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Abstract

A central challenge of natural products research is assigning bioactive compounds from complex 

mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is 

often biased towards abundant, rather than bioactive, mixture components. This study evaluated 

the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve 

active component identification early in the fractionation process. Key to this methodology was 

statistical modeling of the integrated biological and chemical datasets (biochemometric analysis). 

Three data analysis approaches for biochemometric analysis were compared, namely, partial least 

squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi 

Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus 
served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in 

identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin 

(3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from 

Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of 

biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture 

components. A benefit of this approach is the ability to integrate multiple stages of fractionation 

and bioassay data into a single analysis.

Natural products research has as its central goal the isolation and identification of bioactive 

constituent(s) from complex natural product mixtures. To achieve this, natural products 

chemists have developed a robust repertoire of techniques broadly termed “bioassay-guided 

fractionation”.1 Bioassay-guided fractionation is an iterative methodology that alternates 

between chemical fractionation and bioassays. With each stage of fractionation, the 

complexity of the mixture is reduced, and eventually the compound(s) responsible for the 

observed biological effect can be isolated and characterized. This methodology has long 

been the gold standard in natural products research, and has resulted in the discovery of 

critically important drugs, including camptothecin and taxol (paclitaxel),2,3 artemisinin,4 and 

vinblastine.5 Weller reported in 2012 that over 1,500 publications in ISI Web of Science 
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employed bioassay-guided fractionation, with hundreds more citations using variants of the 

nomenclature.6

Despite the popularity and historical effectiveness of bioassay-guided fractionation, it has 

several limitations.7 The process tends to be biased towards dominant peaks in each extract 

or fraction and, as a result, bioactive constituents in low abundance can be overlooked.8 

Furthermore, isolation of all trace constituents can be difficult, given that each chemical 

separation step witnesses a decrease in material. Finally, there is the potential to lose activity 

due to irreversible binding of mixture components to chromatographic resins or degradation 

during the separation process.9 In light of these limitations, new methods capable of 

focusing the isolation process on components most likely to be responsible for the desired 

biological effect are needed.

Recently, there has been a great deal of interest in the application of untargeted 

metabolomics to study biologically active natural product mixtures.10–15 Metabolomics 

approaches are employed to profile multiple mixture components simultaneously, typically 

through the application of chromatographic analysis coupled to spectroscopic or 

spectrometric approaches (IR, UV, MS, or NMR detection). Such approaches can enable the 

detection of unstable compounds that would be lost upon purification, and consider all 

compounds together rather than as distinct fractions in series.7,16

Metabolomic profiling results in the generation of large data sets that include both major and 

minor components.11–13,15 Data-driven methods are needed to extract meaning from these 

complex chemical datasets, and multivariate statisticians and chemometricians have 

developed a number of strategies towards this goal.17,18 The most commonly employed tool 

in metabolomics data analysis is principal component analysis (PCA), in which a dataset is 

projected onto a series of latent variables, which are then mapped in two-dimensional space. 

Groupings of objects are discerned by their covariance, which is analyzed visually by the 

proximity of one object to another in the PCA scores plot.18

One limitation of metabolomics for studying natural product mixtures is the difficulty in 

tying identified metabolites to bioactive effects. If the end goal is determining which 

compounds are responsible for the biological activity of a mixture, comparing the chemical 

composition of different mixtures (the central goal of metabolomics) is not sufficient.14,19 

There is a need to go beyond the metabolomics datasets, and to use biological assay data to 

inform their interpretation. To address this need is an even greater data analysis challenge 

than that faced in classical metabolomics, and requires the integration of both biological and 

chemical datasets. In 2006, chemometricians working to integrate chemical and biological 

data dubbed the field “biochemometrics.”20 The present report is concerned primarily with 

the development of effective approaches for applying biochemometrics to natural products 

drug discovery.

Several approaches have been developed for correlating metabolite profiles with biological 

datasets (Table 1). Partial least squares (PLS) decomposes the spectral dataset (i.e., retention 

time and mass-to-charge (m/z) pairings), into uncorrelated latent variables. PLS differs from 

PCA in that it seeks to maximize the covariance of independent variables (spectral data from 
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IR, UV, or MS analysis) with a dependent variable (i.e., biological activity).21 As an 

example of the effectiveness of this approach, Ali et al.22 utilized PLS analysis of NMR 

signal data to identify bioactive metabolites from marine sponges against the adenosine A1 

receptor. In some cases, however, data interpretation may be difficult with PLS, because 

variables possessing large variance yet small correlation may mask other variables with low 

variance and high correlation to the dependent (response) variable. In addition, multiple PLS 

components are often needed to optimize the discrimination between response groups.23

Recently, Wiklund et al.24 described the S-plot as a means for interpreting orthogonal PLS 

(OPLS) predictive components. With an S-plot, the covariance and correlation loading 

variables are displayed graphically, which allows for visual identification of spectral 

variables that strongly correlate with a dependent biological activity variable.24 S-plots have 

been utilized several times for natural product research, most recently to discover 

immunomodulatory components from Phaleria nisidai25 and antidiabetic compounds of Cree 

medicinal plants.26 A limitation of the S-plot approach is that the large number of spectral 

variables can make visualization and interpretation of the data difficult. In addition, the S-

plot relies only on the correlation and covariance of independent variables to the dependent 

variable, which can lead to false positives.27

As another strategy for interpreting biochemometric datasets, Kvalheim and Karstang28 

developed the “target projection” component, wherein PLS components are transformed into 

a univariate metric that facilitates analysis and interpretation of correlative data. The 

variance explained by the target projection component can be calculated for each 

independent (spectral) variable and compared against the residual variance. The ratio 

between explained and residual variance of the spectral variables of the target-projection 

component, termed the selectivity ratio, represents a quantitative measure of each variable's 

power to distinguish between different groups. Variables with a high selectivity ratio have an 

excellent ability to separate bioactive and non-bioactive groupings. This approach has been 

utilized to identify clinical biomarkers from human spinal fluid (CSF) samples27 as well as 

for chemical fingerprint analysis of the herbal medicine Puerariae lobatae (Radix 

Puerariae).29 However, the selectivity ratio has not been applied to identify individual 

bioactive components of natural product mixtures.

With this study, we compared three data analysis strategies (PLS, S-plot, and selectivity 

ratio) for integrating biological and chemical datasets from natural product mixtures. Our 

objective was to demonstrate which of these approaches would be most effective for 

distinguishing active and inactive compounds in the mixtures. As a case study, two 

endophytic fungi isolated from the botanical goldenseal [Hydrastis canadensis L. 

(Ranunculaceae)], were selected, namely, Alternaria sp. and Pyrenochaeta sp. Alternaria sp. 

was chosen because the extract from this fungus demonstrated marked antimicrobial activity 

in screens performed in our laboratory (data not shown), but dereplication using a UPLC-

HRMS-MS/MS protocol30 identified only one primary chemical constituent, alternariol 

monomethyl ether (1), which is mildly active against Gram-positive bacteria. For 

Pyrenochaeta sp., the activity of the extract could not be correlated to known compounds in 

the dereplication library. Thus, these fungal extracts were a good example of mixtures 

containing unknown active compounds. The goal of our studies was to conduct 
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biochemometric analysis on these fungi at an early stage of extraction and fractionation, and 

subsequently to verify the predictions of the biochemometric analysis with follow up 

isolation, structure elucidation, and biological evaluation.

RESULTS AND DISCUSSION

Biochemometric Analysis of Alternaria sp

The first goal of these studies was to contrast various chemometric and biochemometric 

analysis techniques as applied to an extract from the fungus Alternaria sp. Towards this goal, 

chemometric profiling was first conducted on a crude extract from the Alternaria sp. fungus 

(AS-CR) and four fractions (AS-1 to AS-4). Untargeted metabolomic analysis of these 

fractions using ultra-performance liquid chromatography coupled to high-resolution mass 

spectrometry (UPLC-HRMS) yielded 472 total marker ions (unique retention time-m/z 
pairs), which were compared using principal component analysis (PCA) (Figure 1). The first 

three components of the PCA scores plot accounted for 93.09% of total variability of the 

model (component 1: 52.97%; component 2: 32.45%; component 3: 7.68%). The technical 

replicates (triplicate UPLC-HRMS analyses) of each sample are overlaid on the plot, 

indicating excellent repeatability of the chemical analysis (Figure 1). The AS-CR and AS-2 

fractions group together, separated from the AS-1, AS-3, and AS-4 fractions (Figure 1), 

which indicates distinct chemical profiles between AS-2 and the fractions AS-1, -3, and -4.

Bioactivity screening revealed complete inhibition of S. aureus strain SA1199 by the 

Alternaria sp. crude extract (AS-CR) as well as the second fraction (AS-2) (Table 2). At the 

100 μg/mL level, the crude extract exhibited complete growth inhibition of Staphylococcus 
aureus, while fraction AS-2 evidenced near-complete inhibition (99.83 ± 0.01%) (Table 2). 

The fractions AS-1, AS-3, and AS-4 demonstrated negligible growth inhibition of S. aureus 
(< 1.0%).

Pairing the antibacterial screening with high-resolution mass spectral data, the resulting 

biochemometric analytical matrix evidenced differences between the Alternaria sp. fractions 

based on their bioactivity. The internal cross-validated construction of the PLS model 

yielded four components, accounting for 100% of the independent (spectral) and dependent 

(bioactivity) block variation (component 1: 52.94% independent, 98.06% dependent; 

component 2: 10.60%, 1.79%; component 3: 29.08%, 0.16%; component 4: 7.38%, 0.00%). 

The PLS scores plot (Figure 2A) showed a similar clustering of fractions as the PCA 

analysis, with AS-CR and AS-2 separated graphically from the other, non-bioactive 

fractions. Also similar to the PCA analysis, the triplicate data points representing each 

sample are closely grouped together in the PLS scores plot, although the addition of 

biological variability causes a slight increase in the spread among replicates, as might be 

expected.

PLS scores plots do not provide information regarding which specific chemical species 

contribute to the observed antibacterial bioactivity. To obtain this information, three distinct 

analytical methods were contrasted: the loadings plot from the PLS model, the multivariate 

transformed S-plot, and the selectivity ratio. Examination of the PLS loadings plot (Figure 

2B) yielded three major metabolites that were shifted in the same direction as the bioactive 
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fractions from the PLS scores plot (Figure 2A). Identities of these compounds were 

proposed using literature and high-resolution mass spectrometry data (Table 3) as: 

alternariol monomethyl ether (1), tenuazonic acid (2), and altersetin (3). The difference in 

location in the scores plot between 1, 2, and 3 was not sufficient to ascertain which of the 

three compounds was most responsible for the antibacterial activity of the fraction. The 

identifications of 1 and 3 were confirmed from the NMR spectra of the isolated compounds 

(Figures S2 and S4, Supporting Information, respectively) and NMR data were consistent 

with literature reports.31,32 Due to the low abundance and lack of bioactivity of fractions 

containing compound 2, this compound was not pursued for isolation, and identification is 

only tentative, based on matching accurate mass with literature values.29

The S-plot graphically displays the covariance and correlation of loading variables against 

the dependent variable as a scatter plot (Figure 2C). In an S-plot, the further a marker ion is 

from the origin, the greater its contribution is to the variance between bioactivity levels. For 

the Alternaria sp. biochemometric model, the upper right quadrant of the S-plot contributed 

the most to the differentiation of biologically-active versus inactive fractions, and 

compounds 1 and 2 were highlighted as possessing the greatest contribution to the observed 

bioactivity.

The selectivity ratio produces a graphical representation in which the most abundant peaks 

correspond to marker ions that are most strongly associated with bioactivity (Figure 2D). 

From the selectivity ratio plot, the dominant marker ions were altersetin (3) and its sodium 

adduct, suggesting that this compound dominated the contributions to the antibacterial 

potency of the Alternaria sp. extract and fractions. In contrast to the PLS loadings plot 

(Figure 2B) and the S-plot (Figure 2C), alternariol monomethyl ether (1) and tenuazonic 

acid (2) were not among the most significant marker ions identified according to the 

selectivity ratio analysis (Figure 2D).

Selectivity ratio analysis has an additional advantage of enabling the application of multiple 

independent variables, which facilitates interpretation by natural product chemists consistent 

with the type of instrumentation being employed. Utilizing mass spectrometry data (signal 

versus m/z) creates a plot similar to a mass spectrum (Figure 2D), where the x-axis is the 

m/z of the detected ion, and the y-axis represents how strongly associated that particular ion 

is with the biological activity.23 The use of chromatographic data (detector signal versus 

retention time) yields a similar selectivity ratio plot to that generated with mass 

spectrometric data, except that the x-axis represents retention time rather than m/z.33

Identification of Marker Compounds in Alternaria sp

Additional purification of the most active Alternaria sp. fraction (AS-2) was conducted to 

investigate the accuracy of the predictions provided by the biochemometric analysis. 

Subfractions of AS-2 (coded AS-2-1 – AS-2-10) obtained with reversed-phase preparative 

scale HPLC revealed marked differences in both chemical makeup and bioactivity. UPLC-

HRMS analysis of individual subfractions showed that subfraction AS-2-3 was 94% 

enriched in tenuazonic acid (2) (Figure 3B), subfraction AS-2-7 was 94% alternariol 

monomethyl ether (1) (Figure 3C), and altersetin (3) was isolated in subfraction AS-2-9 at 

85% purity (Figure 3D). The other subfractions contained insignificant quantities of these 
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compounds. From the antibacterial screening protocol, subfraction AS-2-3 only displayed 

0.01 ± 0.02% inhibition of S. aureus SA1199, AS-2-7 yielded 0.08 ± 0.01% growth 

inhibition, and AS-2-9 inhibited bacterial growth by 99.5 ± 0.01%. These data indicate that 

3 was, indeed, the most active compound from the original extract. The application of the 

selectivity ratio made it possible to distinguish between active and inactive ions at an early 

stage of the analysis (with just the crude extract and four fractions). The selectivity ratio 

correctly predicted that ion 3 was the most active, while the S-plot and PLS loading vectors 

attributed activity to ions 1, 2, and 3. Follow up antimicrobial assays on pure compounds 1 
and 3 supported the data in Figure 4, indicating that 1 is weakly active against S. aureus, 

with a minimum inhibitory concentration (MIC) of 275 μM (75 μg/mL), while 3 possesses 

pronounced activity (MIC 0.59 μM (0.23 μg/mL)) (Table 4). Antimicrobial activity was also 

observed for both of these compounds against methicillin resistant Staphylococcus aureus 
(MRSA) (Table 4).

Refined Biochemometric Analysis

Multivariate statistical modeling increases in accuracy and precision as the sample size 

(number of objects) increases;33 thus, it was hypothesized that further fractionation of the 

bioactive Alternaria sp. fraction AS-2 would provide enhanced separation between the active 

and inactive marker ions in the biochemometric analysis. The incorporation of subfractions 

(AS-2-1 through AS-2-10) of the original active fraction (AS-2) into the biochemometric 

matrix yielded a more refined statistical model and subsequent analysis. The PLS scores plot 

(Figure 4A) distinguished the active fractions and subfractions (AS-CR, AS-2, AS-2-9, and 

AS-2-10) from the non-active fractions and subfractions. The increased analytical power of 

adding subfractions to the biochemometric matrix was reflected in changes in both the PLS 

loading plot (Figure 4B) and the S-plot (Figure 4C) compared to the initial matrix analysis 

(Figure 2B and 2C, respectively). In the expanded data matrix, both plots yielded altersetin 

(3) as the principal marker ion that contributed to the observed antibacterial activity, while 

the signals for compounds 1 and 2 were shifted downward towards a region of low 

covariance and correlation. The selectivity ratio (Figure 4D) maintained altersetin (3) as the 

principal bioactive marker ion. The inclusion of the subfractions in the selectivity ratio 

analysis effectively increased the abundance of the altersetin signals relative to those of other 

ions.

With the incorporation of 15 objects spanning three different degrees of chemical 

complexity - crude extract, fractions, and subfractions - the PLS loadings plot and S-plot 

could be employed to correctly identify 3 as the antibacterial compound from the mixture. 

However, the selectivity ratio analysis enabled identification of the active mixture 

components at an earlier stage of the isolation process.

Application of Biochemometrics to Pyrenochaeta sp

To confirm the analytical capability of the selectivity ratio, a second bioactive endophytic 

fungus (Pyrenochaeta sp.) was analyzed via the same methodology. Biochemometric 

profiling was conducted on the crude Pyrenochaeta sp. extract (PS-CR) and four fractions 

(PS-1 to PS-4). UPLC-HRMS analysis yielded 659 marker ions, and bioactivity screening 

highlighted PS-4 as the most bioactive fraction (Table 5). The PLS scores plot (Figure 5A) 
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separated the two active samples (PS-CR and PS-4) distinctly from the inactive samples. For 

Pyrenochaeta sp., the PLS loadings plot (Figure 5B) and the selectivity ratio (Figure 5C) 

revealed macrosphelide A (4) as the principal bioactive constituent. Subsequent isolation 

efforts confirmed the presence of macrosphelide A through high-resolution mass 

spectrometry and 1H and 13C NMR (Figure S6, Supporting Information),34 and its MIC 

value against S. aureus was determined to be 219 μM (75 μg/mL) (Table 4).

In summary, the identification of bioactive compounds without the need for multiple 

bioactivity-guided isolation steps remains an important goal to improve the efficiency and 

productivity of natural product discovery programs. The study presented herein has utilized 

multivariate statistical modeling coupled to the selectivity ratio (a univariate metric) to 

reveal compounds from a complex chemical profile that were responsible for the observed 

antibacterial bioactivity. Application of this biochemometric approach has led to the 

identification of a minor compound (altersetin, 3) from Alternaria sp. with potent 

antibacterial activity against both S. aureus and MRSA. The same approach was applied 

with a second endophytic fungus, Pyrenochaeta sp., which revealed the bioactive compound 

macrosphelide A. Although these are both known compounds, they were not identified in the 

crude extracts because they were not included in the database of experimental UPLC-MS 

data used for dereplication.30 However, once it was determined (based on biochemometric 

analysis) that these ions were likely responsible for the biological activity of the extracts, 

their structures could be rapidly predicted by comparison of UPLC-MS data with published 

literature. Such literature searches would have been inefficient and impractical had they been 

conducted for all of the unique features identified by UPLC-HRMS in the Alternaria sp. and 

Pyrenochaeta sp. extracts (472 and 659 ions, respectively).

Importantly, by using biochemometrics to integrate chemical and biological datasets, the 

bioactive extract compounds (3 and 4) were identified as active very early in the isolation 

process, after just one stage of fractionation. For the purpose of the study presented here, 

subsequent fractionation and isolation steps were then conducted to confirm the predictions 

of the biochemometric analysis. In future studies, such follow up isolation efforts might not 

be pursued if it was determined that the putative active compounds were of known structure 

and biological activity. In this way, biochemometrics could serve as a useful tool in 

dereplication efforts. The inclusion of biochemometrics in the dereplication process could 

prevent the rejection of an extract for further study based on the presence of a known (but 

inactive) compound, a potential pitfall of dereplication approaches that rely exclusively on 

chemical data. Additionally, as was the case with Alternaria sp., biochemometric analysis 

can point to the biological importance of a seemingly minor extract component, enabling 

focused efforts to rapidly solve its structure. The data presented here suggest that selectivity 

ratio analysis, which made better predictions than other data analysis procedures early in the 

fractionation process, could be a particularly effective tool for integrating biological and 

chemical datasets as part of dereplication efforts.

Another potentially important application of the biochemometrics approach is for integrating 

the chemical and bioassay data obtained from multiple fractionation steps. In the process of 

bioassay guided fractionation, each stage of separation and bioassay data is typically 

considered in isolation from previous isolation steps. Using biochemometrics, it was 
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possible to develop a model in which the active mixture components were predicted based 

on the data from several stages of fractionation in combination. Indeed, the study described 

herein shows that adding successive stages of fractionation and bioassay to the 

biochemometric analysis (original extract plus fractions and sub-fractions) improves the 

quality of the resulting selectivity plot. A future goal of our work is to apply 

biochemometrics using selectivity ratios to identify active components from more complex 

mixtures such as botanical extracts. Towards this goal, it may be necessary to conduct 

additional stages of purification to obtain sufficient sample size (number of objects) to 

accurately predict the compounds responsible for the observed biological activity. A highly 

complex extract could be fractionated and subjected to biochemometric analysis repeatedly, 

with each successive step of the fractionation and bioassay added into the dataset until a 

quality selectivity ratio plot could be obtained.

EXPERIMENTAL SECTION

General Experimental Procedures

NMR spectra were acquired with a JEOL ECA-400 spectrometer (400 MHz) using DMSO-

d6. Optical rotations were obtained using a Rudolph Research Autopol III polarimeter 

(Rudolph Research Analytical, Hackettstown, NJ, USA). UPLC-HRESIMS data were 

acquired using a Q Extractive Plus quadrupole-orbitrap mass spectrometer (Thermo 

Scientific, Waltham, MA, USA) with an electrospray ionization source coupled to an 

Acquity UPLC system (Waters, Milford, MA, USA). To collect UPLC-HRESIMS data, each 

sample was re-suspended in MeOH to a concentration of 1 mg/mL, and triplicate 3 μL 

injections of each sample were performed. The samples were eluted from the column 

(Acquity UPLC BEH C18 1.7μm, 2.1 × 50 mm, Waters) at a flow rate of 0.3 mL/min using 

the following binary gradient with solvent A consisting of H2O (0.1% formic acid added) 

and solvent B consisting of CH3CN (0.1% formic acid added): initial isocratic composition 

of 95:5 (A:B) for 1.0 min, increasing linearly to 0:100 over 20 min, followed by an isocratic 

hold at 0:100 for 1 min, gradient returned to starting conditions of 95:5 for 2 min, and held 

isocratically again for 1 min. The mass spectrometer was operated in the positive ionization 

mode over a scan range of 150–2000 with the following settings: capillary voltage set at 5 V, 

capillary temperature set at 300 °C, tube lens offset set at 35 V, spray voltage set at 3.80 kV, 

sheath gas flow set at 35, and auxiliary gas flow set at 20.

Flash chromatography separations were accomplished using an automated CombiFlash RF 

system (Teledyne-Isco, Lincoln, NE, USA) and monitored with a PDA detector and as an 

evaporative light scattering detector. HPLC separations were performed on a Varian HPLC 

system (Agilent Technologies, Santa Clara, CA, USA) with Galaxie Chromatography 

Workstation software (version 1.9.3.2, Agilent Technologies). Analytical and preparative-

scale HPLC separations employed a Gemini-NX C18 column (5 μm, 110 Å, 250 × 4.60 mm 

(analytical) or 250 × 21.20 mm (preparative); Phenomenex, Torrance, CA, USA). Unless 

otherwise noted, all chemicals were of spectroscopic or microbiological grade and obtained 

from Sigma-Aldrich (St. Louis, MO, USA).
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Plant Collection and Fungal Isolation

Individual, asymptomatic goldenseal (Hydrastis canadensis L.) plants were collected in July 

2010 from William Burch in Hendersonville, North Carolina (N 35° 24.2770, W 082° 

20.9930). A voucher specimen was deposited at the herbarium of the University of North 

Carolina at Chapel Hill (NCU583414) and authenticated by Dr. Alan S. Weakly. Isolation of 

fungal endophytes was performed using methods outlined previously.35,36 Two strains: G28 

(isolated from seeds), and G41 (isolated from leaf segments) were used in the present study. 

Axenic fungal cultures are maintained at 9 °C at the University of North Carolina at 

Greensboro, Department of Chemistry and Biochemistry Fungal Culture Collection.

Identification of Fungal Isolates

For molecular identification of fungal endophytes isolated from goldenseal, the internal 

transcribed spacer region of the 5.8S ribosomal RNA gene (ITS1-5-5S-ITS2) was sequenced 

using methods described previously.35–38 Based on BLAST search conducted with 

published ITS data in NCBI GenBank, strain G28 was identified as an Alternaria sp. 

(Pleosporales, Dothideomycetes), while strain G41 was identified as a Pyrenochaeta sp. 

(Pleosporales, Dothideomycetes), using cut off proxies for ITS sequence similarity outlined 

previously.36 The sequences from strains utilized in the present study were deposited in 

GenBank under accession numbers KT825854 (strain G28) and KT825855 (strain G41).

Solid-state Fermentation of Fungal Cultures

For chemical extraction, the fungal strains utilized in this study were grown on rice a 

medium.39 Briefly, seeds cultures were started on the liquid medium composed of 2% soy 

peptone, 2% dextrose, and 1% yeast extract (YESD). The seed culture was grown for 7 days 

at 22 °C with agitation, and subsequently transferred to 10 g of rice autoclaved with 25 mL 

of water in a 250 mL Erlenmeyer flask for screener cultures. For large-scale production of 

fungal cultures, four 250 mL Erlenmeyer flasks were inoculated using one seed culture for 

each flask. All rice cultures were allowed to grow for approximately 14–21 days prior to 

extraction.

Extraction and Isolation

Cultures of Alternaria sp. (AS) and Pyrenochaeta sp. (PS) were extracted following the 

established procedure.40 Briefly, to each culture flask, 60 mL of 1:1 MeOH–CHCl3 was 

added, chopped, and shaken overnight (~20 h) at ~100 rpm at room temperature. The sample 

was vacuum-filtered, 90 mL of CHCl3 and 150 mL of H2O were added, and the mixture was 

stirred for 30 min. This mixture was then transferred into a separatory funnel and the bottom 

(CHCl3) layer collected. The CHCl3 layer was evaporated to dryness, then dissolved in 100 

mL of 1:1 MeOH–CH3CN and 100 mL of hexanes. The biphasic solution shaken in a 

separatory funnel, and the bottom layer drawn off and evaporated to yield the crude extract 

(CR).

First-stage separations of the crude extract were conducted with normal-phase flash 

chromatography on a CombiFlash RF system with a 4 g silica gel column at 18 mL/min flow 

rate with a 40 min hexane-CHCl3-MeOH gradient, which yielded four fractions (AS-1 to 

AS-4 and PS-1 to PS-4, respectively) pooled based on LC-UV chromatograms. Active 
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fractions were subjected to a second stage of purification using a reversed-phase preparative 

HPLC with a Gemini NX C18 column at a 21.20 mL/min flow rate. A linear CH3CN-H2O 

(both with 0.1% formic acid) gradient starting from 40:60 to 100:0 over 15 min was 

employed, with fractions collected every 0.5 min and pooled based on both UV and 

evaporative light scattering detector (ELSD) chromatograms. The Alternaria sp. (AS) extract 

yielded compounds 1 and 3, while 4 was isolated from the Pyrenochaeta sp. (PS) extract. 

Compound 2, tenuazonic acid, was putatively identified based upon its high resolution mass 

(m/z 198.1134 [M+H]+, calcd for C10H16NO3
+, 198.1130), but was not present in sufficient 

quantities for isolation and confirmation of identity.

Alternariol monomethyl ether (1): white solid, HRESIMS m/z 273.0756 [M+H]+ (calcd for 

C15H13O5
+, 273.0763); 1H NMR (400 MHz DMSO-d6) and 13C NMR (100 MHz DMSO-

d6), chemical shifts were in agreement with literature values31 and are provided as 

Supporting Information (Table S1 and Figure S2, Supporting Information).

Altersetin (3): pale brown solid, HRESIMS m/z 400.2480 [M+H]+ (calcd for C24H34NO4
+, 

400.2488); 1H NMR (400 MHz DMSO-d6) and 13C NMR (100 MHz DMSO-d6), chemical 

shifts were in agreement with literature values31 and are provided as Supporting Information 

(Table S2 and Figure S4, Supporting Information).

Macrosphelide A (4): yellow solid, [α]D
20 = +84 (c 0.60, MeOH) HRESIMS m/z 343.1383 

[M+H]+ (calcd for C16H23O8
+, 343.1393); 1H NMR (400 MHz CDCl3) and 13C NMR (100 

MHz CDCl3), chemical shifts were in agreement with literature values34 and are provided as 

Supporting Information (Table S3 and Figure S6, Supporting Information).

Antibacterial Assay

Antibacterial activity was assessed via growth inhibition of a laboratory strain of 

Staphylococcus aureus (strain SA1199)41 and methicillin-resistant S. aureus (MRSA 

USA300 LAC strain AH1263).42 Cultures were grown from a single colony isolate of each 

strain to log-phase in Müeller Hinton Broth (MHB) and plated at a final density of 1.0×106 

CFU/mL.

For screening, samples were assayed in triplicate at a concentration of 10 μg/mL and 100 

μg/mL. Samples were dissolved in 1:1 EtOH-DMSO (v/v) and diluted in Mueller Hinton 

broth (MHB) to achieve the appropriate concentration, with ethanol and DMSO 

concentrations <2%. The positive control used for the screening procedure was 

chloramphenicol, at the same concentrations as the samples (10 μg/mL and 100 μg/mL). 

Vehicle was 2% 1:1 EtOH-DMSO. Each well was inoculated with bacterial culture, and 

incubated at 37 °C for 24 h.

Minimum inhibitory concentration (MIC) was measured according to Clinical Laboratory 

Standards Institute (CLSI) standard procedures.43 Briefly, extracts or purified berberine 

(positive control, a known antibacterial compound from the host plant of these endophytic 

species, Hydrastis canadenensis L.)44 were added to 96-well plates in triplicate at 

concentrations ranging from 2.3 to 300 μg/mL in MHB. Vehicle (2% DMSO) served as the 

negative control, and DMSO content was fixed at 2% in all wells. Absorbance at 600 nm 
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was measured after 24 h using a Synergy H1 microplate reader (Biotek, Winooski, VT, 

USA). The minimum inhibitory concentration (MIC) was defined as the concentration at 

which there was no statistically significant difference between the treatment and vehicle 

control. The absorbance for replicate wells containing all assay components except bacteria 

was subtracted from the absorbance of assay wells.

Biochemometric Analysis

Triplicate LC–MS datasets for each sample were individually analyzed, aligned and filtered 

with MZmine 2.17 software (http://mzmine.sourceforge.net/).45 Peak detection in MZmine 

was achieved as follows: m/z values were detected within each spectrum above a baseline, 

and a chromatogram was constructed for each of the m/z values that spanned longer than 0.1 

min, and finally, deconvolution algorithms were applied to each chromatogram to recognize 

the individual chromatographic peaks. The parameters were set as follows for peak 

detection: noise level (absolute value) at 1 × 107, minimum peak duration 0.5 s, tolerance for 

m/z variation 0.05 and tolerance for m/z intensity variation 20%. Deisotoping, peak list 

filtering, and retention time alignment algorithm packages were employed to refine peak 

detection. Finally, the join align algorithm compiled a peak table according to the following 

parameters: the balance between m/z and retention time was set at 10.0 each, m/z tolerance 

was set at 0.05, and retention time tolerance size was defined as 2 min. The spectral data 

matrix (comprised of m/z, retention time, and peak area for each peak) was imported to 

Excel (Microsoft, Redmond, WA, USA) and merged with the bioactivity data set (at 100 

μg/mL concentration) to form a final biochemometric analytical matrix. Triplicate datasets 

were included in the analysis for each sample, which consisted of three separate bioassay 

measurements and three separate UPLC-HRMS analyses for the same extract or fraction.

Biochemometric analysis was performed using Sirius version 9.0 (Pattern Recognition 

Systems AS, Bergen, Norway).28,33 Initially, transformation from heteroscedastic to 

homoscedastic noise was carried out by a 4th root transform of the spectral variables. An 

internally cross-validated PLS model was constructed using 100 iterations, at a significance 

level of 0.05. Selectivity ratios from the final PLS model were calculated using algorithms 

internal to Sirius.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Principal Component Analysis (PCA) scores plot of Alternaria sp. crude extract (AS-CR) 

and fractions AS1 – AS4, drawn with Hotelling's 95% confidence ellipse. All fractions were 

run in triplicate, and the resulting 472 marker ions were used to compute differences in 

mycochemical composition.
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Figure 2. 
Marker ion selection from a biochemometric dataset. The biochemometric dataset was 

obtained from the mass spectral data coupled with bacterial growth inhibition data (against 

S. aureus SA1199) at a concentration of 100 μg/mL (Table 2). (A) Partial least squares 

(PLS) scores plot, showing the grouping of bioactive and non-bioactive fractions from 

Alternaria sp. (AS-CR and AS-1 – AS-4). Each fraction was analyzed in triplicate via 

UPLC-MS and was subjected to triplicate biological assays. Thus, the replicate datapoints 

represent both biological and technical variability. (B) Loadings plot from the PLS analysis 

of biochemometric data. Variables located in the same region in the loadings plot (B) as the 

bioactive groups AS-CR and AS-2 in the scores plot (A) have the highest positive 

correlation with the dependent variable (bioactivity). Thus, three ions corresponding to 

alternariol monomethyl ether (1), tenuazonic acid (2), and altersetin (3) were identified from 

visual analysis of the loadings plot as potentially most bioactive. (C) S-plot from PLS model 

of antibacterial activity of Alternaria sp. extract and fractions. The upper right quadrant are 

the peaks with highest correlation to bioactivity, and ions 1, 2, and 3 were also identified 

from the S-plot. (D) The selectivity ratio analysis of the PLS model data. The ratio relates 

the explained variance of the variable to the residual variance. Higher values (taller lines) 

represent a more significant contribution to the observed bioactivity. The selectivity ratio 

indicates compound 3 to have the highest activity, and does not find strong correlation for 

compounds 1 and 2.
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Figure 3. 
UPLS-HRMS chromatograms of fraction AS-2 (A), along with selected subfractions AS-2-3 

(B), AS-2-7 (C), and AS-2-9 (D) representing the semi-pure fractions of tenuazonic acid (2), 

alternariol monomethyl ether (1), and altersetin (3), respectively.
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Figure 4. 
Marker ion selection from the post-fractionation biochemometric dataset of Alternaria sp. 

The biochemometric dataset was obtained from the triplicate mass spectral data coupled 

with bacterial growth inhibition data (against S. aureus SA1199) at a concentration of 100 

μg/mL. (A) Partial least squares (PLS) scores plot, showing the grouping of bioactive and 

inactive fractions from Alternaria sp. (AS-CR, AS-1 – AS-4, and AS-2-1 – AS-2-10). Each 

fraction was analyzed in triplicate, as shown in the scores plot. (B) Loadings plot from the 

PLS analysis of biochemometric data. Variable 3 was the most correlated to bioactivity, as 

implied by being shifted in the same direction as the bioactive samples in the scores plot. (C) 

S-plot from the larger PLS model of antibacterial activity of Alternaria sp. extract, fractions, 

and subfractions. The marker ion for 3 is distinctly separate from the others, indicating its 

greater contribution to the bioactivity (D) The selectivity ratio analysis of the more 

comprehensive PLS model data. Similar to the initial selectivity ratio analysis (Figure 2D), 

ion 3 displays the highest selectivity ratio.
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Figure 5. 
Identification of the bioactive principle from Pyrenochaeta sp. from the biochemometric 

dataset. The biochemometric dataset was obtained from the triplicate mass spectral data 

coupled with growth inhibition data against S. aureus (SA1199) at a concentration of 100 

μg/mL. (A) The partial least squares (PLS) scores plot shows the grouping of bioactive and 

inactive fractions from Pyrenochaeta sp. (PS-CR, PS-1 – PS-4). Each fraction was analyzed 

in triplicate, as shown in the scores plot. (B) Loadings plot from the PLS analysis of 

biochemometric data. The ion for macrosphelide A (4) was the most correlated with the 

bioactive samples in the scores plot. (C) The selectivity ratio analysis of the PLS model data.
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Table 1

Summary of Data Analysis Methods for Biochemometric Data Sets.

method methodology applications analysis output

principal component 
analysis (PCA)

• map objects and variables onto latent 
variables separately
• identify correlations within groupings

• outliers
• quality control
• object diversity

• scores plot: summary of objects
• loadings plot: summary of variables

partial least squares 
(PLS)

• incorporate objects and variables for 
predictive modeling

• discriminating between 
groups
• biomarker identification

• scores plot: summary of objects
• loadings plot: summary of variables

s-plot

• combine modeled covariance and 
correlation from pls in a scatter plot

• same as pls • low correlation/intensity variables are close 
to origin
• highly correlated variables are distanced 
from origin

selectivity ratio

• ratio of explained (predictive) and 
residual (uncorrelated) variance
• variance developed from univariate 
“target projection”

• variable discrimination
• biomarker identification

• x-axis: independent variables (spectral data, 
retention time, etc.)
• single variable for identifying highly-
correlated peaks
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Table 2

Antimicrobial Activity of Alternaria sp. (AS) Crude Extract (CR) and Fractions AS-1-AS-4.
a

sample S. aureus growth inhibition (%)

chloramphenicol
b 98.3 ± 0.4%

AS-CR 100 ± 1%

AS-1 0.00 ± 0.03%

AS-2 99.83 ± 0.01%

AS-3 0.14 ± 0.02%

AS-4 0.76 ± 0.01%

a
Growth inhibition of S. aureus strain SA1199 relative to the vehicle control as measured by OD600. AS samples measured at a concentration of 

100 μg/mL. Data presented as mean of triplicate analyses ± SEM.

b
Chloramphenicol functioned as the positive control.
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Table 3

Identification of Bioactive Marker Ions from Alternaria Sp.

marker ion ion (molecular formula, δ (ppm)) adducts and fragments (molecular formula, δ 
(ppm))

tentative identification

1 273.0756 [M+H]+ (C15H13O5, 0.5) 255.0699 [M+H-H2O]+ (C15H11O4, 4.2) Alternariol monomethyl ether
a

2 198.1124 [M+H]+ (C10H17NO3, 0.4) Tenuazonic acid
a

3 400.2480 [M+H]+ (C24H34NO4, 0.6) 422.2292 [M+Na]+ (C24H33NO4Na, 1.6) Altersetin
a

382.2375 [M+H-H2O]+ (C24H32NO3, 0.7)

a
Previously reported from cultured Alternaria spp.31
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Table 4

Antimicrobial Activity of Isolated Compounds from Alternaria Sp. and Pyrenochaeta sp.
a

sample MIC S. aureus MIC MRSA

μM μg/mL μM μg/mL

berberine (+ control) 446 150 446 150

alternariol monomethyl ether (1) 275 75 ND
b ND

altersetin (3) 0.59 0.23 4.67 1.9

macrosphelide A (4) 219 75 ND ND

a
Minimum inhibitory concentrations (MIC) against S. aureus strain SA1199 and a strain of MRSA (USA300 LAC strain AH1263) are presented as 

mean of triplicate analyses. Berberine functioned as the positive control.

b
ND - not detected
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Table 5

Antimicrobial Activity of Pyrenochatea sp. (PS) Crude Extract (CR) and Fractions PS-1-PS-4.
a

sample S. aureus growth inhibition (%)

chloramphenicol
b 99.2 ± 0.2%

PS-CR 78.2 ± 2.4%

PS-1 40.0 ± 1.2%

PS-2 36.3 ± 1.5%

PS-3 26.4 ± 4.7%

PS-4 95.8 ± 1.7%

a
Growth inhibition of S. aureus strain SA1199 is displayed as percent growth inhibition normalized to the vehicle control as measured by OD600. 

Pyrenochatea sp. samples were measured at a concentration of 100 μg/mL. Data presented as mean of triplicate analyses ± SEM.

b
Chloramphenicol functioned as the positive control.
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