ccRCC and 66 chromophobes for which both 

DNA methylation data assessed by Infinium 450K and RNAseq were available (22, 24). 

Promoter DNA methylation was defined as regions spanning +/− 1000 base pair from TSS. 

Supervised clustering using the 56 genes epi-signature were performed on all the whole 

TCGA dataset (n=337) for both DNA methylation and gene expression. Accuracy of the 

method was then calculated for its ability to distinguish clear-cell RCC from chromophobe 

cases.

Analysis of associations between the epigenetic signature and overall survival of patients 
with clear-cell renal cell carcinomas

Supervised principal components (SPC) analysis was used to examine association between 

the gene expression of the 56 genes belonging to the epi-signature and overall survival of 

463 ccRCC cases from TCGA (25, 26). This method has previously been used to examine 

associations between gene expression profiling data and survival in ccRCC (25, 26). We 

randomly divided TCGA ccRCC RNA-seq samples into two datasets, one of which was used 

as the training set (232 patients), and another as validation set (231 patients). Firstly, a 

modified univariate Cox score was calculated for the association between gene expression 

for each gene and overall survival, and genes whose Cox score exceeded a threshold that 

best predicted survival were used to carry out supervised principal components analysis. To 

determine the Cox threshold, the training set was split and principal components were 

derived from one half of the samples, and then used in a Cox model to predict survival in the 

other half. By varying the threshold of Cox scores and using twofold cross-validation, this 

process was repeated ten times, and a threshold of 0 (averaged over ten separate repeats of 

this procedure) was used to generate the principal components subsequently used to predict 

outcome, where all 56 genes were used to build the model.

For each case, we used the first principal component in a regression model to calculate a 

SPC risk score that represents the sum of the weighted gene expression levels for each of the 

56 gene. To validate the SPC predictor, we computed risk scores for each of the 231 cases in 

validation set using the model developed in the 232 TCGA training set, and tested whether 

these scores were correlated with survival. To examine the role of individual genes in 

determining outcome, we computed importance scores for genes. The importance score is 

equivalent to the correlation between each gene and the first supervised principal 

component. Higher positive importance score means higher risk (worse survival, and lower 

negative importance score means lower risk (better survival).
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Results

DNA methylation is conserved among normal kidney samples

To determine the variability of DNA methylation in normal kidney, we compared the 

differences in DNA methylation between normal kidneys from two different individuals 

using Digital Restriction Enzyme Analysis of Methylation (DREAM)(15). Using a 

minimum threshold of 10 tags/CG sites, we identified common 36,035 CG sites in the 2 

normal kidneys. Of note, 91.6% (n=33,018/36,035) of those sites had at least a minimum 

coverage of 100 tags allowing us to analyze quantitatively subtle DNA methylation changes.

DNA methylation levels for each CG site were then plotted to identify correlations between 

the 2 normal kidneys. We found a high correlation (Spearman R=0.95, p<0.0001) suggesting 

there are few variations in DNA methylation in the normal kidneys. The estimated false 

discovery rate (FDR) of DREAM is 0.7% and 2.1%, using 15% and 20% as a difference 

methylation cut-off, respectively. This was consistent with our previous results using blood 

and breast samples (15, 16). To determine whether DNA methylation alters gene expression, 

we examined the association of DNA methylation with promoter activity. Consistent with 

our previous observations, we showed that promoters with no methylation (≤1%) were 

highly expressed (Figure S1A); conversely, those that had methylation levels >1% were 

repressed (Figure S1A). Interestingly, promoters with methylation ≥10% were completely 

repressed (Figure S1A). Although the frequency of methylated CG sites outside CGI was 

higher than in CGI, similar finding were observed for promoters located outside CGIs 

(Figure S1B), suggesting little difference between the correlation of DNA methylation and 

expression whether promoters were located in CGI or outside CGI.

Unsupervised clustering of DNA methylation profiles distinguishes renal cell carcinomas 
subtypes

To determine if RCC subtypes are associated with DNA methylation signatures, we analyzed 

DNA methylation of 22 RCC tumors with different subtypes using DREAM, with a median 

of 77 million tags obtained by sample (range: 27-141 millions) (Table 1). We assessed 

quantitative DNA methylation of a median 65,000 CpG sites (range: 51,000-156,000) per 

sample, with at least 10 tags coverage per CpG site; when we filtered for CpG sites with at 

least 100 tags coverage, we identified a median 43,000 CpG sites (range: 33,000-62,000) 

covered per sample (Table 1). After merging all the samples, we ended up with 36,035 CpG 

sites for which quantitative DNA methylation calculated on the basis of at least 10 tags 

coverage per CpG site (Supplementary Table 1); of note, the majority of those CpG sites had 

more than 100 tags coverage with a median sequencing depth of ~1,850 tags/CG site (range: 

10-697,312). Out of those, 18,800 and 16,566 sites were located in CpG islands and outside 

CpG islands, respectively. We then filtered for CpG sites located in promoter CpG islands 

(n=13,593) and promoter outside CpG islands (n=3086).

We then performed an unsupervised hierarchical clustering for promoter DNA methylation 

using CG sites. Our analysis revealed 2 similar epi-clusters independently of whether CG 

sites were located in CGI (CG islands) or outside (Figure 1A-B). Interestingly, the first epi-

cluster “C1” was associated with ccRCC, pRCC, MITF/TFE translocation RCC (tRCC), 
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mucinous and spindle cell carcinomas (MTS) and one sarcomatoid RCC case. On the hand, 

the second epi-cluster “C2” comprised oncocytoma, chromophobe, and one sarcomatoid 

sample. Sarcomatoid de-differentiation may occur in various RCC subtypes and after 

pathological re-review of the sarcomatoid cases, we identified the sarcomatoid case in the 

C1 epi-cluster arose from ccRCC. Similarly, the sarcomatoid case in the C2 epi-cluster arose 

from chromophobe RCC. Principal component analysis (PCA) confirmed the existence of 

the 2 epi-clusters (not shown).

Unsupervised clustering of non-promoter CG sites located within and outside CGI yielded 

similar results (not shown), suggesting not only that tissue-specificity is related to CGI but 

that regulatory elements differentiating between proximal and distal tubules are dispersed 

across the genome. These finding support distinct DNA methylation signatures associated 

with histological RCC subtypes based on their cell ontogeny in the nephron.

C1 epi-cluster is characterized by coordinated methylation of gene promoters

To determine the gene pathways regulated by DNA methylation, we evaluated the 

differentially methylated promoters between the C1 and C2 epi-clusters. Using 15% 

difference of methylation as cut-off, we identified 40 CpG sites which harbored lower 

methylation in C2 epi-cluster as compared to C1 epi-cluster. Interestingly, there was no CG 

site unmethylated in C1 epi-cluster with concurrent gain of DNA methylation in the C2 epi-

cluster, suggesting aberrant and coordinated DNA methylation in C1 epi-cluster. 

Importantly, the observed gain of DNA methylation in C1 epi-cluster was not associated 

with gene repression, except for the PLEK2 gene. This might be related to the fact that the 

majority of those CpG sites had measurable levels of methylation in C2 (≥1%) and were thus 

already repressed, consistent with previous reports (27).

Our data indicates that promoters with some methylation (>1%) level were repressed when 

compared to those without any methylation level (Figure S1) suggesting that subtle changes 

in DNA methylation may impact gene expression. Using the following criteria, at least 2% 

methylation gain for unmethylated CG sites (≤1%) or demethylation below or equal to 1% 

for methylated CG sites (≥2%), we estimated the FDR of our method to be 0.01. In addition, 

as few CpG sites were identified using 15% difference methylation cut-off, we thus decided 

to analyze CpG sites in CGI which were differentially methylated between C1 and C2 epi-

clusters (irrespective of their methylation difference levels) and with consistent changes in 

the expression of their related genes (Figure 2A). Overall, 971 out of 11,943 CG sites were 

differentially methylated (p-value <0.05), regardless of their methylation levels in C1 and C2 

epi-clusters (Figure 2A). Out of those, 95 CpG sites related to 73 genes were also 

differentially expressed between C1 and C2 clusters (p<0.05) (Figure 2A) (Supplementary 

Table 2). To evaluate for an association between CpG site DNA methylation and gene 

expression, we divided the 95 CG sites in C2 epi-cluster into 2 subgroups: the first 

encompasses “unmethylated” (≤1% methylation) CpG sites (n=63) while the second one 

contained methylated (>1%) CpG sites (n=32). Interestingly, the majority of unmethylated 

CpG belonging to C2 epi-cluster showed gains of DNA methylation in C1 epi-cluster, 

consistent with gene expression repression (Spearman r=−0.46 (p<0.0001) (Figure 2B). 

Average methylation gain was estimated to be as low as 2.1% (p<0.0001), suggesting that 
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small methylation gains might be correlated with gene repression. Likewise, we found an 

opposite correlation between genes that had “detectable level” of methylation in C2 epi-

cluster and gene expression, although this was less strong then for our “unmethylated” 

subgroup (r=−0.37, p=0.03) (Figure 2C). Ingenuity Pathway Analysis (IPA) showed that 

those genes were enriched for interleukin-8 (p=4.6×10−3), CXCR4 (p=0.02) and mTOR 

signaling pathways (p=0.03) (Supplementary Table 3).

RCC subtypes derived from the distal tubules display defects in DNA methylation

To identify differentially methylated CpG sites between the C2 epi-cluster relative to both 

normal kidney and C1 epi-cluster, we used a differential DNA methylation cut-off of 15% 

(FDR=0.03). We identified a trend towards lower DNA methylation in 2.4% (n=834/35366) 

of CG sites in C2 epi-cluster as compared to normal kidneys; in contrast, 0.6% 

(n=220/35366) of them gained DNA methylation as compared to normal kidneys (Figure 

3A). This trend was not observed when we compared C1 epi-cluster to normal kidneys, as 

3.8% (n=1363/35366) and 3.2% (n=1122/35366) of differentially methylated CG sites in C1 

epi-cluster gained and lost DNA methylation, respectively, as compared to normal kidneys 

(Figure 3B).

The same trend was maintained when differentially methylated CG sites were analyzed 

between C2 epi-cluster relative to C1 epi-cluster. Indeed, genome-wide, C1 epi-cluster 

displayed three fold more hypermethylation (5.6%; n=1872/33536) than hypomethylation 

(2.2%; n=773/35366) as compared to C2 epi-cluster. Of note, the majority of those CG sites 

were located far from the transcription start sites, mainly in gene bodies and intergenic 

regions (Figure 3C). GREAT Gene Ontology (GO) tools shows that differentially 

Methylated Regions (DMR) were enriched for genes involved in negative regulation of 

angiogenesis, regulation of epithelial cell differentiation and regulation of ARF protein 

signal transduction (Figure 3D) (Supplementary Table 4). This is interesting since genes 

involved in epithelial differentiation are key genes for the development of kidney, such as 

PAX2, PAX8, GATA3 and LHX1. Furthermore, genes involved in the regulation of 

angiogenesis are key therapeutic targets in ccRCC. Finally, GREAT identified enrichment 

for two motifs in those DMR; the first matches to the peroxisome proliferative activated 

receptor, alpha (PPARA) gene (p=1.46e-11) and the second to the CCAAT/enhancer binding 

protein (C/EBP), beta (CEBPB) gene (p=3.5e-4) (Supplementary Table 5). Importantly, 

CEBPB is one of the major transcription factors controlling the differentiation of a range of 

cell types (28). We thus conclude that DMRs between C1 and C2 epi-clusters contain key 

genes involved in epithelial differentiation, with several putative binding sites of enhancers.

C1 epi-cluster transcriptome is enriched for activation of genes related to Polycomb

To define cell ontogeny of RCC subtypes, we examined our gene expression data using an 

external gene expression dataset of normal kidney cells microdissected from distinct regions 

of the nephron (23). Through supervised analysis, we globally compared the gene expression 

data of the C1 and C2 epi-clusters with that of each cell sample in the nephron structure, and 

found high mRNA expression correlations for C1 and C2 with proximal and distal tubules of 

the nephrons, respectively (Figure 4A).
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To understand pathways which are specifically altered in our RCC epi-clusters, we thus 

compared differentially expressed genes between C1 and C2 epi-clusters using available 

RNAseq data. Overall, we identified 4.7% (n=606/12,877) of genes which were up-regulated 

in C1 epi-cluster as compared to 4.9% (n=627/12,877) of them which were down-regulated. 

Gene Set Enrichment Analysis (GSEA) revealed that up-regulated pathways in C1 epi-

cluster were enriched for epithelial-mesenchymal transition (EMT) (FDR<0.0001), stem cell 

signature (Figure 4B) and Polycomb target genes (FDR<0.0001) (Figure 4C). Furthermore, 

EZH2 targets were found among the top altered pathways consistent with activation of 

EZH2 in the C1 epi-cluster (Figure 4D) (FDR<0.0001). We thus looked at EZH2 expression 

and confirmed its overexpression in C1 as compared to C2 epi-cluster (log2fold change=2.7, 

p=0.001) (Figure 4E). These data highly suggest that the difference between C1 and C2 epi-

clusters might be related to the activation of the Polycomb repressive complex 2 (PRC2) 

within C1 epi-cluster.

Discovery of genes with promoter DNA hypermethylation in RCC

To discover genes repressed by DNA methylation and potentially novel candidate tumor 

suppressor genes in RCC, we analyzed genes which gain promoter DNA methylation in our 

dataset. Promoter DNA methylation was defined as genes with less than 2% methylation in 

normal kidney and which gain DNA methylation ≥10% methylation in cancer. Overall, 713 

out of 4558 genes gain DNA methylation as compared to normal kidneys. Out of those, 126 

genes gained DNA methylation in C2 epi-cluster while 688 genes gained DNA methylation 

in C1 epi-cluster. DAVID functional pathway analysis revealed that genes which gain DNA 

methylation are involved in development (p=1.8×10−9), cell differentiation (p=1.2×10−5). 

Furthermore, those were related to Homeobox genes (p=1.37×10−7) and displayed sequence-

specific DNA binding (p=2.07×10−6) (Supplementary Table 6).

As genes that gain DNA methylation in cancer have been shown to be Polycomb targets in 

embryonic stem cells and adult stem/progenitor cells (29), we thus analyzed our results 

using the chromatin marks of the embryonic stem (ES) cells and found that 487 (68.3%) of 

gene promoters gaining DNA methylation in our RCC samples were marked by H3K27me3 

in ES cells. These data are consistent with the existence of a “DNA hypermethylation 

module” in RCC and which has been previously shown to encompass a portion of the 

Polycomb target genes (29).

We then matched the list of our 126 genes methylated in C2 epi-cluster with the list of 

known tumor suppressor genes (30) and identified 11 candidate genes; Out of them, only 

IRX1 was methylated in 2 out of 3 chromophobe RCCs.

On the other hand, 47 genes out of the 688 genes which gained promoter DNA methylation 

in C1 epi-cluster C1 had been previously described as TSG. Out of the 205 genes methylated 

in at least 2 RCC samples, we identified 2 known TSGs, IRX1 and SOX11. IRX1 was 

methylated in 4 RCC cases and SOX11 was methylated in 3 RCC cases. The list of those 

205 genes is reported in Supplementary Table 7. We then asked if any of the 205 genes 

which we identified as methylated at least 2 RCC samples are also methylated and repressed 

in a large independent cohort of ccRCC from The Cancer Genome Atlas (TCGA) project. 

Overall, 25 genes were identified as methylated and repressed in at least 2% of ccRCC 
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samples, the majority of them never reported previously in ccRCC. Those genes were related 

to EMT (i.e. FOXC2 and OLMF1) and stimulation of endothelial cell proliferation and 

angiogenesis (i.e. SMOC2 and CLEC14A) pathways. The list of those genes including the 

prevalence of their methylation in ccRCC dataset is reported in Supplementary Table 8. 

Finally, we focused on the 5 tRCC and identified 85 genes which gained DNA methylation 

(Supplementary Table 7). Out of those, 15 genes were methylated in at least two samples 

(i.e. WNT3A, IRX4). Of note, the tumor suppressor gene IRX4 gained promoter DNA 

methylation in the 2 metastatic tRCC cases which was not the case for the three remaining 

cases.

Independent validation of the epi-signature in an independent dataset

We then asked if the 73 genes which we identified in our dataset as differentially methylated 

and expressed between C1 and C2 epi-clusters could distinguish chromophobe from ccRCC, 

using an independent data of renal cell carcinomas subtypes using Infinium 450K arrays. 

This dataset encompasses, 41 new samples including 4 normal kidneys and 37 tumor 

samples. Distribution of tumor samples in this independent dataset was as follows: clear-cell 

RCC (n=16), chromophobe RCC (n=6), oncocytoma (n=8), papillary type II RCC (n=6) and 

translocation RCC (n=1). To do so, we first filtered for gene promoters with data available 

for both DNA methylation β-values and gene expression; out of those 73 genes, data were 

available for 56 genes (Supplementary Table 9). Supervised clustering analysis using our 56 

genes signature confirmed our previous findings about classification of kidney tumors in two 

major epi-clusters C1 and C2 (Figure S2). Of note, C2 contains the majority of oncocytoma 

and chromophobe RCC cases (n=11/13) as compared to C1 which encompasses the 

remaining RCC subtypes including clear-cell RCC, papillary RCC and translocation RCC 

(n=21/24) (p=0.0001).

Independent validation of the epi-signature in The Cancer Genome Atlas (TCGA) dataset

We furthermore performed a supervised clustering based on either DNA methylation (Figure 

5A) or gene expression (5B) using this ontogeny epi-signature in an independent data sets 

from The Cancer Genome Atlas (TCGA) project encompassing 271 ccRCC and 66 

chromophobe RCC. Importantly, hierarchical clustering revealed two distinct clusters with 

94.4% and 97.6% accuracy for distinguishing chromophobe from ccRCC, respectively. 

Indeed, using gene expression signature, 97% (n=64/66) of chromophobe and 97.8% 

(n=265/271) ccRCC were classified correctly; in the other hand, using DNA methylation 

signature, 86.4% (n=57/66) chromophobe and 96.3% (n=261/271) ccRCC were classified 

correctly. Of note, several ccRCC which clustered with chRCC using our epi-genetic 

signature were misclassified and were chRCC or papillary clear-cell RCC features as we 

recently demonstrated in our long non-coding RNA subtype classification of ccRCC (6) 

(Supplementary Table 10).

Epigenetic signature is associated with outcome of patients with clear-cell renal cell 
carcinomas

When then asked whether epigenetic signature is capable of predicting outcome for patients 

with clear-cell RCC. To do so, we thus examined the association between the gene 

expression of the 56 genes defining the epi-signature and overall survival of 463 patients 

Malouf et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with ccRCC from TCGA. Firstly, we randomly divided TCGA ccRCC RNA-seq samples 

into two datasets, one of which was used as the training set (232 patients), and another as 

validation set (231 patients). For each case, we used the first principal component to 

calculate a supervised principal component (SPC) risk score (Supplementary Table S11). To 

validate the SPC predictor, we computed risk scores for each of the 231 cases in validation 

set using the model developed in the 232 TCGA training set (Supplementary Figure 3A). 

The risk score based on the supervised principal-components analysis was significantly 

associated with poor outcome in the validation cohort (Log–rank test p value = 0.0004) 

(Supplementary Figure 3B). Patients were then classified as being high or low risk according 

to the calculated SPC risk score. To examine the role of individual genes in determining 

outcome, we computed importance scores for genes. Finally, we asked whether there are 

associations between mutational load, ccRCC TCGA transcriptomic four-subgroup 

classification and somatic mutations; we discovered that our 56-gene signature was highly 

correlated with TCGA transcriptomic classification (supplementary Table 12) but not with 

mutational load. These data highly suggest that our epigenetic ontogeny signature is 

correlated with ccRCC transcriptomic classification and is useful in predicting outcome of 

patients with ccRCC.

Discussion

DNA methylation is a heritable covalent modification that is developmentally regulated, 

controls stemness, and is critical in tissue-type definition. Our data demonstrates the utility 

of analyzing the DNA methylation profiles of RCC subtypes that arise from either proximal 

or distal cells of the nephron to define an epigenetic basis of cell ontogeny in kidney cancers. 

Our key findings include 1) RCC subtypes can be grouped into two major epi-clusters; C1 

which encompasses ccRCC, pRCC, MTS, tRCC; C2 which comprises oncocytoma, 

chromophobe RCC 2) differentially methylated regions between C1 and C2 occur in gene 

bodies and intergenic regions, instead of gene promoters with a functional convergence on 

Polycomb targets 3) methylation defects in C2 epi-clusters 4) the identification of a 56-gene 

epi-signature charting kidney cell ontogeny that was predictive of outcomes in ccRCC.

Historically, the cells of origin of different RCC subtypes have been controversial, and 

hypotheses are based on morphological similarities between RCC subtypes and proximal or 

distal cells of the nephron (7). Those observations have been corroborated by Heidelberg 

classification which added specific genetic aberrations to morphology (8). Recent studies 

that incorporate DNA methylation profiling have identified chromophobe RCC-specific 

methylation or differentially methylated regions between RCC tumors and adjacent 

uninvolved kidney (31, 32). Our data further defines the epi-clusters that can discriminate 

between additional RCC subtypes (ccRCC, pRCC, MTS, tRCC vs oncocytoma, 

chromophobe RCC) and for the first time, to our knowledge, define a epigenetic basis for 

proximal vs distal derived tumors using a training and an independent data sets.

The DREAM technique that incorporates next-generation sequencing to analyze DNA 

methylation allows accurate quantitation, thus allowing us to detect differences through the 

kidney methylome. First, we identified two main epi-clusters; C1 epi-cluster encompasses 

ccRCC, pRCC, MTS and tRCC. C2 epi-cluster comprises oncocytoma and chromophobe 
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RCC. Interestingly, our data supports an epigenetic basis for the Heidelberg classification, 

suggesting that MTS and tRCC may also arise from proximal tubules. Second, we 

discovered that much of the differentially methylated regions distinguishing C1 and C2 epi-

clusters occur outside of gene promoters; motif analysis uncovers binding sites related to 

transcription factors PPARA and CEBPB; of note, PPARA has been reported to be expressed 

predominantly in proximal tubules and medullary thick ascending limbs, in contrast to PPAR 

gamma which is exclusively expressed in medullary collecting duct and papillary urothelium 

(33). Furthermore, CEBPB is considered as one of the major transcription factors controlling 

the differentiation of a range of cell types (28). Altogether, these data corroborate the 

dynamic regulation of CpG DNA methylation during normal development which mainly 

occurs at distal regions from the transcription start sites (34). Third, we observed a 

methylation defect in C2 epi-cluster consistent with a recent report using Infinium arrays in 

a selected cohort of chromophobe (31), and most significantly we discovered that 

differentially expressed genes between C1 and C2 epi-clusters were targets of Polycomb; as 

expected, the methyltransferase EZH2 was overexpressed in C1 epi-cluster, which might be 

related to larger H3K27me3 domains in C1 epi-cluster as compared to C2. We speculate that 

activation of the PRC2 in the proximal tubules cell of origin might explain the 

aggressiveness of derived tumor subtypes in C1 epi-cluster, in contrast to distal tubules cell 

of origin giving rise to oncocytoma and chromophobe which have usually good outcome. 

We thus suggest that epigenetic therapies may have utility against a broad range of the most 

life-threatening kidney cancers, independent of genotype and morphological phenotype.

Finally, we have established an epi-signature ontogeny-based classifier composed of 56 

genes. Using an independent cohort from TCGA comprising ccRCC and chromophobe 

samples, we validated the high accuracy of this ontogeny epi-signature for distinguishing 

tumors arising either from the proximal tubules or from the distal tubules of the nephron. Of 

note, this is consistent with the distinct pattern of genetic mutations according to kidney 

cancer ontogeny. Indeed, the mutation rates per exome for ccRCC (n=43) and pRCC (n=59) 

are by far higher than chromophobe (n=17) and oncocytoma (n=15) RCC (35). One 

explanation might be chromatin organization of kidney cell of origin as mutations rates in 

cancer genomes are associated with epigenetic architecture of human cells (36); indeed, 

heterochromatin-associated histone modification can account for more than 40% of 

mutation-rate variation (36). Our 56 genes epi-signature was also able to predict survival of 

patients with ccRCC. One explanation might be that ccRCC arising from distal part of the 

proximal nephron harbor a good outcome as recently showed by Buttner et al. using TCGA 

datasets (37).

In summary, we define herein an epigenetic basis of kidney tumors ontogeny and provide the 

first mapping of methylome epi-signature across different histological RCC subtypes. In 

addition, we showed that our epigenetic ontogeny signature is also capable of predicting 

patients outcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

Genotype-phenotype correlations have been described for different subtypes of renal cell 

carcinoma (RCC), but it is unknown if epigenetics can define cell ontology across diverse 

histological kidney subtypes. Herein, we demonstrate that RCC can be divided 

epigenetically in 2 epi-clusters which correlate with kidney cell ontogeny. While C1 epi-

cluster encompass clear-cell RCC and papillary RCC, C2 epi-cluster was composed of 

chromophobe RCC and oncocytomas. Of note, C1 epi-cluster displayed three fold more 

hypermethylation as compared to C2 epi-cluster consistent with functional convergence 

on Polycomb targets. Finally, our epigenetic ontogeny signature was associated with 

worse outcomes of patients with clear-cell RCC. These data provide clues for the 

epigenetic basis of proximal versus distal tubule derived kidney tumors and suggest that 

interest of using epigenetic therapy in the most threatening subtypes of kidney cancers.
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Figure 1. 
A) Unsupervised clustering of DNA methylation using CpG sites located in promoter CpG 

islands. B) Unsupervised clustering of DNA methylation using CpG sites located outside 

promotor CpG islands. Note that the analysis revealed 2 epi-clusters with C1 containing 

almost tumors with benign potential (except one sarcomatoid RCC case) and C2 containing 

tumors with potential malignant behavior
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Figure 2. 
A) Flow-chart showing the number of CG sites in promoter CG islands covered by DREAM 

and the number of differentially methylated CG between C1 and C2 epi-clusters. B) 

Correlation between differentially methylated CpG sites between C2 and C1 epi-clusters and 

gene expression changes. Herein, only unmethylated CpG sites (≤1%) of C2 epi-cluster 

located in promoter CG islands and both differentially methylated and expressed as 

compared to C1 epi-cluster are depicted. C) Correlation between differentially methylated 

CpG sites between C2 and C1 epi-clusters and gene expression changes. Herein, only 

methylated CpG sites (>1%) of C2 epi-cluster located in promoter CG islands and both 

differentially methylated and expressed as compared to C1 epi-cluster are depicted. Note 

that few of those methylated CG sites lost DNA methylation in C1 epi-cluster and become 

expressed (green), while the majority gains DNA methylation and get repressed.
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Figure 3. 
A) Square graph of CpG sites (green: CpG islands; red: outside CpG islands) with 

statistically significant difference of DNA methylation between C2 epi-cluster and normal 

kidneys. Note the tendency toward global hypomethylation of C2 epi-cluster with almost no 

gain of DNA methylation in CGI. B) Square graph of CpG sites with statistically significant 

difference of DNA methylation between C1 epi-cluster and normal kidneys. Note the 

tendency toward both hypomethylation of CpG sites located outside CGI and 

hypermethylation of CpG sites in CGI. C) Distribution of differentially methylated CpG 

sites between C1 and C2 epi-clusters according to the distance from transcription start site 

(TSS) as assessed by GREAT tool. D) Gene Ontology functional annotations for 

differentially methylated regions between C1 and C2 epi-clusters as identified by GREAT 

tool.

Malouf et al. Page 18

Clin Cancer Res. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
A) Heat maps showing inter-sample correlations (red, positive) between mRNA profiles of 

RCC (columns) belonging to C1 and C2 epi-clusters and mRNA profiles of nephron 

anatomical sites (rows). Association of C1 and C2 epi-clusters expression patterns with 

those of specific regions of the nephron are depicted. The 8 kidney nephron regions 

evaluated are : Glom, glomerulus; S1 and S3, the proximal tubule; mTAL, medullary thick 

ascending limb of Henle's loop; cTAL, cortical thick ascending limb of Henle's loop; DCT, 

distal convoluted tubule; CCD, cortical collecting duct; OMCD, outer medullary collecting 

duct. B-D) Gene Set Enrichment Analysis (GSEA) for differentially expressed genes in C1 

as compared to C2 epi-clusters. E) Box-plot for EZH2 gene expression levels in normal 

kidneys and C1 and C2 epi-clusters.
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Figure 5. 
A) Supervised clustering of promoter DNA methylation using the 56 genes epi-signature in 

The Cancer Genome Atlas (TCGA) dataset of clear-cell renal cell carcinomas and 

chromophobe samples B) Supervised clustering of gene expression using the 56 genes epi-

signature in The Cancer Genome Atlas (TCGA) dataset of clear-cell cell carcinomas and 

chromophobe samples
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