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Individuals in a group may obtain information from other group members about the environment,

including the location of a food source or the presence of a predator. Here, we model how

information spreads in a group using a susceptible-infected-removed epidemic model. We apply

this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in

order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more

accurate escape responses. The contributions of this study are the (i) application of a probabilistic

model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis

that group cohesion improves predator escape; (iii) quantification of the effect of social cues on

startle propagation; and (iv) investigation of the variation in response based on network

connectivity. We find that when perfectly aligned individuals in a group are startled, there is a

rapid escape by individuals that directly detect the threat, as well as by individuals responding to

their neighbors. However, individuals that are not startled do not head away from the threat. In

startled groups that are randomly oriented, there is a rapid, accurate response by individuals that

directly detect the threat, followed by less accurate responses by individuals responding to

neighbor cues. Over the simulation duration, however, even unstartled individuals head away from

the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of ani-

mal groups, in agreement with several previous experimental studies. Additionally, the model can

be applied to a variety of group decision-making processes, including those involving higher-

dimensional motion. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966682]

There are a variety of benefits to group living, many of

which are conferred through information sharing

between individuals. One striking example of this is the

escape of a shoal of fish away from a potential threat.

Fish who are unable to detect a threat directly may still

respond rapidly by observing the movements of their

neighbors. While differences in shoaling behavior have

been observed in fishes, it is unclear how the degree of

alignment between individuals affects the response to

predation. In this study, we model information spread

and the resulting motion of the escape response in order

to test the hypothesis that increased alignment results in

faster escape. We find that the alignment of the group

does affect the escape response, and our results predict

behavioral observations of previous studies. While

inspired by fish shoals, the model may be of general use

in studying the spread of information in other groups of

animals as well, including humans. For example, another

application of the model may be in emergency planning,

where panic spreads through a group. The spread of

panic as well as the resulting motion may be modeled

based on simple behavioral rules, as was performed in

this study for fish shoals.

I. INTRODUCTION

For animals that live in social groups, information about

the environment may come directly from individual sensory

modalities or through social cues from other members in the

group.1–5 In shoaling fish, social cues have been shown to

play an important role in anti-predator benefits. For example,

the rapid wave of evasion of a shoal of fish away from a

predator may be faster than the speed of the approaching

predator.6–9 This observation suggests individuals in the

group not only receive information from the predator directly

but also by observing the behavior of surrounding individu-

als. Additionally, early predator detection has been observed

in groups of fish,10–13 theoretically due to expanded sensory

fields from the combined sensory capabilities of individuals

in the group.

Behavioral studies suggest that social cues from neigh-

boring fish not only spread information regarding the pres-

ence of a threat but can also affect the timing and dynamics

of the response itself. Domenici and Batty14 quantified

escape behavior of solitary herring Clupea harengus com-

pared with schooling individuals and found that although the

escape responses of schooling fish had longer latency, they

exhibited higher probability of being startled away from the

threat, thereby increasing the accuracy of the response.

Godin and Morgan15 also found an increase in escape latency

in schooling killifish as compared to solitary individuals star-

tled by a model predator. Further evidence from behavioral,
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electrophysiological, and molecular studies indicate that the

startle response in teleost fish is composed of a decision-

making network of neurons16,17 that may be modulated by

both social and ecological factors, including the presence of

neighboring fish.14,15,18–20

In addition to these experimental studies, there have

been several prior modeling studies investigating predator

attack on a group.21–24 Many of these models used

individual-based approaches to observe patterns of behavior

and predict the prey’s response to predator movements.

Some have included evolutionary dynamics.25 However,

there are few modeling approaches that have explicitly stud-

ied the influence of neighboring individuals on the startle

response. A notable exception is Kolpas et al.,26 in which the

authors modeled perturbations of a group of fish by changing

the heading of one individual (simulating a rapid turn) in

order to examine how changing the spatial position of an

individual affects other individuals responding to the head-

ing change.

Groups of fish vary greatly from loose aggregations to

shoals and schools, based on the degrees of cohesion and

alignment between group members. Many species of fish

also exhibit dynamic behaviors that change over time.27,28

Breder29 defined obligate shoaling fishes as those that are

polarized or exhibit alignment in heading constantly, and

facultative shoaling fishes as those that are polarized occa-

sionally. This terminology is generally used to specify shoal-

ing behaviors as a result of various environmental contexts

(e.g., reduced nearest-neighbor distance, and increased align-

ment in the presence of a threat).30 In this study, we use the

term obligate to refer to shoals that are polarized before the

presence of a threat, and facultative to refer to shoals that

seek to polarize once a threat is detected by at least one

member of the group.

While differences in shoaling behavior have been

observed in fishes, it is unclear how the degree of polariza-

tion affects the response to predation. Aligned individuals

are able to respond more quickly to movement changes

made by their neighbors31 and, therefore, respond more rap-

idly to the location of prey or unknown changes in their envi-

ronment.32 Domenici and Batty14 measured the trajectory of

solitary and shoaling fish startling from a threat, and found

that solitary fish escape towards or away from the stimulus,

whereas shoaling fish tend to escape away from the threat.

They hypothesized that when herring are shoaling, the ability

of each fish to correct its trajectory is enhanced by the addi-

tional information obtained from startled neighbors.

This study uses numerical simulation and modeling

methods to test the hypothesis that strong alignment

improves a shoal’s response to a threat. To do so, we apply a

simple model of epidemic contagion to model the probability

of response to a threat. Specifically, we use a susceptible-

infected-removed (SIR) model33,34 based on three main

probabilities: (i) the probability of an individual being sus-

ceptible to infection, (ii) the probability of being infected,

and (iii) the probability of being cured.33,35,36 Here, we

change the terminology slightly to refer to (i) the probability

of a fish being susceptible to startle response, (ii) the proba-

bility of a fish being startled by either a directly perceived

threat or cues from its neighbors, and (iii) the probability of

remaining in a startled state, if previously startled. Using this

modeling approach, we examine conditions under which a

wave of information propagates through a group.

(Previously, a similar model has been used to fit to experi-

mental data.19)

While SIR models are an appropriate tool to examine

contagion in a graph, these models do not include dynamics.

In order to model simple dynamics of the startle response,

we use a mathematical model of coupled phase oscillators

based on the Kuramoto model.37 The Kuramoto model has

been applied to the study of collective behavior and to bio-

logical groups, in particular,38–42 in which the phase angles

correspond to the direction of motion of each agent. Phase-

oscillator models have motivated studies on stability analy-

sis43,44 and stabilization of planar collective motion.45,46

With the SIR-Kuramoto joint model, we are able to investi-

gate the spread of information through a network and to

study the orientation dynamics resulting from interactions

with other agents.

In order to compare shoaling behaviors, we categorize

agents as non-shoaling, obligate shoaling, or facultative

shoaling. Additionally, we control for the individual effects

of startling due to an external threat, or via neighbor cues, by

examining the responses of each shoaling type in the pres-

ence or absence of social cues. When there are social cues

from neighboring agents, we refer to these groups as atten-

tive. When there is no use of social cues, we refer to these

groups as inattentive. We then measure the proportion of fish

startling over time, the directionality of the response, and the

cohesion of the shoal after the startle response, in order to

assess differences in response between the various types of

shoaling behavior.

The contributions of this study are (i) application of a

probabilistic model of epidemics to the study of animal

behavior; (ii) testing the biological hypothesis that shoal

cohesion improves predator escape; (iii) quantification of the

effect of social cues on startle propagation; and (iv) investi-

gation of the variation in response based on network connec-

tivity. This work has application to the study of collective

behavior in fish shoals and other animal groups.

II. METHODS

Consider a network36 of N phase angles indexed by

k ¼ 1;…;N and coupled via a random, undirected commu-

nication graph G ¼ ðN ; EÞ with nodes N ¼ f1;…;Ng and

edges ðl; kÞ 2 E � N �N such that the graph G satisfies

ðl; kÞ 2 E with probability c, unless otherwise specified.

Thus, the edges between the nodes in the graph are built

independently and with equal probability. In the absence of

noise, these angles synchronize with one another under the

shoaling method described next.

Let t represent the discrete time index, and the orienta-

tion of individual k at time t be ht
k. When not startled, agents

are steered according to the following stochastic difference

equation:
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htþ1
k ¼ ht

k þ
j
N

X
l2N k

sin ht
l � ht

k þ x1

� �
; (1)

where x1 represents the first of two forms of sensory noise.

(The second noise source is described later.) Here, the noise

is drawn randomly from a Gaussian distribution, N(0, r1).

The term j is the coupling gain between pairs of agents and

is of importance for the synchronization behavior of the

model.37 Namely, j> 0 yields synchronization and j< 0

yields incoherent behavior.37 The notation N k denotes the

neighbor set of k, which is the set of agents that generate

information received by agent k.

A. Probabilistic model of information transmission

In order to study startle propagation in groups, we use a

model of information transmission known in computer sci-

ence and epidemiology literature as a susceptible-infected-

remove (SIR) model. Once out of the startled state (i.e., after

completing the startle response), agents cannot be re-

startled; hence, it is removed. (Theoretically and biologi-

cally, if left for a sufficiently long period of time, startles

could occur again. However, our goal here is to examine the

spread of a single, isolated startle event.)

An important aspect of this model is the inclusion of

time t. Let Pext be the probability that agent k ¼ 1;…;N
detects and responds to an external signal, such as a preda-

tion threat, at time t¼ 0. Pt
k, the probability of agent k being

in a startled state at t> 0, includes the probability of indirect

detection of threatening stimuli through the interactions with

other agents. Let Pint be the probability that an agent per-

ceives (and responds to) a cue from another agent and Psus

be the probability that an agent sustains the startle state from

one time step to the next. Time t¼ 0 is the instant at which

agents can perceive and respond directly to the threat. Pt
k, for

t> 0, is the probability at time t that agent k sustains a

response from time step t � 1 or detects and responds to a

neighboring agent in the startle state at time t � 1. (There are

only two model states: startled and not startled, where both

susceptible and removed agents are non-startled.)

At time step t> 0, each agent k has the following proba-

bility of being startled:

Pt
k ¼ 1� ðð1� PsusÞPt�1

k Þ
Y

l2N t
k

ð1� PintPt�1
l ð1� Pt�1

k ÞÞ;

(2)

where 1� Pt�1
k is the probability that agent k was not startled

in the previous time step.

SIR models are a discrete-time Markov chain, i.e., a

dynamical system composed of S discrete states. These states

and the transitions between them are based on the probabili-

ties in the model (Figure 1(a)). The state of each agent over

time can also be represented as cellular automata (Figure

1(b)). In the cellular automata, each cell represents an agent

k at a time step t. The color of the cell represents whether the

agent is startled or not.

B. Behavioral rules when startled

Agents execute different behavioral rules depending on

what signal initiated the startled state (i.e., an external threat

via Pext or an internal cue via Pint), and whether or not the

startle has just been initiated.

When there is no disturbance or threat to the shoal,

agents synchronize at a rate dependent on the gain of the

synchronization model, j. At time t¼ 0, agents have proba-

bility Pext of responding to an external threat. When startled

directly from a threat via Pext, agents react by instanta-

neously reorienting—with some variation due to noise—

towards a reference direction, hs (Figure 2(a)). Without loss

of generality, the reference direction is considered to be the

direction away from the threat and is set to hs¼ 0. The startle

impulse is thus

htþ1
k ¼ hs þ x2 ¼ x2; (3)

where x2 is the variability of directionality in the startle

response drawn randomly from a Gaussian distribution,

Nð0; r2Þ. This behavioral rule simulates the rapid turning

behavior of fish during an escape response.47

At the following time steps, t> 0, agents that are cur-

rently in a susceptible state (not yet startled) respond to star-

tled neighbors with the probability Pint. Let N k;st be the set

of startled neighbors of agent k. If startled from neighbor

FIG. 1. (a) The qualitative transition diagram illustrating how agents change state; (b) image depicting change in agent state over time as cellular automata.

Blue indicates a non-startled state, and yellow indicates a startled state. On the first time step, seven agents startle due to the external threat via Pext. On subse-

quent time steps, the startle propagates throughout the shoal.
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cues, agents react to an impulse directing them in the average

orientation of their startled neighbors (Figure 2(b)), i.e.,

htþ1
k ¼ arg

1

jN k;stj
X

l2Nk;st

eiht
l

" #
þ x2: (4)

Subsequent to the initial transition to the startled state, if

agents remain in the startled state via Psus, they follow the

behavioral rules of the synchronization model as they would

in the susceptible state. While sustaining a startled state,

agents may still continue to propagate the response. Table I

details the model parameters and the parameter values

explored in this study. Simulations were run for 100 time

steps. The startle model typically lasted no more than the

first 10 time steps for the value of Psus used.

C. Shoaling types

Three shoaling behaviors are investigated: obligate, fac-

ultative, and non-shoaling. Obligate shoaling agents are

characterized by being initially polarized, and then continu-

ing to follow the synchronization model. Facultative shoal-

ing agents start in random orientations, but in the presence of

a threat, they follow the rules of the synchronization model.

Non-shoaling agents do not follow the synchrony model.

In addition to these shoaling types, we also distinguish

between attentive and inattentive shoals, based on the space

they occupy in the probabilistic startle model. Namely, if

Pint> 0, the shoal is considered attentive, and the startle will

spread, whereas if Pint¼ 0, then the shoal is considered inat-

tentive and the reaction to the threat does not spread through-

out the group. The inattentive group also serves as a control

to compare the effects of social information transmission

within a group. Table II shows the parameter values for each

shoaling type, and Figure 3 details the behavior of each shoal

type.

D. Analysis metrics

The proportion of the shoal startled is measured at each

time step, which gives the number of fish startled, as well as

how rapidly the information spreads. The proportion of the

shoal startling will be the same for all shoaling types exam-

ined here, because there is no coupling between the motion

dynamics of the synchronization model and the startle proba-

bility model. This outcome would not be the case if the

dynamics of the synchronization model were to change the

connectivity between neighbors (the interaction topology),

since social information based on neighbor connectivity is a

major aspect of the startle probability model.

The orientation dynamics of the responses are measured

over time as well and compared between the shoaling

groups. We characterize a successful escape from the threat

as orienting within 620� of the reference direction, and

investigate two critical time points. The first time point is

when all startles have just completed. The second time point

is at the end of the simulation.

III. RESULTS

We combined a model of orientation synchronization

based on coupled oscillators with a model of information

propagation to predict how information would be transferred

through a group and how shoaling behavior would affect the

dynamics of the startle response.

A. Startle propagation

First, we examine the roles of network topology, Pint,

and Pext on the spread of information through the group.

Figure 4 shows the average proportion of the shoal startling

for given Pint and Pext values, and three different network

topologies, specified by percent connectivity.

When Pint¼ 0, Figure 4(a) (first column) shows the iso-

lated effect of Pext. Without any social information transmis-

sion, a proportion of the shoal startles according to the

probability of detecting a threat. Additionally, the proportion

FIG. 2. (a) Illustration of an agent (depicted here as a fish) at a random ori-

entation at the first time step (t¼ 0, blue), and transitioning to startled state

(t¼ 1, red). When startled directly from a threat, agents react by instanta-

neously reorienting towards a reference direction, with some noise (x2).

Without loss of generality, the reference direction is set to hs¼ 0. (b)

Illustration of two agents. When startled indirectly by social cues, agents

move in the average direction of their startled neighbors. In this illustration,

only the difference in orientation between two agents is shown, along with

noise (x1) that is added to the difference in orientation, which represents the

noise in the agent’s ability to sense their neighbor’s orientation.

TABLE I. Parameter space of probabilistic startle model.

Parameter Symbols Values

Probability of startling to threat Pext 0.05, 0.1, 0.5

Probability of startling to a neighbor cue Pint 0, 0.05, 0.1, 0.5

Probability of sustaining a response Psus 0.5

Coupling gain between agents j 0, 0.2

Initial orientation (obligate) h0 180�

Initial orientation (facultative, non-shoal) h0 Random

Standard deviation of noise in synchrony model r1 2�

Standard deviation noise in startle response r2 208

Number of agents N 100

Connectivity of random graph c 1, 0.5, 0.2

TABLE II. Shoaling categories.

Behavior Initial conditions Gain Attentive, inattentive

Obligate Polarized j> 0 Pint> 0, Pint¼ 0

Facultative Random j> 0 Pint> 0, Pint¼ 0

Non-shoaling Random j¼ 0 Pint> 0, Pint¼ 0
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of the shoal startling tends to increase with increasing values

of Pint and Pext.

A non-intuitive exception to this result is that at higher

values of Pint (i.e., 0.5), there are more agents responding

when Pext is lower, as opposed to higher (Figure 4(b)). This

result can be attributed to the removal aspect of the SIR

model, and the value of Psus. If fish startle due to Pext, and

the startle responses complete before it can spread to neigh-

boring individuals, it would result in an overall reduced

propagation of the response. This result indicates an interac-

tion between the three probabilities in the model and the pro-

portion of agents startling.

As might be expected, more highly connected topologies

have a higher proportion of agents responding to the threat.

The rate of information spreading happens rapidly in all

topology cases, with peak responses occurring in the first or

second time step. The difference in peak number of fish

responding between topologies can be seen in Figure 4. The

greatest difference in the number of fish responding between

interaction topologies occurs at low values of Pint and Pext.

At higher values of Pint and Pext, all fish startle in response to

the threat.

B. Orientation dynamics

Figure 5 illustrates the orientation histograms over all

simulations of obligate and facultative attentive shoals (for

inattentive and non-shoaling simulation histograms at the

same Pint and Pext). From these histograms, it can be

observed that the behaviors in the model occur at two time

scales: an initial, rapid response from the startle model, and

a slower response driven by the synchronization model. In

obligate shoals, there is a higher proportion of the shoal star-

tling away from the threat. However, by the end of the simu-

lation, many of these agents have re-oriented approximately

FIG. 3. Categorization of shoaling behavior in the model.

FIG. 4. (a) Bar plots illustrating the max proportion of the shoal startled

(averaged over 300 Monte Carlo runs) for sample values of Pext and Pint.

Error bars are 95% confidence intervals. (b) Inset with highlights red and

blue boxed subgraphs side-by-side for easier comparison.
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25�–30� away from the reference direction. In contrast, for

the facultative shoals, although fewer individuals respond

directly to the threat, by the end of the simulation, a majority

of the agents are oriented away from the threat.

We quantify these results focusing on two time points:

(i) when startles end and (ii) when the simulation ends.

Figure 6 shows the average proportion of successful escapes

at the time step when the last startle state ended (Figure 6(a))

and the last time step in the simulation (Figure 6(b)). At the

completion of the startle responses in the group, obligate

shoaling agents show a higher proportion of the shoal escap-

ing the threat as compared to facultative and non-shoaling

groups. The exceptions to this result are when the shoal is

inattentive (no neighbor information), or when Pext is high.

When there is no social information, facultative and non-

shoaling groups show a higher proportion of agents oriented

away from the threat. However, this result is due to the fact

that these groups are initialized in a random orientation. So,

by chance, more agents are likely to be oriented away from

the threat. Given that the average number of agents startling

in all shoal groups is the same, the agents that startle in the

obligate shoal group exhibit a more accurate response

according to this criterion (Figure 6(a)).

Figure 6(b) illustrates the proportion of agents oriented

to the reference direction at the end of the simulation. For

the cases where Pext is 0.1 or 0.5, there are noticeably more

facultative shoaling agents oriented towards the reference

direction than obligate shoaling agents. For the highest value

of Pext, where there would be more first responders, there are

approximately 10% more than immediately following the

startle responses, suggesting that non-startled agents were

recruited to the direction away from the threat, but at a much

slower rate. In comparison, there are significantly fewer obli-

gate shoaling agents oriented towards the reference direction

at the end of the simulation than immediately following the

startle responses, suggesting a strong influence of the role of

non-startled agents in determining the orientation of the syn-

chrony model.

Thus, obligate shoaling agents respond much more rap-

idly than facultative shoaling agents to a threat (0%–20%

more of the shoal escaping at the end of the last startle

response). Facultative shoaling fish, however, are able to

exert stronger influence on their shoal-mates orientation

through the synchronization model. The supplementary fig-

ure depicts waterfall plots of histograms of agent orientation

over time, normalized by 30 000 (100 agents� 300 Monte

Carlo runs), bounded between 0 and p.

IV. DISCUSSION

This study uses an epidemic model paired with a model

of coupled oscillators to model information transmission in

groups of fish. We examine potential differences in startle

response behavior based on shoaling properties and investi-

gate the spread of information transmission through a group

using a model of contagion.

To the best of our knowledge, this study is the first to

apply an epidemic model to the study of fish startle response

behavior and the first to numerically analyze potential effects

of polarization on startle response behavior. This model

specifies probabilities for responding to an external threat,

being startled by neighbors, and remaining in a startled state.

The probability model alone yields results that resemble a

cellular automaton, with two explicit states: startled and non-

startled. When paired with the coupled oscillator system,

behavioral dynamics can be evaluated. Importantly, the

parameter space of the oscillator model was categorized into

non-shoaling, facultative shoaling, and obligate shoaling

types, based on the level of alignment of group members.

The model predicts faster spreading of the startle response in

previously polarized groups (obligatory shoalers), and

slower, but more accurate, responses in facultative shoalers.

We find differences in startle response behavior between

shoaling types, even for attentive obligatory and facultative

shoals, where the only difference between them is the initial

orientation of the shoal when the threat is introduced. The

FIG. 5. Waterfall plots displaying orientation histograms over time for atten-

tive obligate and facultative shoaling types, Pint¼ 0.05 and Pext¼ 0.05. Note

that the time scale plots the first five time steps when most startles occur,

then plots once every 10 time steps up until 50, by which time the startles

have ended. To see similar images for all cases investigated in this study,

see supplementary material.
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results of the model reinforce the idea that there are benefits

of polarized shoaling.31 The model also predicts that ran-

domly oriented shoals may be better at transferring informa-

tion to uninformed individuals, leading to a slower, but more

accurate response. A speed-accuracy trade-off may be a

strategy used by fish shoals in response to a predator.47

We investigated different values of Pext and Pint, which

varies the number of informed individuals and the rate of

information transmission among group members, respec-

tively. Rosenthal et al.48 found differences in the fish who

startled first in the group, where first responders were more

likely to be found closer to the group boundary (front and

sides) than non-responders and, even for shoaling behavior,

fish at the front of the shoal have been shown to exert more

influence over the heading of their neighbors.49 The value of

Pext in our model may be similarly varied based on spatial

information. Additionally, the parameter Psus was kept fixed

for this study. However, the value of Psus has been shown to

play an important role in the timing of epidemic spreading33

and can be varied as well.

Our model could also be used to assess differences in

group size and number of responders necessary to propagate

information. A small number of knowledgeable individuals

has been previously shown to elicit a response from both

small and large groups.50–53 However, in smaller groups, a

greater proportion of knowledgeable individuals is needed to

elicit a response,52,54 and it is more likely that inaccurate

decisions will be made.55 Unlike simple contagion processes

such as a disease epidemic, where multiple ties dampen the

spread of disease,56 multiple ties in social networks provide

a reinforcement effect, while connected neighbors not

responding inhibit a response.48

Here, we assume undirected coupling between individu-

als in the group. Fish shoals and other animal groups are

likely to have weighted, directed connections48 since the sen-

sory (visual, lateral line, and acoustic) cues fish receive from

their neighbors tend not to be symmetrical. In this model,

spatial cues were not considered, but even with the simplest

version of the model, our results aligned with previous

experimental studies.19,31,47 Additionally, the startle proba-

bility model captures the reinforcement effect found in the

social contagion and information propagation within fish

shoals.

If directed coupling were to be included in this model,

we might expect agents with more connections to other indi-

viduals to have a greater probability of responding via Pint

than those with fewer connections. Additionally, individuals

with connections to first responders (those startled by Pext)

would be more likely to respond to the threat than those not

connected to first responders.

In this study, low probabilities of Pext and Pint were

used. The greater the number of connections between agents,

the lower this number needs to be to avoid saturation of the

response (due to reinforcement). It may also be possible to

scale this parameter with distance or number of neighbors,

such that an agent may have a high probability of interacting

with close neighbors, but reduced probability of being star-

tled by more distant neighbors, thereby weighting the con-

nections between individuals.

The model is quite generalizable. It includes two behav-

iors (synchronizing and startling) that occur on different time

scales and may involve separate network interactions. This

model may be used to test other hypotheses regarding

startle response behaviors in fish, including information

FIG. 6. Bar plots illustrating the average proportion (over 300 Monte Carlo runs) of the shoal oriented 620� from the reference direction. Error bars are 95%

confidence intervals. (a) Orientation at the end of startles, and (b) orientation at the end of the simulation.
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transmission based on location within a shoal, different net-

work interactions, and heterogenous groups. It is important

to note that the synchronization model and the probabilistic

startle model operate independently in this study, but may

interact depending on how the interaction topology between

agents is specified. Additionally, this model may be used to

investigate different information-transmission or decision-

making behaviors in animal groups.

SUPPLEMENTARY MATERIAL

See supplementary material for the waterfall plots of all

orientation histograms.
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