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Abstract

Background—Anaphoric references occur ubiquitously in clinical narrative text. However, the 

problem, still very much an open challenge, is typically less aggressively focused on in clinical 

text domain applications. Furthermore, existing research on reference resolution is often 

conducted disjointly from real-world motivating tasks.

Objective—In this paper, we present our machine-learning system that automatically performs 

reference resolution and a rule-based system to extract tumor characteristics, with component-

based and end-to-end evaluations. Specifically, our goal was to build an algorithm that takes in 

tumor templates and outputs tumor characteristic, e.g. tumor number and largest tumor sizes, 

necessary for identifying patient liver cancer stage phenotypes.

Results—Our reference resolution system reached a modest performance of 0.66 F1 for the 

averaged MUC, B-cubed, and CEAF scores for coreference resolution and 0.43 F1 for 

particularization relations. However, even this modest performance was helpful to increase the 

automatic tumor characteristics annotation substantially over no reference resolution.

Conclusion—Experiments revealed the benefit of reference resolution even for relatively simple 

tumor characteristics variables such as largest tumor size. However we found that different overall 

variables had different tolerances to reference resolution upstream errors, highlighting the need to 

characterize systems by end-to-end evaluations.
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1. Introduction

Reference resolution is the task of identifying expressions in text that refer to the same real-

world entities. In natural discourse, humans readily employ reference resolution to thread 

together discrete pieces of information, creating a cohesive picture of discussed entities for 

both disseminating and processing information. For example, consider the following excerpt 

from a radiology report: The three mentions of the hypervascular lesion appear in separate 

sentences, yet the reader will naturally group them as one real world entity.

Solving reference resolution is imperative to unearthing the complex web of information 

trapped in clinical narrative text. Unfortunately, the state-of-the-art in reference resolution in 

the general domain is still limited; capabilities are even more modest in the clinical domain, 

in which there is a relative scarcity of annotated corpora. Furthermore, in the clinical 

domain, there are still well-known unsolved text processing problems such as ill-formed, 

ungrammatical, telegraphic, semi-structured, abbreviation-ridden narratives. This paper 

focuses Specifically on reference resolution for tumor references found in radiology reports.

More precisely, our work targets coreference and particularization forms of anaphoric 

references, where coreference refers to instances in which two template heads are 

equivalent, as in Figure 1. We define a particularization relationship as a parent-child 

reference. For example, in Figure 2 Lesions(1) is a reference that represents a set of items, 

particularized by Lesion(2), Lesion(3), and Lesion(4).

Additionally, we are interested in the real-world task of automatically categorizing patients 

into liver cancer staging phenotypes, for which reference resolution is a critical intermediate 

step. To this end, we are motivated to identify three summative tumor characteristic variables 

important for staging: (1) largest size of a malignant tumor, (2) tumor counts, and (3) 

whether 50% of the liver organ is invaded by tumors. These are relevant for three liver 

cancer staging algorithms: AJCC (American Joint Committee on Cancer), BCLC (Barcelona 

Cancer of the Liver Clinic), and CLIP (Cancer of the Liver Italian Program). Since these 
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variables require aggregate knowledge of tumor-related attributes, an end-to-end evaluation, 

incorporating reference resolution, using these staging variables would provide a worthy 

perspective.

In this paper, we (a) detail our annotation for tumor reference resolution and tumor 

characteristics, (b) present our machine-learning reference resolution and rule-based tumor 

characteristics annotator approach for our tasks, and (c) report our reference resolution 

results, as well as an end-to-end result for the final tumor characteristics extraction.

2. Related work

Reference resolution is an active area of research in the natural language processing domain. 

General english NLP focus on reference resolution has primarily been on newswire text, 

with several notable information events such as the Message Understanding Conference 

(MUC) [1] and the Automatic Content Extraction (ACE) program [2]. The OntoNotes 

project includes coreference annotations across three languages (English, Chinese, and 

Arabic) for various text [3]. Similar to our goals, one previous work attempts to classify 

event, subevents, etc. using a pairwise logistic regression classifier [4].

In the biomedical domain, the BioNLP 2011 Shared Task featured anaphoric coreference of 

biomedical entities, e.g. biological entities, processes, and gene expressions [5].

In the clinical domain, annotation of a variety of concept types, e.g. person, tests, problems, 

for coreference, has been the focus of the 2011 i2b2/VA Cincinnati challenge [6]. Some 

difference between our task and that of the 2011 i2b2/VA Cincinnati challenge are the 

following: (a) we target very few specific mentions (tumor references instead of large classes 

such as person, test, or problems) and (b) our annotation is based on smaller noun phrase 

chunks. For example, the i2b2 challenge puts references between long noun phrases which 

includes descriptors such as: “’a left facial mass”, “a right parietal hyper dense and 

heterogeneously enhancing mass”, “an endobronchial tumor of the right upper lobe 

bronchus”, “a 5mm linear, focal area of enhancement in the left central semiovale”. In 

contrast, our references are between shorter phrases, e.g. “hypervascular lesion” or “tumor”. 

Similar to our task, the Ontology Development and Information Extraction (ODIE) part of 

the corpus has been annotated with anaphoric references, with identity, set/subset, and part/

whole relations [7].

Related works on reference resolution relevant to tumors or clinical findings have been the 

subject of several works. Coden et al [8] identified coreferences in pathology reports using a 

rule-based system. Son et al [9] classified coreferrent tumor templates between documents 

with a MUC score of 0.72 precision and 0.63 recall. Sevenster et al [10] paired numerical 

finding measurements between documents.

Actual reference resolution tasks vary widely in scope. For example, nouns, pronouns, and 

noun phrases are common; however, coreference for nested noun phrases or nested named 

entities, (e.g. “America” in “Bank of America”), relative pronouns, and gerunds may not be 

annotated in a corpus [11]. Here our references are between the template heads of tumor 

templates. Our corpus does not include pronominal cases and nested references.
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3. Methods

3.1. Dataset

Our dataset is a set of 101 abdomen radiology reports drawn from 160 hepatocellular 

carcinoma (HCC) patients, annotated for 6 important entities, e.g. tumor reference and 

measurement entities, and 7 relations, e.g. hasSize. Several examples of the template 

annotations are shown in Figure 3.

Entities and entity attributes are described in Table 1, and relations described in Table 2. The 

total numbers of entities, relations, and strict templates for the were 3211, 2283 and 1006, 

respectively. The corpus is described in a previous work [12]. The number of relaxed 

templates which encode, isNegated, hadMeasurement, and hasTumorEvid relations as 

attributes, and re-attach nested relations to the highest head entity, is 999 (the number drop is 

due to tumor evidence and negation singletons being removed). The breakdown of relaxed 

templates by category is detailed in Table 3.

3.2. Annotation for tumor reference resolution and tumor characteristics

Annotation for both reference resolution and tumor characteristics was performed on all 101 

reports. 20 reports were used to measure inter-annotator agreement between a medical 

student and a biomedical informatics graduate student. The rest of the corpus was single-

annotated by the biomedical informatics student.

3.2.1. Reference resolution annotation—Our reference resolution annotation are 

based on two types of relations for tumor-related templates (TumorSingleton and Tumor 

templates) heads:

• coreference equivalence relations between mentions, e.g. Figure 1

• particularization a directed relation in which the first argument 

represents a set of tumor reference(s) that contains the second argument 

tumor reference(s), e.g. Figure 2

Pronominal cases, e.g. “it”, “they”, and “these” are unmarked.

For our annotation software, we used brat[13], a web-based, annotation software for our 

reference resolution annotation. Since the number of coreference and particularization 

relations would visually render the annotations to be highly cluttered, we augmented the 

software to output text information regarding the clusters and particularizations annotated 

whenever the user selected a “show references” button, as shown in Figure 4.

We measured inter-annotator agreement for coreference in terms of MUC [14], B-cubed 

[15], and CEAF [16] for tumor-related template heads. The agreements were at 0.956, 0.969 

and 0.916 F1, respectively. A more detailed description of these metrics and our exact 

evaluation is described in Section 3.4. For annotator 2, there were 20 clusters (no 

singletons), 149 clusters (with singletons), with the average size of 2.7 entities per cluster. 

The cluster-normalized F1 measure for particularization relations was at 0.837.
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Some ambiguities did occur between coreference and particularization, which accounted for 

some of the disparity in inter-annotator agreement. Mainly, as given in the examples of 

Figure 5, some mentions are singular but may be equivalent to the plural form of another 

mention.

The final corpus has 210 clusters (no singletons), 479 cluster (with singletons), with an 

average of 2.60 mentions per cluster. Inferred particularization relations amounted to 573. 

The average and median number of sentences between the closest pairwise mentions in the 

same cluster are 10 and 6 sentences respectively. The large difference between mean and 

median suggests the existence of some very long-distance coreference relations. The mean 

proportion of mentions that are exact matches in a cluster is 37%, 43% if normalized for 

capitalizations. The average proportion of mentions found in the Findings and Impression 

section per cluster respectively, are 57% and 38%. The proportion of particularization 

relations that connect mentions in different sections is 47%.

3.2.2. Tumor characteristics annotation—Our tumor characteristics annotation 

included a spreadsheet that referenced each document name and (1) the number of tumor 

counts by type (benign, indeterminate, unknown, and malignant), (2) the largest size for 

malignant tumors, and (3) whether or not more than 50% of the liver is invaded. We decided 

to mark inequalities, as at times the documents do not in fact give a clear number. 

Meanwhile, we also collected information regarding the various tumor counts for each of the 

Findings and Impression sections, as well as the entire document. A sample is of this is 

shown in Figure 6.

Because the measurement for (3) is not readily quantifiable given the information in reports, 

we use a series of expert-created guidelines to determine the criteria for (3), as outlined in 

the Figure 7.

The inter-annotator agreement is shown in Table 4. The explanation of our evaluation for 

inter annotator agreement is the same evaluation as those in our system. This is described 

more thoroughly in Section 3.4.3.

Tumor characteristics annotation were subject to various gray areas. For example for tumor 

counts, at times there were many ambiguous statements regarding the numbers. One 

example of this is in the case of conjunctions, several examples of which are shown in 

Figure 8.

The first statement can imply either one 5–6-mm focus in segment 6/7 and one in segment 5, 

or one 5–6-mm touching segments 6/7 and segment 5; or multiple 5–6-mm foci in the areas 

of segment 6/7 and 5. Similarly, “enhancing area,” in the latter statement, may be one large 

area inside segment 6 and 7 (which are adjacent) or separate areas in 6 and 7. Furthermore, 

to gather the most accurate number bounds for tumor counts, it was at times necessary to 

add multiple inequalities, e.g. if there are multiple (but unspecified or only partially 

specified) lesions in separate areas, which added to the cognitive load.

Annotating the largest size was the least controversial, though this too has some ambiguity. 

For example the same lesion may have two different measurements in a single report. For 
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example in the Findings section, the largest size might be “2.5cm” but the same lesion is 

later referred to as “2.4cm” in the Impression section. In another example, one measurement 

mentioned may be specific, e.g. “6.3 × 6.1 × 9.8 cm”, and but later rounded, e.g. “6 × 6 × 10 

cm”. Moreover, the amount of text and lengths of the documents, including many possible 

repetitions, could make it difficult to locate the best representable sizes.

The >50% variable was at times still unclear, even with the guideline. Analyzing Figure 9 as 

an example, it is obvious that there are multiple tumors in both the right lobe and in the left 

lobe; however only 3 segments are Specifically mentioned. It is therefore not clear if the 

unmentioned numerous tumors may be all over the liver or only in those specific parts.

The distribution for the full corpus of the tumor characteristics annotation, binned along 

critical threshholds, is shown in Table 5.

3.3. System

Our system consists of two distinct components: the reference resolution classifier and the 

tumor characteristics annotator. The reference resolution classifier takes structured tumor 

templates from a document and categorize which templates are equivalent or in a part-of 

relation. The tumor characteristics annotator receives grouped tumor templates and outputs 

(1) the number of tumor for each malignancy category, (2) the largest size malignant tumor, 

and (3) whether 50% of the liver is taken up by malignant tumors. The two components are 

further described in Section 4 and 5.

3.4. Evaluation metrics

Evaluation for our various information extraction goals were measured using F1:

(1)

where P = precision and R = recall used different definitions of instances, precision, and 

recall depending on each task. In the next sections, we detail the specific instance and F1 

definitions for each evaluation task.

3.4.1. Coreference evaluation—For coreference evaluation, we use the F1 metrics for: 

MUC [14], B-cubed metric [15], and CEAF [16]. We also used the unweighted average of 

F1 between the three metrics as a separate measure.

3.4.2. Relation Evaluation—A relation is a labeled directed connection between two 

mentions. A correct relation requires the correct label (in this case particularization) and the 

correct identification of the first mention to the second mention. Here, 

(precision),  (recall), TP is true positives, FP is false positives, and FN is false 

negatives.
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3.4.3. Tumor characteristics evaluation—Our tumor characteristics evaluation is 

based on the correct label for each document and tumor characteristic variable: (1) tumor 

counts for benign, indeterminate, malignant, and unknown and (2) largest size for malignant 

tumors, and (3) whether > 50% of liver is invaded. Although we also labelled tumor counts 

for specific sections in a document (Findings and Impression) we only evaluate values for 

the entire document in this work.

We also introduced a relaxed match motivated by our specific extraction needs for liver 

cancer staging for AJCC, BCLC, and CLIP liver cancer algorithms. Based on staging 

criteria, there are only certain critical thresholds that affect the score. For example, given 

malignant tumor measurements all under 3cm, it does not make a difference if our algorithm 

cannot distinguish between 2 or 3 tumors, or if it cannot distinguish between 5 and 10 

tumors; however, if the system cannot distinguish between a single tumor and multiple 

tumors, the cancer stage is changed drastically. The case is the same for certain sizes. Thus, 

our relaxed match measures based on the bins discretized from the critical values of our 

staging algorithms. The bin thresholds are the same as those summarizing our tumor 

characteristics annotation distribution in Table 5.

4. Reference resolution classifier

4.1. Approach

Our reference resolution classifier consists of a greedy algorithm which visits each template 

in the order of appearance in each document, and classifies the head of a template as 

EQUIV, SUBSETOF, SUPERSETOF, and NONE for each available cluster. If the template 

is EQUIV to one or more clusters, the template is added to the clusters and merged. For all 

other choices, the template forms a new cluster.

Figure 10 depicts the choice of a new potential cluster being being classified with one of the 

relation labels for each available existing cluster. At each round, classifications of the current 

template with existing clusters are done independently. Relations between clusters are 

updated at each round. When cycles emerge, all relevant clusters are merged. If there is a 

conflict due to a NONE classification and another label, the other labels take precedence. 

Classifications were trained using Lib-SVM and MALLET, for a support vector machine 

with a linear kernel with default settings. Feature values are scaled by the difference between 

the minimum and maximum values. All features (described in Section 4.2) were used for the 

classification.

After the assignment of EQUIV, SUBSETOF, SUPERSETOF, and NONE for each cluster in 

a document, the relations were translated back into coreference (EQUIV) or 

particularization (SUBSETOF or SUPERSETOF were converted back into a directed 

relation labeled as a particularization) relations for evaluation.

4.2. Reference resolution features

We detail several types of features shown in Table 6. Classes of these features are described 

in the following section.
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Normalized anatomic location features—If anatomical entities are detected for a 

template, they are normalized to an anatomic concept. Based on this concept, we designed 

features based on anatomic hierarchy, e.g. “segment VIII” is contained in “liver”. The 

processing and normalization of anatomic entities is further described in Section 6. 

Normalization was based on Unified Medical Language System (UMLS) [18] concept 

names. Relevant related features are containedIn, containerOf, and sameLocations.

Positional features—Whether or not a template appears in the top or near the bottom of 

the template will affect how many options it will be clustered to and the threshold to what 

cluster similarity should be in order to be paired. We included several features related to the 

position of a template over all templates in a document. For example, nthTemplate gives 

both the absolute number and the ratio of the template position normalized to the number of 

all the templates.

Relative features—Relative features identify differences between candidate clusters. For 

example, onlySameMal is in the case of if a candidate cluster is the only one of the 

candidate clusters which has the same malignancy status. Another exists for same 

measurement.

Static features—Static features includes a variety of features, such as the section of the 

template, n-grams in the sentence, and number of measurements (numOfMeas). These 

features remain the same regardless of what candidate cluster a template head reference is 

being classified with.

Similarity features—Similarity features (simvecfeats and sim) are measured from the 

current template head to be classified to an existing candidate cluster. The similarity with the 

entire cluster is measured by taking the maximum of each similarity dimension among all 

the templates in the existing candidate clusters. For all dimension except for 0 and 1, subset 

candidate templates features are combined and normalized together.

Similarity features include the sentence similarity features, tumor reference similarity, as 

well as similarity between template attributes. For example, tumor reference similarity, 

measurement similarities, anatomy similarities, and anatomy similarities. The total of all 

similarity features combine to form a similarity vector of 9 dimensions. Each dimension is 

described in the Table 7.

5. Tumor characteristics annotator

The tumor characteristics annotator takes in tumor templates and reference resolution 

information and outputs the three types of variables for our liver cancer staging (size, 

number, and whether > 50% of liver is invaded), using a series of heuristic rule-based 

algorithms. The various system components parts are shown in Figure 11. First the templates 

are updated to a new malignancy status depending on their coreference and particularization 

relations to other templates, next the templates are sent through several various pipelines 

depending on the chosen variable. In the following sections, we describe several of the non-

obvious components in the pipeline: the module for updating malignancy status, the module 
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for classifying whether >50% of liver is invaded, and the module for consolidating 

referenced tumors.

5.1. Updating malignancy status

The malignancy statuses for related tumor templates are updated in the following way. The 

malignancy status for coreferrent templates are updated to the most critical case. Thus, 

anything coreferrent to a malignant tumor template is also malignant; if the most critical 

status is indeterminate then all templates are updated to indeterminate. In regards to 

particularizations (superset/subset relations), we take a top-to-bottom approach. The status 

of the superset is transferred down to the templates in the subset. After this top-down-

transfer, the inter-cluster malignancy status is updated once more. Extension of this updating 

algorithm continuously is left for future work.

5.2. Invasion of >50% of liver logic

The logic for deciding whether or not >50% of the liver is invaded, as shown in Figure 12. 

The algorithm is based on the expert guidelines introduced in Figure 7.

Concepts such as “right lobe”, “left lobe”, and “liver”, as well as decisions on which lines 

are segments are involved, are based on the anatomy normalizations from the anatomy 

normalization module, described in Section 6.

5.3. Reference consolidator

The reference consolidator is responsible for updating templates to the most current set of 

information and removing extraneous other templates. The premise is to be able to refine all 

the given information to a few representative templates. For example, if a reference in 

“Several liver lesions, suspicious for HCC” has the particularizations of “Lesion 1: segment 

8, 3.0cm” and “Lesion 2: segment 5: 2.1×1.1 cm” then the template associated with the first 

passage will be (1) updated with measurements of “3.0cm” and “2.1×1.1 cm”, (2) updated 

with anatomies of “segment 8” and “segment 5”, and (3) updated to have a number of “2” 

for tumor count. Furthermore, if the particularization templates match the malignancy status 

of its superset template then those are deleted. The final result should yield a set of tumor 

templates with updated count, measurement, anatomy, and malignancy attributed that can be 

easily summed to determine the number of each type of tumors found in the radiology 

report.

Our exact algorithm includes heuristics for deciding for unambiguous cases, for example:

• If the tumor count is set to 3 what happens if there are more than 3 

measurements?

• If the tumor count is not reliably determinable, how should it be decided 

based on the number of associated measurements?

Both coreference and particularization relations are used in the decisions.
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6. Anatomy Normalizer Module

Even with properly marked anatomy entities, concept normalization requires both 

conjunction normalization as well as concept disambiguation. For example, “segment 2, 

4A/B, and 5” must be normalized to “segment 2”, “segment 4A”, “segment 4B”, and 

“segment 5”. Furthermore, “left lobe” may refer to “lung” or “liver”.

Anatomy named entity clauses are normalized to discrete concepts by first, determining the 

organ dictionary to use using the organ context of the sentence. Afterwards, text-spans 

adjusted to account for missed endings for system entities, e.g. “segments VIII and V/IVb”, 

and terms are conjunction-normalized. Finally, concepts are matched based on the lowest 

score of summing together the matching edit distance with any leftover substrings.

In the following sections, we describe our rule-based algorithms for how to map sentences to 

an organ context and how to normalized for conjunctions; as well as our automatic creation 

of organ-specific hierarchal dictionaries using the Foundation Model of Human Anatomy 

(FMA) ontology [19].

6.1. Mapping sentences to Organ Scope

In order to differentiate between ambiguous anatomic locations, e.g. “left lobe” the organ 

context for a sentence must be understood. However, this information is not always available 

within a sentence, requiring external information. An example of this is shown in Figure 13.

Our algorithm is detailed as follows. From starting at the beginning of a document to the 

end, each sentence, previously tagged with UMLS concepts using MetaMap [20], was 

categorized as related to one or more organ concepts, if these two conditions were met: (1) 

an anatomic location semantic type was found and (2) the corresponding matched string was 

matched to the organ dictionary. The list of semantic type abbreviations included in the 

anatomic location list are: anst, bdsy, blor, bpoc, bsoj, and tisu. The dictionary of organ-

related UMLS concept identifiers was created by recursively identifying “is-a” relations 

starting from the top (non-inclusive) concepts listed in Figure 14.

Our algorithm also assigns organ context by matching to organ-related adjectives, e.g. 

“hepatic” refers to the liver. The mapping from a organ-related adjective to an organ was 

created by taking pertainyms from WordNet [21] which point to a MetaMap-matched organ. 

Examples of the resulting dictionary is shown in Table 8. If no match occurs, the previous 

line’s organ is set for the current line. At the start of each section, the assigned organ is reset 

to a default state. In our case, the default organ concept was set to the liver.

A manual review of 5 randomly drawn documents (215 sentences) revealed a precision of 

94% for this procedure.

6.2. Normalizing for conjunctions

Conjunctions were normalized by first finding the longest match from organ-specific 

dictionaries. The automatic creation of these hierarchal organ-specific dictionaries is detailed 

in Section 6.3. The overlap of the longest match was then intersected with the highest node 
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of the sentence dependency tree. The longest match was determined by finding the terms 

with the lowest edit distance. Starting from this match, the center-most word is popped off. 

Then, each unused word from the anatomy entity is paired with the match, ignoring terms 

such as “and”, “or”, “/”, “-” and “.”. The construction of the pairings for “segments 4A and 

4B, and 2 and 6”, as shown in Figure 15. The same algorithm is designed to also be used for 

cases such as “Tumor thrombus within main, right and proximal left portal veins”.

Our aim here was to provide a way to capture both types of conjunction problems that we 

encounter for our anatomy entities, such as the right-branching conjunctions of “segments x, 

x, and x” as well as the left-branching conjunctions of “x, x and x portal veins” in the least 

assuming way possible. Thus, the generalization of this heuristic for other cases is left for 

future investigation.

6.3. Organ-specific hierarchal dictionary creation

Portions of each organ’s hierarchal constituent structures were extracted starting from the 

organ concept identifiers listed in the previous section. The concepts were collected by 

recursively following relations: has regional part, has constitutional part, and has 
attributed part.

Synonym dictionaries for each concept was augmented by adding synonyms in which roman 

numerals were replaced with numbers (1–12), e.g. “segment II” would be duplicated with 

variant “segment 2”. Synonyms that required mentions of the specific organ, e.g. “right lobe 

of the liver”, were also duplicated with the removal the organ mention to allow better 

matching, e.g. “right lobe”. The following regular expressions were used to identify portions 

of synonyms to be augmented: “ of [organ]$”, “[^organ]”, “[^organ-adjective]”. These 

regular expressions were created after studying the naming conventions of the FMA. As a 

caveat, this may not generalizable to all ontologies and is subject to changes of the FMA 

terminology.

7. Results

Tables 9 show coreference and particularization classifications results, using gold standard 

tumor reference and templates, with a simple baseline of ngrams and ngrams-matching 
features compared with our system with the full set of features. Though there was little 

improvement for particularizations, the coreference performance increased sizably.

In order to quantify how well our tumor characteristics annotator works, we experiment with 

using no reference resolution information, using gold standard reference resolution, and, 

finally, system reference resolution using gold standard templates. The results are shown in 

Table 10. Given system reference resolution annotations, the tumor characteristics 

significantly dropped, however the performance remained high for the > 50% variable, and 

dropped less drastically for the largest size variable, compared to those for the tumor count 

variables.

We were also interested in knowing how the two components affect our entire system end-

to-end. That is given, system produced templates, what is our tumor characteristics 
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annotation results? The comparison results are shown in Table 11. From these results we see 

the > 50% variable remains high, suggesting that it is a variable that is more robust to 

changes in reference resolution errors as well as template extraction problems. The tumor 

count variables for all types of malignancies are shown once again to drop substantially. 

However, this makes sense as even with perfect gold reference resolution, our annotation 

logic would not get past 0.80 exact F1; furthermore, figuring out the number of tumors 

requires very exact reference resolution information, making the tolerance for errors very 

much lower. The largest size variable was the least affected using both the system references 

and system templates; this accounts to the ability of the metric to absorb errors (it uses a 

maximum function).

We also allowed our system to only process certain sections of the document, e.g. Findings 

only, Impression only, or both (default). We present our results of doing so for our three 

important variables in Table 12, with different combinations of gold and system reference 

resolution and template annotations.

While the tumor count variable for malignant tumors did better using only the Impression 

section, the other two variables benefitted from having information across both the Findings 

and Impression section. Interestingly, the largest size variable is much lower for the 

Impression section compared to the Findings section, which reinforces the observation we 

have found that more detailed information are often kept in the Findings section, with more 

summary information in the Impression section.

8. Error analysis and discussion

8.1. Tumor reference resolution classification

Analyzing the misclassification of relations, we found that of the 358 FP particularizations, 

350 were represented in the gold standard except with the opposites direction (supersetof/

subsetof switch) and 27 corresponded to equivalent relations in the gold standard (the may 

overlap with the supersetof/subsetof switch since they are not mutually exclusive). Similarly, 

for the 253 FN, 217 were reversed and 34 were related to equivalent relations in the system.

There are many areas for improvement with this classification. Firstly, the greedy merge 

approach for all coreference and particularization loops is simplistic. An algorithm that 

resolves this issue by ranking probabilities of each individual relation may do better to 

resolve the loop without causing large chain reactions. In general english, there are 

constraints such as pronoun agreement (“John” and “he” vs “her”) that are used for 

coreference systems. We did not implement any such constraints, partly because of our small 

corpus. Some ideas in this vein could be constraints against different “named lesions” being 

in the same cluster, e.g. “Lesion 1” and “Lesion 2”. Our classification for each template to 

all candidate clusters were done individually, though perhaps joint classification could yield 

marginally better results. Finally, our system aggregated clusters from top to bottom in a 

greedy fashion, allowing the possibility of cascading errors.
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8.2. Tumor characteristics annotation

Analysis of the tumor characteristics annotator using gold standard templates and referencer 

resolution annotations revealed some interesting phenomenon.

While the tumor count errors was partly due to our system not producing inequalities (which 

is required in the gold standard under strict evaluation), it was also due to the heuristic rules 

of changing malignancy status (only if coreferrent or top-down) and in merging. 

Furthermore, while particularization hierarchies may go down several levels, we limited our 

number, measurement, and anatomy update rules to a scope to 3 levels.

In the case of > 50% invasion of the liver, there were only a handful of mistakes. One false 

positive was due to a possible typo in the report (listed as 24 cm in Findings but 24 mm in 

the Impression), one false negative in which no template was attached to a malignancy 

evidence finding (it was outside the Findings/Impression section), and one case which was 

labelled “n/a” due to no size or anatomy in the report at all. The remaining cases included 

one false negative in which “both segments” was not converted to mean segments 1–8 in the 

liver and a false positive in which “majority” was not meant to modify “liver” in the 

sentence. The performance for this was quite high regardless of reference resolution for two 

reasons. There was a skew in population towards < 50% invasion of the liver, which was the 

default. Secondly, for positive cases, only some documents required reference resolution. Of 

those that required reference resolution, it was not necessary to be as precise as for 

calculating tumor counts. For example, a lesion greater than 10 cm may only be known to be 

malignant through a reference in another sentence. As long as the the measurement can be 

labeled as malignant through either a coreference or particularization relation (regardless 

which one is true), then the overall < 50% invasion of the liver would be easily determined.

For the largest size variable, two errors were due to no malignancy evidence attached to 

templates, four errors were due to either differences in reported measurements (mistakes or 

simply precision differences, e.g. 2.5 cm vs. 2.4 cm). Finally, one error was due to 

malignancy status not being updated in a down-up fashion. This variable improved even with 

modest reference resolution performance because it only required reference resolution for 

better assignment of malignancy status; therefore as in the previous case, it requires less 

precise reference resolution classification. Afterwards, if other measurements with their 

malignancy statuses are correctly identified, the largest size could be calculated easily.

9. Conclusions and future work

In this work, we present our annotation as well as our system design for tumor reference 

resolution and tumor characteristics annotation. Although our reference resolution and tumor 

count results are modest, our experiments demonstrated that improvements in reference 

resolution will also lead to improvements in downstream tasks.

Finding the number of tumors proved to be the most difficult variable, as it requires very 

precise reference annotations. Meanwhile the other variables, > 50% invasion of the liver 

and largest size, were more tolerant to errors.

Yim et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Some limitations to this work is that our dataset is from a single institution, our corpus size 

is small, and our annotations are mostly single-annotated. Our corpus annotations are also 

specific for tumors and not generalizable towards general medical concepts.

In future work, we will incorporate our system into our overall patient liver cancer staging 

system.
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Highlights

- Reference resolution is essential for understanding the content in free text 

radiology reports.

- For tumor-related entities and specific tumor characteristics, e.g. largest size 

and tumor count, reference resolution is shown to improve predictive 

performance.

- Different information extraction application tasks have different thresholds 

for reference resolution errors; therefore reference resolution must be 

measured using end-to-end experiments.
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Figure 1. 
Radiology report excerpt
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Figure 2. 
Example of one reference and its particularizations
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Figure 3. 
Three canonical template annotation examples. The last one is a case in which the template 

head is measurement entity.
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Figure 4. 
Brat annotation with augmentations
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Figure 5. 
Examples of coreference relations that can be mistaken as particularizations
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Figure 6. 
Tumor characteristics annotation
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Figure 7. 
Logic for >50% of liver invaded
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Figure 8. 
Conjunction ambiguities
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Figure 9. 
Ambiguity in tumor invasion area
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Figure 10. 
Reference resolution set up
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Figure 11. 
Tumor characteristics annotator
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Figure 12. 
Algorithm for >50% liver is invaded
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Figure 13. 
Different parts of the report have anatomical context not necessarily immediately available 

in the same sentence or not explicitly clear. In the third sentence, “right base” can be inferred 

to be part of the lungs by the reference to “Lungs bases” in the previous sentence or the 

mention of “pleural” in the same sentence.
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Figure 14. 
Starting organ concept identifiers
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Figure 15. 
Conjunction normalization process. Step 1: Isolate relevant parts of the dependency tree and 

connect loose items as necessary. Step 2: Find the “base string” to connect other items to, by 

using the longest match intersected with the highest dependency node. Step 3: Cycle 

through the dependency tree and connect with “base string” ignoring conjunction tokens.
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Table 1

Entity description

Label Description Freq.

Anatomy Anatomic locations, e.g. “liver” with
attributes (Liver, NonLiver)

1043

Measurement Measurements findings, e.g. “2.4 cm” 489

Negation Negation cue, e.g. “no” 73

Tumor count Number of possible tumors, e.g. “2”,
“multiple”

174

Tumorhood
evidence

Evidence indicating identity, type, or
diagnostic information of a tumor
referring expression, e.g. “cyst”,

“suspicious for HCC”, with attributes
(isCancer, isBenign, inDeterminate)

630

Tumor reference References to possible tumors, e.g.
“lesion”

802

ALL 3211
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Table 2

Relation description

Label Description Freq.

hadMeasurement Past tense indication relation between
tumor reference or measurement to

another measurement

32

hasCount Relates a tumor reference its
corresponding tumor count

171

hasMeasurement Relates a tumor reference its
corresponding measurement

334

hasTumEvid For a tumor reference or measurement,
marks corresponding evidence to

tumorhood evidence

656

isNegated Relates a tumor reference to a
negation cue

75

locatedIn Identifies anatomy entity where a
tumor reference or measurement is

found

955

refersTo Relates a measurement to an anatomy
entity, indicating a measurement

(rather than a locatedIn)

60

ALL 2283
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Table 3

Relaxed template frequencies

Label Description Freq.

AnatomyMeas events with refersTo relations 53

Negation events with isNegated relations 75

OtherSingleton events with a single entity, which are
not TumorSingleton events

70

TumorSingleton events with a single entity, in which
the entity is a tumor reference or

measurement

157

Tumor events not part of the previous event
types

644

ALL 999
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Table 4

Tumor characteristics inter-annotator agreement

Label TP F1 F1 (relaxed)

Benign 17 0.85 0.95

Indet 18 0.90 0.95

Malignant 17 0.85 0.95

Unk 20 1.00 1.00

LargestSize 17 0.85 0.95

>50% 20 1.00 1.00
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Table 5

Tumor characteristics annotation distributions, binned according to crucial staging values. The value of “[0, 1, 

2–3, > 3]” was for a case in which the full number of lesions was given, but it was unclear how many were 

malignant, resulting in an unknown lesion inequality after subtraction < 5.

Annotation categories

Tumor counts Number Freq.

Benign 0 69

1 8

2–3 10

> 3 8

[2–3, > 3] 6

Indet 0 62

1 19

2–3 9

> 3 4

[2–3, > 3] 7

Malig 0 3.0

1 54

2–3 25

> 3 13

[2–3, > 3] 6

Unk 0 89

1 5

2–3 2

> 3 2

[2–3, > 3] 2.0

[0, 1, 2–3, > 3] 1.0

Largest size Size (cm) Freq.

[0,3) 43

[3,5] 26

(5–10) 17

[10,) 10

n/a 5

>50% Label Freq.

n/a 4

no 83

yes 14
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Table 6

Reference resolution features

Feature Name Feature Types Description

closestTempDist other The distance of the closest template in a candidate cluster to the current template

containedIn anatomic If any of the anatomies in the current template are contained in the anatomy in the candidate
cluster

containerOf anatomic If any of the anatomies in the candidate cluster are contained in the current template

header static If the sentence of the template looks like a section header

isSuperset other If the candidate cluster is already a superset of another cluster

malignancy static Malignancy status of template

malignancyOfCandCluster static Malignancy status of the cluster

nextBestSim relative, similarity L-2 norm of the next best similarity vector

ngrams static 1-, 2-, and 3- grams (using lemma) for sentences of template and a candidate cluster

ngramsMatching other Matching 1-, 2-, and 3- grams (using raw words) for sentences of template and a candidate 
cluster

nthTemplate positional, static The number template in the document

numOfCand other The number of candidate clusters

numOfMeas static The number of measurements

numOfTempInCluster other The number of templates in the candidate cluster

onlySameMal relative The only candidate cluster with matching malignancy as template

onlySameMeas relative The only candidate cluster with matching measurement malignancy as template

sameOrgan anatomic If the organ in the sentence matches organ in a cluster

sameLocations anatomic The matching locations of all

section static Section of the template

sim similarity The L2-norm of similarity vector

simvecfeats similarity This feature extends from the similarity vector features so that each individual similarity 
vector

dimensions are each considered their own feature

summaryOf static If tumor reference is preceded with “the”, “this”, “these”

totalNumOfTemp static Total number of templates in the document

totalNumOfImpTemp static Total number of templates in the Impressions section

UMLS other Matching UMLS concept between the template and the cluster

Underheading other If there is a sentence belonging in the cluster that looks like a header of the current template
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Table 7

Similarity features description

Target Description

sentence
similarity

jaccard proximity for sentence,
word-tokenized

tumor reference
similarity

jarowinkler string proximity

number of
measurements

difference between number of
measurement entities divided by the

larger number of measurements

tumor count
similarity

difference in tumor count divided by
the larger tumor count

matching
measurement1

The number of matching
measurements divided by the total

number of measurements in template 1
(Measurements considered matching if

within 0.1 cm)

matching
measurement2

The number of matching
measurements divided by the total

number of measurements in template 2

anatomy1 Sum of pairwise jarowinkler proximity
for all anatomy entity combinations
between template 1 and 2, divided

over the number of anatomy entities in
template 1

anatomy2 Sum of pairwise jarowinkler proximity
for all anatomy entity combinations
between template 1 and 2, divided

over the number of anatomy entities in
template 2

malignancy1 The number of matching malignancy
status (combined malignancy status’

get broken up, e.g.
“INDET-BENIGN” becomes

“INDET” and “BENIGN”), divided
by the total number of malignancy

status for template 1

malignancy2 The number of matching malignancy
status, divided by the total number of

malignancy status for template 1
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Table 8

Organ adjectives identified using WordNet pertainyms. As bones are considered organs in the FMA, adjective 

forms of specific bones were also captured (tibial).

Organ Adjective forms

kidney nephritic, renal, adrenal

liver hepatic

lung pulmonic, lung-like, pulmonary,
pneumogastric, pneumonic, cardiopul-
monary, intrapulmonary

prostate prostatic, prostate

spleen lienal, splenetic, splenic

tibia tibial
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Table 12

Tumor characteristics annotation results restricted by section measured in accuracy (gold-templates, gold 

references / gold-templates, system references / system-templates, system references)

Section

Findings Impression Both

>50% 0.81/ 0.80/0.69 0.89 /0.89/0.78 0.94/0.93/0.90

#malig 0.67/0.56/0.40 0.69/0.61/0.56 0.69/0.50/0.50

Largest
size

0.76/0.70/0.57 0.43/0.39/0.37 0.93/0.86/0.77
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