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Abstract

Brain function involves the activity of neuronal populations. Much recent effort has been devoted 

to measuring the activity of neuronal populations in different parts of the brain under various 

experimental conditions. Population activity patterns contain rich structure, yet many studies have 

focused on measuring pairwise relationships between members of a larger population---termed 

noise correlations. Here we review recent progress in understanding how these correlations affect 

population information, how information should be quantified, and what mechanisms may give 

rise to correlations. As population coding theory has improved, it has made clear that some forms 

of correlation are more important for information than others. We argue that this is a critical lesson 

for those interested in neuronal population responses more generally: Descriptions of population 

responses should be motivated by and linked to well-specified function. Within this context, we 

offer suggestions of where current theoretical frameworks fall short.
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Technological innovation has provided us with the ability to monitor the activity of many 

neurons simultaneously in intact neural circuits. It is now quite common to record from a 

hundred neurons at a time. A major focus of the Brain Research through Advancing 

Innovative Neurotechnologies (BRAIN) Initiative is to increase this capability further 

(Jorgenson et al. 2015).
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The spiking activity of neuronal populations is coordinated, producing seemingly complex 

activity patterns. A rich and diverse description of these patterns already exists, including 

traveling waves of activity (Sato et al. 2012), rhythmic fluctuations in different frequency 

bands (Buzsaki 2006), complex higher-order patterns (Ohiorhenuan et al. 2010), and many 

others.

One form of coordination that has received considerable attention is the relationship between 

the firing of pairs of neurons---termed correlations. Given our ability to measure large 

populations, it may seem odd to distill their activity to quantification of pairwise 

relationships: Understanding this second-order statistical structure is unlikely to capture 

fully the rich patterns of neuronal population activity observed (but see Schneidman et al. 

2006). However, the focus on correlations is not an inappropriate simplification. Rather, it 

arises because correlations have a strong impact on the information encoded by a neuronal 

population, particularly on the portion of information that can be extracted with simple and 

biologically realizable algorithms.

Our understanding of how correlations affect information has evolved considerably. We 

believe this progress is important for two reasons. First, it represents an achievement in its 

own right: We now understand much better what limits the representation of sensory and 

cognitive variables in neuronal populations. This is critical for understanding the neural 

basis of behavior, as nearly any behavior involves the activity of many neurons. Second, and 

perhaps equally important, this progress has shown the importance of grounding 

physiological measurements in quantitative theory. Correlations can be driven by many 

underlying processes and take many distinct forms. But theory has shown that some 

correlations may be more functionally relevant than others. We believe this is a critical 

lesson for studying population activity more generally. Rather than seeking to describe 

activity patterns more and more richly, progress will require understanding the relationship 

between activity and computation through theory.

Here we provide a brief review of how correlations affect population information and how 

this influence can, and cannot, be quantified. We also discuss progress in understanding how 

correlations arise. Because our focus is on understanding the relationship between 

information and correlations, we touch only briefly on the study of correlations more 

generally---in this sense, our work by no means attempts a complete review of the field. We 

conclude with thoughts about some clear shortcomings in current theoretical frameworks. 

We focus on populations of cortical neurons, particularly those in visual cortex, which have 

been studied extensively, but the issues we review and discuss are broadly applicable.

DIFFERENT TYPES OF CORRELATIONS

Correlation is a simple statistical measure of association among variables. It is thus not 

surprising that the term is used to refer to distinct types of associations, or relationships, 

among the activities of neurons.

Correlations are sometimes used to quantify the degree to which neurons have similar 

functional properties. For instance, the similarity of the orientation tuning of two neurons in 
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primary visual cortex (V1) can be quantified as the correlation between the pairs’ tuning 

functions. Measuring these correlations---termed signal correlations---requires presenting a 

range of stimuli to assess functional properties, averaging responses across trials, and 

computing the correlation between the resultant mean responses (i.e., tuning functions).

Influential work by Barlow and others has argued that an efficient representation involves, in 

part, minimizing correlations between encoding units (i.e., decorrelation; Barlow 2001, 

Simoncelli & Olshausen 2001). These theories address how tuning functions should be 

arranged to reduce representational redundancy. These are thus theories of signal 

correlations, although the optimal arrangement is also known to depend on the properties of 

encoding units’ response variability (Atick & Redlich 1990, Ganguli & Simoncelli 2014).

Correlations are also used to quantify the similarity in the response of a population of 

neurons to two different stimuli (e.g., two odors)---termed pattern correlations. Whereas 

signal correlations quantify the similarity between mean responses of two neurons across 

multiple stimuli, pattern correlations capture the similarity of activity patterns distributed 

across multiple neurons for two stimuli (Friedrich & Laurent 2001, Friedrich 2013).

Our focus here is on yet another type of correlation, which captures the degree to which 

response variability is shared between pairs of neurons. Neurons typically show substantial 

response variability, evident as fluctuations in the number of spikes evoked by a stimulus 

across multiple presentations (Tolhurst et al. 1983, Shadlen & Newsome 1998). A small 

portion of this variability is shared between neighboring neurons in cortex. This can be 

quantified with the Pearson correlation of the pairs’ spike counts to repeated presentations of 

the same stimulus. These correlations---often termed spike count correlations or noise 

correlations---usually have mean values of 0.01--0.2, with their magnitude depending on a 

broad range of factors (Cohen & Kohn 2011). For brevity, we refer hereafter to these 

correlations in trial-to-trial variability simply as correlations.

CORRELATIONS AND INFORMATION: A BRIEF HISTORY

In a seminal study, Zohary and colleagues (1994) measured correlations between pairs of 

neurons in area MT of macaque monkeys. Their measurements were motivated by a desire 

to explain why monkeys’ performance on a discrimination task was not considerably better 

than the performance afforded by the most sensitive MT neuron recorded. Although the 

variable responses of individual neurons limit the information they provide about the 

external stimulus, the responses of many neurons could be pooled or averaged to arrive at a 

precise estimate of the stimulus if the variability of each neuron were independent. Zohary et 

al. (1994) found, however, that MT response variability was correlated for neurons with 

similar functional properties. This shared variability cannot be averaged away, limiting the 

benefit of pooling signals over greater numbers of neurons. This limited benefit holds true 

for any positive level of correlation.

Averaging neuronal responses is conceptually simple and provides helpful intuition, but it is 

not always a sensible strategy for extracting information from a neuronal population. 

Neurons have a range of functional properties and sensitivities. Rather than weighting all 

Kohn et al. Page 3

Annu Rev Neurosci. Author manuscript; available in PMC 2017 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons equally by averaging, it makes sense to weight evidence from some neurons more 

than others for a particular task (Pouget & Thorpe 1991, Foldiak 1993, Seung & 

Sompolinsky 1993, Sanger 1996, Butts & Goldman 2006, Jazayeri & Movshon 2006). There 

are many algorithms, or decoders, for combining signals encoded across neurons (Pouget et 

al. 2000). Of particular interest are linear decoders, which compute their estimates based on 

a simple weighted sum of the response of each neuron. These decoders are attractive because 

they can be learned and implemented easily in a biological circuit (Widrow & Hoff 1960, 

Rescorla & Wagner 1972, Pouget & Thorpe 1991, Foldiak 1993, Seung & Sompolinsky 

1993, Salinas & Abbott 1994, Sanger 1996, Deneve et al. 1999, Jazayeri & Movshon 2006), 

where the weights assigned to each neuron might correspond to its synaptic weight in 

driving a downstream readout neuron.

To quantify the accuracy of a linear decoder, it is useful to consider a measure termed linear 

Fisher information. Intuitively, linear Fisher information measures the smallest change in the 

stimulus that can be discriminated reliably with an optimal linear decoder of the neuronal 

population response. Higher linear Fisher information means less variance in the optimal 

linear decoder’s estimates, or better discrimination performance. Formally, linear Fisher 

information is defined as

where f′ is the derivative of the tuning curve with respect to the stimulus variable of interest 

and Q is the response covariance matrix. The derivative of the tuning curve captures the 

signal provided by changes in mean response with changes in the stimulus; the covariance 

matrix captures the influence of each neuron’s response variance (diagonal elements) and 

the variance shared with other neurons (off-diagonal elements). Note that, for brevity, we 

refer to the relationship between correlations and information, but information is in fact 

related to response covariance. The correlations reported in physiological studies---the ratio 

of covariance to variance (standard deviations)---confound two distinct factors that can 

affect information in distinct ways. Additional details on linear Fisher information and its 

relationship to full Fisher information are provided in the sidebar, Linear and Full Fisher 

Information; additional details about linear Fisher information and its relationship to fine 

and coarse discrimination tasks are provided in the sidebar, Linear Fisher Information for 

Fine and Coarse Discrimination.

Abbott & Dayan (1999) were among the first to explore the effect of correlations on Fisher 

information (Sompolinsky et al. 2001, Wu et al. 2001, Wilke & Eurich 2002, and Averbeck 

et al. 2006; see also Paradiso 1988 for prescient work on populations of independent 

neurons). They considered a homogeneous neuronal population---one consisting of neurons 

with identically shaped tuning functions except that each neuron has a distinct preference. 

For a homogeneous population, Fisher information is reduced by correlations that are 

strongest between pairs of neurons with similar preferences, termed limited-range 

correlations. More precisely, not only is information reduced, but it saturates: It reaches a 

finite value even when the population size continues to grow. Numerous experimental 

studies have shown that correlations in cortex have a limited-range structure, including work 
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in V1 (Kohn & Smith 2005, Smith & Kohn 2008, Ecker et al. 2010), V4 (Cohen & Maunsell 

2009, Smith & Sommer 2013), and MT (Zohary et al. 1994, Bair et al. 2001, Huang & 

Lisberger 2009, Solomon et al. 2014) of nonhuman primates; V1 of cats (Martin & Schroder 

2013); visual cortex of rodents (Denman & Contreras 2014); and many others.

Why do limited-range correlations make information saturate in populations of 

homogeneously tuned neurons? Consider a homogeneous population with Gaussian tuning 

functions (Figure 1a). A stimulus presentation will evoke a population response, which is 

also Gaussian, when the neurons are arranged by their preferred stimulus (Figure 1c). 

Because neurons’ responses are variable, the population response will be a noisy one. Now 

consider the effect of making all neurons equally correlated, regardless of preference 

(uniform correlations; Figure 1b). This will cause the population response to fluctuate up 

and down on each trial without altering its shape or position (Figure 1c, red compared to 

blue). Because the estimate of the stimulus depends on the shape and position of the 

population hill of activity rather than its magnitude (i.e., comparing the relative responses of 

different neurons), these fluctuations have little effect on a decoder’s estimate. Therefore, 

the variance of the estimate will continue to decrease---and information to increase---as the 

population size grows (Figure 1f, black line). Limited-range correlations (Figure 1d), by 

contrast, will cause subsets of neighboring neurons to fluctuate together. This is because a 

particularly weak or strong response of a neuron on a given trial will be shared by neurons 

with similar preferences but much less so by neurons with different preferences. These local, 

shared fluctuations distort the population response on each trial. For instance, for the two 

trials shown in Figure 1e, there is enhanced responsivity in subsets of neurons slightly offset 

from those that prefer the presented stimulus (preferred stimulus of 0). These distortions 

cause the decoder’s estimates to deviate from the true stimulus and thus will cause 

information to saturate (Figure 1f, gray).

Although linear Fisher information saturates with limited-range correlations in homogenous 

populations, this is not always the case in populations with heterogeneous tuning (Shamir & 

Sompolinsky 2006, Ecker et al. 2011)---that is, if the tuning of neurons differs in amplitude 

or shape (Figure 1g), as it does in most brain areas. In heterogeneous populations with 

limited-range correlations, information can grow with population size, much as it does in 

populations of independent neurons. If limited-range correlations do not make information 

saturate in populations of heterogeneously tuned neurons, then what---if anything---does?

Moreno-Bote et al. (2014) recently showed the answer is beguilingly simple. It can be 

appreciated by reexamining the equation for linear Fisher information provided above: The 

aspect of response covariance that influences information is that which is related to the 

derivative of the tuning functions (specifically, proportional to the product of the derivatives 

of the tuning). Correlations with this structure---termed differential correlations---cause 

information to saturate. This is true regardless of the shape of the tuning functions. 

Differential correlations also cause information to saturate in homogeneous populations; it is 

simply that in these populations, limited-range correlations contain differential correlations.

To understand why differential correlations make information saturate, consider an observer 

performing the perceptual task of estimating stimulus orientation. If in each trial we perturb 
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the stimulus slightly by a small rotation, we will hamper the subject’s performance 

artificially. The subject’s estimates will be less accurate because our stimulus manipulation 

will alter the responses of orientation-selective neurons in a way predicted by the derivative 

of the tuning curve (by definition, the derivative indicates how responses change for small 

perturbations). Now consider the more typical scenario in which the stimulus is fixed but the 

neural representation varies across repeated trials of the task. The variability that will limit 

performance is that which causes fluctuations in the same manner as variations in the 

external signal. This is precisely the definition of differential correlations---they indicate 

response cofluctuations that cause population responses to fluctuate in the same manner as 

the fluctuations that would be caused by perturbing the signal itself (Figure 1h, i).

Critically, although differential correlations cause information to saturate, their contribution 

to overall correlations may be negligible (Moreno-Bote et al. 2014, Kanitscheider et al. 

2015b). Thus, measuring the relationship between correlations and the tuning functions’ 

derivative directly may not allow one to assess the presence or influence of differential 

correlations accurately. The next best way to test for their presence would be to test whether 

information saturates as population size increases. This would perhaps require recording 

from thousands of neurons simultaneously (Kanitscheider et al. 2015b), which may soon be 

possible. Yet another possibility is to examine the relationship between an animal’s 

behavioral report and the fluctuations of a single neuron across trials. Using this approach, 

Pitkow et al. (2015) found evidence recently that vestibular areas use a code containing 

differential correlations.

Although differential correlations cause information to saturate (Moreno-Bote et al. 2014), 

the total information in a sensory population can also be affected by nondifferential 

correlations (those that are not related to the tuning curve derivative). Consider a population 

of independent neurons. Information in this population is proportional to its size---adding 

neurons causes information to grow, without bound (Figure 1j, dotted line). This description 

also applies to heterogeneous populations with some kinds of nondifferential correlations 

(e.g., uniform additive noise; Abbott & Dayan 1999), but information grows more slowly 

with population size (Figure 1j, black line). If information grows five times more slowly, for 

instance, the correlated population will contain only 20% of the information of an 

equivalently sized independent population. Thus, nondifferential correlations can lower 

information significantly. However, differential correlations have a much bigger effect 

because information saturation means that the percentage of information compared to an 

independent code goes to zero as population size grows (Figure 1j, gray line). As discussed 

below, nondifferential correlations can also affect strongly information in small populations 

and the information at saturation in large populations through their interactions with 

differential correlations.

In summary, the study of population information is marked by an evolution in our 

understanding of which correlations matter. The work of Zohary and colleagues (1994) 

posited that neuronal responses should be pooled to arrive at an accurate estimate of 

population firing rate; in this scenario, the existence of any correlations within the pool are 

detrimental. The introduction of Fisher information and its application to homogeneous 

populations led to the suggestion that limited-range correlations make information saturate. 
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Finally, the incorporation of heterogeneous tuning led to the realization that only differential 

correlations cause information saturation. Thus, as theory has improved, it has 

fundamentally altered our understanding of which forms of correlation are functionally 

important for limiting information.

ESTIMATING LINEAR FISHER INFORMATION

Linear Fisher information is a central quantity for understanding how correlations influence 

population information. Computing linear Fisher information is thus critical for 

understanding whether the information provided by a neuronal population is sufficient to 

underlie a particular function or behavior. We therefore briefly review several approaches to 

estimating information and highlight pitfalls to be avoided.

The form of linear Fisher information suggests that calculating it directly from measured 

population responses should be straightforward. It requires estimating just two quantities: 

the tuning function (and then taking its derivative with respect to the stimulus variable of 

interest) and the response covariance matrix (and then inverting it). Unfortunately, linear 

Fisher information calculated this way is highly inaccurate. Although estimates of tuning 

function derivatives and covariance matrices based on finite data are unbiased, the nonlinear 

transformations involved in computing linear Fisher information result in a substantial 

overestimation of information. Fortunately, this bias can be corrected for analytically 

(Kanitscheider et al. 2015a), allowing for fast and accurate direct estimation of linear Fisher 

information from limited experimental data, as long as the number of trials exceeds the 

number of recorded neurons (Figure 2a).

A conservative alternative to computing linear Fisher information directly is to evaluate the 

performance of a linear decoder trained on the data (Series et al. 2004, Moreno-Bote et al. 

2014). Because a model fit to finite data will always fit noise (overfitting), it is critical to 

assess performance through cross-validation---leaving out a fraction of trials from the 

training set and evaluating performance on these. The cross-validated performance of the 

decoder will provide a lower bound on the true information (Figure 2b). Several studies have 

used this approach to quantify the effect of correlations on information in neuronal 

populations (e.g., Graf et al. 2011, Berens et al. 2012, Jeanne et al. 2013, Adibi et al. 2014, 

McDonald et al. 2014). In fact, cross-validated decoding and direct estimation provide 

complementary ways to quantify linear Fisher information. Direct estimation with current 

techniques (such as the one described in the previous paragraph) is not feasible when there 

are fewer trials than neurons available, and it can underestimate information in small and 

uninformative populations; in these regimes, decoding is the best option. Conversely, in 

large and informative populations, decoding can underestimate information significantly, 

whereas the direct method is extremely accurate (Kanitscheider et al. 2015a).

Importantly, linear Fisher information in neural data cannot be estimated accurately through 

simulation. Numerous studies have measured correlations in cortex and then used parametric 

approximations to the observed structure to estimate information either analytically or by 

decoding synthesized responses (e.g., reporting that correlations have roughly a limited-

range structure and then creating a covariance matrix with smoothly varying values; 
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Gutnisky & Dragoi 2008, Smith & Kohn 2008, Ecker et al. 2010). This approach is prone to 

profound errors. As discussed above, the differential correlations that limit information may 

be tiny. If one captures only general trends in correlations through simulation, the impact of 

differential correlations can be lost easily, and one could conclude erroneously that the 

population contains much more information than it truly does (Figure 3a). To avoid these 

problems, it is critical to estimate information using the measured responses of a 

simultaneously recorded population. Likewise, linear Fisher information cannot be assessed 

accurately with suboptimal decoders. For instance, it is possible to design a neural code in 

which information grows with the number of neurons but for which the information 

estimated by a factorized decoder saturates (Figure 3b). A factorized decoder is a suboptimal 

decoder whose weights depend only on individual neuronal response statistics, ignoring 

correlations. Factorized decoders, and other suboptimal decoders, can lead to the erroneous 

conclusion that a population contains much less information than it truly does.

A closely related point is that one should not draw general conclusions about the impact of 

correlations by quantifying their effect in small neuronal populations (i.e., populations that 

can be recorded with current technology). The impact of correlations is typically quantified 

by comparing the information in the recorded, or simulated, data to that obtained after 

removing correlations (namely, setting the off-diagonal entries of the covariance to zero; this 

is called shuffled information). The relation between the two can change drastically between 

small and large populations. For instance, consider a code that contains differential 

correlations. In small populations, one could find a small difference between information 

and shuffled information and conclude that correlations have little effect on information. 

However, as population size increases, the shuffled information will grow without bound 

while the true information will saturate owing to differential correlations, showing that these 

correlations have an enormous effect on information. Even worse, in some cases, one can 

reach opposite conclusions about how correlations affect information when analyzing small 

rather than large populations. For instance, Lin et al. (2015) considered a code in which 

correlations are beneficial rather than detrimental for small populations. However, in their 

code, correlations reduce information when a larger population is considered (Figure 3c).

There is thus an unfortunate paradox: Information can be evaluated only by measuring it in a 

recorded population (either by decoding or by direct estimation), but the effect of 

correlations on these populations may be different from their effect on larger, more 

functionally relevant population sizes. Clearly, we need a better understanding of the 

relevant population size for a given behavior or computation, measurements from larger 

populations, and theoretical developments that allow us to draw correct inferences from the 

data we can record. For the time being, it remains very much unclear whether documented 

changes in correlations, such as those that occur with behavioral or stimulus manipulations, 

have a meaningful effect on population information.

SOURCES OF CORRELATIONS

So far we have discussed which correlations affect information without discussing how they 

arise. We now consider the possible sources of correlations, beginning with differential 
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correlations because these cause information to saturate. We then consider other sources and 

how the correlations they generate affect information.

There are at least two potential sources of differential correlations. The first source is 

representational expansion: Fewer neurons exist in sensory organs than in downstream 

structures. For instance, in the visual system, there are considerably more V1 neurons than 

retinal ganglion cells or cells in the lateral geniculate nucleus. This expansion implies that 

the information available in the retina is small compared to the coding capacity downstream 

(Kanitscheider et al. 2015b). Because the information in V1 cannot exceed that provided by 

the retina, information in V1 cannot be proportional to the number of cortical neurons; 

information must saturate, implying the existence of differential correlations. The second 

source of differential correlations is suboptimal computation. Imagine that a variable is 

encoded by many independent neurons but that only one neuron projects downstream---an 

extreme form of suboptimal computation. Clearly, information downstream would not grow 

with the number of neurons there but would instead saturate to a finite value corresponding 

to, at most, the information conveyed by the sole input neuron. This implies that the 

downstream network contains differential correlations that arise from suboptimal read out. 

Although this example is contrived, our point is general: Suboptimal computation always 

reduces information (in fact, this is true by definition). And because many complex 

computations in the brain are suboptimal (Beck et al. 2012a), suboptimal computation is 

likely a major source of differential correlations.

What sources contribute to correlations more generally? An obvious and oft-cited source is 

shared or common input (Shadlen & Newsome 1998, Kanitscheider et al. 2015b). However, 

the relationship between shared inputs and correlations is not straightforward: Shared inputs 

do not necessarily generate strong correlations. For instance, in randomly connected 

networks of excitatory and inhibitory neurons (balanced networks) (van Vreeswijk & 

Sompolinsky 1996), fluctuations in excitatory drive are tracked rapidly by fluctuations in the 

activity of inhibitory neurons (Renart et al. 2010). When two neurons receive correlated 

excitatory drive, correlated inhibitory signals (i.e., inhibitory inputs that are correlated with 

each other and with the excitatory pool) largely cancel their impact on postsynaptic 

responses (see also Salinas & Sejnowski 2000, Graupner & Reyes 2013). This mechanistic 

insight can explain why correlations in cortex---a highly recurrent network in which nearby 

neurons likely receive massive shared input---can be weak. Indeed, this architecture has been 

cited as a basis for the decorrelated or asynchronous cortical state (Ecker et al. 2010, Renart 

et al. 2010, Tan et al. 2014, but see also Bujan et al. 2015).

Notably, however, decorrelation via a balance of excitation and inhibition cannot always 

remove all correlations. For a network that receives limited information (i.e., less 

information than would be available from a population of N independent neurons), full 

decorrelation would make information grow linearly with network size and thus exceed the 

information in the inputs. This would violate the data-processing inequality, which states 

that processing a signal cannot increase its information. In Renart et al. (2010), correlations 

do disappear altogether for large networks, but this is because the input is composed of N 
independent neurons, in which case the data-processing inequality is not violated. The input 

information grows linearly with the population size, and the full decorrelation achieved by 
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the recurrent network (in the limit of an infinitely large population) amounts to preserving 

all the input information.

Although the asynchronous activity produced by balanced networks provides an important 

insight, these models clearly do not represent connectivity in cortical networks accurately. In 

cortex, connectivity is not random but clustered: Neurons receive preferential inputs from 

other neurons with similar functional properties (Bosking et al. 1997, Cossell et al. 2015), 

and connections are much stronger between some neurons than between others (Song et al. 

2005, Yoshimura et al. 2005). If the assumption of random connectivity is relaxed, quite 

different network dynamics are revealed. For instance, in networks with clustered 

connections, the firing of tightly interconnected neurons waxes and wanes together (Rasch et 

al. 2011, Litwin-Kumar & Doiron 2012), producing strong correlations within a local pool. 

Some empirical evidence suggests that correlations are stronger in networks with clustered 

connectivity than in networks with more homogeneous architecture (Hansen et al. 2012, 

Smith et al. 2013, Calabrese & Woolley 2015). Strengthening the coupling between 

randomly connected neurons can also result in transitions from the asynchronous state to 

complex network activity with strong cofluctuations (Ostojic 2014).

The preceding models emphasize the role of local connectivity patterns in generating 

correlations. A substantial portion of correlations may also be explained by global 

fluctuations in which the firing of many neurons increases or decreases together on each trial 

(Ecker et al. 2014, Goris et al. 2014, Pachitariu et al. 2015, Schölvinck et al. 2015). The 

widespread cofluctuations of cortical activity were first observed using voltage-sensitive dye 

imaging of macaque V1, which revealed spatially extensive regions of coherent hyper- and 

depolarization (Arieli et al. 1996). Building on this observation, more recent work has 

attempted to explain correlations as arising from a single, common cofluctuation in either an 

additive (Ecker et al. 2014) or multiplicative (Schölvinck et al. 2015) manner. Others have 

argued that the shared fluctuations involve more local shared gain factors (Goris et al. 2014) 

or several distinct factors distributed across the population (Yu et al. 2011, Rabinowitz et al. 

2015).

The source of global fluctuations is not clear. One possibility is that they are driven by top-

down or feedback inputs from higher cortex. Consistent with this possibility, several studies 

have shown that correlations are not hardwired by network architecture but are highly 

sensitive to behavioral context and brain state. For instance, the correlations between pairs of 

MT neurons change with task instructions: Correlations are stronger when a task requires the 

animal to combine a pair’s signals than when a task requires the two neurons to contribute 

signals to distinct outcomes (Cohen & Newsome 2008; see also Roelfsema et al. 2004, 

Ramalingam et al. 2013 for related results in V1). Similarly, the allocation of attention can 

reduce correlations strongly (Cohen & Maunsell 2009, Mitchell et al. 2009, Harris & Thiele 

2011, Herrero et al. 2013) but in other contexts may increase correlations (Ruff & Cohen 

2014). Recent models have also shown how top-down signals from decision areas that 

integrate sensory evidence could inject correlations into the sensory representation (Haefner 

et al. 2014, Wimmer et al. 2015).
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Although global fluctuations may contribute strongly to correlation magnitude, theory 

makes clear that this contribution is not equivalent to having an important role in limiting 

information. Two recent studies have reported that information is affected by global 

fluctuations, based on simulating (Lin et al. 2015) or analyzing (Arandia-Romero et al. 

2016, Pachitariu et al. 2015, using Shannon information) small ensembles. However, in large 

populations, only differential correlations can make information saturate. Global fluctuations 

do not create correlations of this type for most variables, except perhaps for variables such 

as visual contrast, which modulate the firing of most neurons in the same direction, as global 

fluctuations do. Although global fluctuations cannot make information saturate, 

multiplicative global fluctuations can lower the value at which information saturates if a 

population contains differential correlations (Kanitscheider et al. 2015b). This could allow 

top-down signals such as attention to increase information by reducing global fluctuations 

(Rabinowitz et al. 2015); of course, information could not increase past the saturation 

imposed by differential correlations. Another possibility is that top-down signals do not 

induce truly global fluctuations but instead modulate specific subsets of neurons (e.g., as in 

feature-based attention). In this case, top-down signals may introduce differential 

correlations (Ecker et al. 2015). Of course, if global fluctuations are driven by top-down 

inputs, it is also possible that downstream decoding circuits are aware that these signals have 

been injected. This would allow these circuits to negate entirely any influence of the injected 

signals on population coding accuracy.

In summary, numerous mechanisms determine the strength and properties of correlations 

(see also Doiron et al. 2016 for review). These include feedforward, local or recurrent 

connections, and top-down signals. Importantly, there may be a strong dissociation between 

the contribution of these mechanisms to the magnitude of correlations and their effect on 

information.

OTHER INTEREST IN CORRELATIONS

Our focus has been on progress in understanding how correlations limit population 

information. This progress has shown that just quantifying correlations, without considering 

their exact pattern, provides little insight into population information. However, measuring 

correlations may be useful for understanding other aspects of brain function and 

organization.

First, correlations appear exquisitely sensitive to cognitive and behavioral factors (Kohn et 

al. 2009). They are reduced strongly by the allocation of attention (Cohen & Maunsell 2009, 

Mitchell et al. 2009, Herrero et al. 2013) and arousal (Poulet & Petersen 2008), even when 

the effect of these inputs on single-neuron firing rates is difficult to detect. Correlations are 

also affected strongly by adaptation (Gutnisky & Dragoi 2008, Adibi et al. 2013) and 

learning (Komiyama et al. 2010, Gu et al. 2011, Jeanne et al. 2013). Thus, correlations may 

be a sensitive indicator of brain state and a useful metric for quantifying the efficacy of 

behavioral manipulations (e.g., the level of arousal). However, it must be understood that 

these changes in mean correlations do not necessarily indicate that population information 

has been altered (Series et al. 2004, Bejjanki et al. 2011, Gu et al. 2011).
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Second, correlations can be used to infer functional connectivity from measurements of 

spiking activity (Stevenson et al. 2008). Such inferences were first based on measuring the 

correlation in spike timing of neuronal pairs (Moore et al. 1970), a form of correlation that is 

mathematically related to the count correlations that we have emphasized (Bair et al. 2001). 

Pairwise timing correlations have been used to infer connectivity between the thalamus and 

cortex (Reid & Alonso 1995) and between stages of the temporal visual processing pathway 

(Hirabayashi et al. 2013). Detailed anatomical measurements have shown that correlation 

magnitude can be indicative of the interconnectedness of neurons (Gerhard et al. 2013, 

Cossell et al. 2015, Okun et al. 2015).

However, the relationship between correlations and network architecture is complex. 

Modeling work has highlighted some of the difficulties of using correlations to infer 

connectivity (Ginzburg & Sompolinsky 1994, Ostojic et al. 2009). For instance, weak or 

absent correlations do not indicate a lack of shared inputs (Renart et al. 2010), as discussed 

previously. Similarly, a timing relationship between two spike trains does not indicate an 

anatomical connection between the pair of neurons (Yu & Ferster 2013). New analytical 

approaches are under development to fit full population responses, allowing more accurate 

inferences about connectivity (Okatan et al. 2005, Pillow et al. 2008, Gerwinn et al. 2010, 

Masud & Borisyuk 2011). Ultimately, the use of spiking correlations---or of response 

dependencies, more generally---to infer connectivity may have the greatest success in 

systems for which there is already substantial anatomical knowledge (e.g., paired with 

connectomics), for which one can sample from most of the constituent elements (Pillow et 

al. 2008), or for which computational models make predictions about compelling patterns of 

correlations (Baker & Bair 2012).

Third, understanding correlations among neurons is critically important for understanding 

the relationship between each neuron’s activity and behavioral decisions (Nienborg et al. 

2012). In recent work, Haefner and colleagues (2013) derived the relationship between a 

single neuron’s response fluctuations and a perceptual decision (often termed choice 

probability), assuming a linear readout of sensory population activity (see also Pitkow et al. 

2015). When large neuronal populations contribute to behavior, the weight assigned to each 

neuron by the readout contributes negligibly to this relationship. Instead, the relationship is 

dominated by the correlation between the neuron’s fluctuations and the rest of the relevant 

pool (and the weights assigned to the neurons in that pool). Thus, understanding the 

structure of correlations within a population is critical for interpreting how each individual 

neuron contributes to a behavioral choice and how neural representations are read out.

Fourth, correlations can provide a diagnostic signature of network organization and the 

properties of a neural representation. For instance, just as reproducing individual neuronal 

response statistics places strong constraints on network models (van Vreeswijk & 

Sompolinsky 1996, Shadlen & Newsome 1998, Vogels & Abbott, 2005; Vogels et al. 2005), 

capturing the magnitude and pattern of correlations under different stimulus and behavioral 

regimes may provide important clues about network architecture. A second, less mechanistic 

example is the suggestion that cortical populations represent not only point estimates of a 

quantity of interest but also the uncertainty associated with such estimates (Ma et al. 2006). 

Different proposals exist for how such probabilistic representations can be achieved, and 
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these may create different patterns of correlations (see Pouget et al. 2013 for a review). A 

final example is the proposal that early cortical processing relies on probabilistic generative 

models of the natural sensory environment (Barlow 2001, Dayan & Abbott 2001, Simoncelli 

& Olshausen 2001, Fiser et al. 2010, Berkes et al. 2011). Patterns of correlations may be 

related to dependencies among the variables represented in such models.

SHORTCOMINGS

Given what we have learned about correlations, what are the obvious shortcomings in our 

current understanding? Arguably, the most pressing issues are theoretical. Much theory has 

been devoted to understanding how correlations affect the ability of linear decoders to 

estimate the value of a one-dimensional variable, such as stimulus orientation. This is an 

important question. It involves a clearly defined computation; performance is also easily 

quantified and can be related to a broad perceptual literature involving the estimation of a 

sensory quantity or the discrimination between stimuli. By understanding the factors that 

limit the sensory representation, we gain important insight into the neural constraints on 

perceptual performance.

However, estimating a one-dimensional variable is a gross simplification of computation in 

the brain. Visual processing, for example, involves a hierarchical sequence of computations, 

some nonlinear, with robust top-down control. Although we have some understanding of 

how the properties of downstream circuitry influence information loss in feedforward and 

simple recurrent networks (Beck et al. 2011, Renart & van Rossum 2012), we have a poor 

understanding of how the computations involved in sensory processing are affected by 

correlations. Similarly, understanding the role of correlations in higher cognitive functions---

for example, classifying stimuli into categories such as aversive versus appetitive---may 

require a different mathematical treatment (Da Silveira & Berry 2014).

We note that there is, in fact, a striking gap in theoretical and computational neuroscience: 

One community focuses on the computations that build sensory representations or underlie 

cognitive function, neglecting variability and correlations; another focuses on variability and 

correlations, but in the context of limited and simple computation (but see Beck et al. 2012b, 

Grabska-Barwińska et al. 2014, Hennequin et al. 2014). Recent work has shown the 

problems that can arise because of this gulf. An oft-cited strategy for untangling sensory 

information (Friedrich & Laurent 2001, DiCarlo et al. 2012) is to feed the activity of a small 

neuronal population into a much larger one---termed representational expansion (Cortes & 

Vapnik 1995). But such an expansion is not necessarily beneficial when the information in 

the small input representation is limited, as several studies have demonstrated (Series et al. 

2004, Bejjanki et al. 2011, Babadi & Sompolinsky 2014).

A second issue is that visual processing requires relaying spiking activity through distributed 

networks, in which a cortical area may receive input from multiple competing sources. 

Modeling work has shown that relaying spiking activity reliably through such distributed 

networks can be surprisingly difficult (Salinas & Sejnowski 2000, Litvak et al. 2003, Vogels 

et al. 2005, Kumar et al. 2010, Zandvakili & Kohn 2015). This imposes an entirely different 
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functional constraint on correlations---determining their potency in driving downstream 

networks, which may have their own rich, internal dynamics.

Ultimately, understanding the influence of correlations on brain function will require the 

study of spiking networks with an architecture that captures essential features of the biology 

and which implement the rich computations performed by those networks. The picture that 

would emerge from such an effort will surely build on the insights we have gained from 

studying the decoding of one-dimensional variables but will undoubtedly also raise entirely 

new sets of issues and constraints.

SUMMARY

Work in the past few decades has greatly advanced our understanding of how neuronal 

population information is influenced by correlations. Theoretical work has been instrumental 

in this progress. It has shown us that some forms of correlations limit information, whereas 

others do not. At least in the context of population information, theoretical progress has also 

revealed that simply characterizing response statistics can have limited value: Describing 

correlations does not translate into understanding information, as the largest correlations do 

not necessarily have the strongest effect on information. We view this progress as a 

cautionary tale because we are entering an era when our power to measure brain activity is 

exploding, while our conceptual frameworks remain underdeveloped. Our situation is 

perhaps analogous to pre-Newtonian physics, which attempted to understand the movements 

of the stars and planets through extremely careful and detailed measurements. Ultimately, 

however, orbits were understood in a straightforward way with Newtonian physics. We see a 

risk that we---like pre-Newtonian physicists, but abetted by much more powerful 

instrumentation---will drown in a sea of description, measuring and characterizing 

population activity patterns rather than understanding the computations and functions they 

underlie.
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BOX 1

LINEAR AND FULL FISHER INFORMATION

Linear Fisher information places a bound on the variance of the estimates of any 

unbiased linear decoder, which must be equal to or larger than the inverse of the Fisher 

information (Paradiso 1988, Seung & Sompolinsky 1993, Abbott & Dayan 1999). Linear 

Fisher information is a component of the full Fisher information. The full Fisher 

information can be substantially larger than the linear Fisher information for some 

response distributions. However, extracting this additional information requires more 

sophisticated, nonlinear decoding (e.g., Shamir & Sompolinsky 2004), which may be 

more difficult to implement or learn in biological circuits. Furthermore, linear Fisher 

information is equivalent to the full Fisher information for any response distribution of 

the exponential family with linear sufficient statistics (Beck et al. 2011). Evidence 

suggests that V1 responses to stimulus orientation (Graf et al. 2011, Berens et al. 2012) 

and medial superior temporal area (MSTd) responses to heading direction (Fetsch et al. 

2011) fall under this description, and there is no evidence that responses in other sensory 

areas do not. Thus, linear Fisher information is a reasonable and useful way to measure 

population information.
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BOX 2

LINEAR FISHER INFORMATION FOR FINE AND COARSE DISCRIMINATION

In a typical discrimination task, the subject is asked to distinguish two similar stimuli s+ 

= s + ds and s− = s − ds. Given neuronal population responses, one can construct a linear 

estimator of the stimulus that is unbiased for the two presented stimuli, a locally optimal 

linear estimator (LOLE). Given a neuronal response pattern r, the LOLE is given by

where ŝw is the estimate of the stimulus and f′ = (f(s+) − f(s−))/(2ds) and Q̄ = (Q(s+) + 

Q(s−))/2 are the difference quotient of the tuning curves and the average covariance 

matrix, respectively. Linear Fisher information is defined as the inverse of the average 

variance of the LOLE for the true presented stimuli (Series et al. 2004),

Note that one can always construct the LOLE explicitly. As a consequence, linear Fisher 

information is always attainable, unlike the full, nonlinear Fisher information.

It is common to distinguish fine and coarse discrimination tasks depending on whether ds 
is small or large. The definition of the LOLE and the expression for linear Fisher 

information above does not assume that ds is small; it is valid for both fine and coarse 

discrimination.

Kohn et al. Page 22

Annu Rev Neurosci. Author manuscript; available in PMC 2017 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. How different forms of correlations affect information
(a) A homogeneous neuronal population, having identical tuning except for the preferred 

stimulus value (arbitrary units). (b) Uniform correlation structure, in which all neurons are 

equally correlated regardless of preference. (c) Population activity in two individual trials 

(red and blue circles) in response to a stimulus value of 0. Neurons are sorted by their 

preferred stimulus value (abscissa). The trial-averaged response is shown by the black line. 

Additive noise that is positively correlated across all units produces vertical shifts of the 

population hill of activity. In a large population, such fluctuations can be averaged out 

entirely by using the optimal decoder; therefore, in each trial, the decoded stimulus value is 

identical to the true value. (d) Limited-range correlation structure, in which neurons with 

similar preferences are more strongly correlated. Note that correlation magnitude is 

unrealistically large to visualize clearly its effect on population activity. (e) Limited-range 

correlations distort the population activity profile in a way that cannot be averaged out, 

leading to variable estimates of the stimulus value. Conventions as in panel c. (f) Fisher 

information as a function of population size for uniform (black) and limited-range (gray) 

correlations. (g) A neuronal population with heterogeneous tuning. (h) The activity of two 

neurons, plotted against each other. The black line indicates the average responses evoked in 

these neurons by a range of stimuli, defined by their tuning; the gray arrow indicates the 
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derivative of this tuning. Differential correlations correspond to variability that changes the 

neural responses across trials (red and blue circles) along the direction parallel to the tuning 

curve derivative (red and blue arrows). For these two neurons, the derivatives have the same 

sign; hence, the differential correlations are positive. (i) Same as panel h, but for neurons 

that have derivatives with opposite signs; hence, the differential correlations are negative. (j) 
A graphical representation of the fact that linear Fisher information increases linearly with 

the number of neurons in an independent population (dashed line) and with some types of 

nondifferential correlations (black, continuous line), but with different slopes. Information 

saturates to a finite value with differential correlations (gray line).
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Figure 2. Estimating Fisher information from population recordings
Two estimators of Fisher information are shown that accurately capture the information 

present in a neuronal population. Simulations are based on 50 neurons and 200 experiments, 

where each experiment involves a different set of parameters for the filters representing each 

neuron. (a) The direct estimator with analytical bias correction (blue line) provides an 

unbiased estimate of the true information (dotted line). Shaded areas represent ±1 standard 

deviation of the estimate. (b) The performance of a trained decoder on left-out data (test set) 

provides a lower bound on the true information and approaches the true information when 

there are a sufficient number of trials. Both panels from Kanitscheider et al. 2015a.
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Figure 3. Common errors in estimating information
(a) Information in neural data can be severely misestimated when based on simulated data 

that approximate measured responses. Consider a synthetic population with differential 

correlations. For each population size N (abscissa), the true information is computed from 

the full population (dashed line) and shows clear saturation for large populations. The 

information estimated using an approximation to the true covariance matrix (green line) 

shows no saturation, yielding estimates that vastly exceed the true information. The 

estimated covariance matrix is constructed as in Moreno-Bote et al. (2014), figure 7a. 

Briefly, half the entries in the matrix are set to the measured value; the remaining entries are 

filled in by resampling the measured coefficients and enforcing that the resulting matrix is a 

covariance and that it has the same limited-range structure as the original data. (b) 

Suboptimal decoding can severely underestimate the true information in the population. 

Consider a heterogeneous population without differential correlations (model of Ecker et al. 

2011). The true information grows with population size (dashed line); the information 

estimated by a suboptimal, factorized decoder (green line) saturates, underestimating the 

true information. The factorized decoder is the correlation-blind decoder of Pitkow et al. 

(2015). (c) Conclusions about the importance of correlations based on small populations do 

not always apply to larger populations. Consider a synthetic population with homogeneous 

tuning and multiplicative global fluctuations (model and parameters of Lin et al. 2015, figure 

8E, with a coefficient of variation of 0.4), plus a small amount of differential correlations. 

For each population size (abscissa), the true information (black line) is computed from the 

true tuning and covariance matrix; the shuffled information (gray line) is computed after 

removing correlations (i.e., setting the off-diagonal entries of the covariance matrix to zero). 

For populations of tens of neurons, removing correlations reduces information, suggesting 

that correlations are helpful (brown shaded area). For larger population sizes, the true 

information saturates while the shuffled information grows linearly, showing correlations are 

harmful (purple shaded area). Thus, the conclusion that correlations increase information 

does not apply when considering populations that are likely to underlie function.
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