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Chikungunya virus (CHIKV) is a global public health threat, having been identified in >60 countries in Asia, Africa, Europe, and the
Americas. There is no cure for or licensed vaccine against CHIKV infection. Initial attempts at CHIKV vaccine development began in
the early 1960s. Whole-inactivated and virus-like particle (VLP) vaccines are 2 of the current approaches being evaluated. Success of
these approaches is dependent on a safe, well-tolerated vaccine that is immunogenic and deployable in regard to manufacturing,
stability, and delivery characteristics.
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Chikungunya virus (CHIKV) is a mosquito-borne alphavirus
in the family Togaviridae that causes a febrile, systemic illness
associated with disabling polyarthralgias [1]. CHIKV is a
global public health threat for which a preventive vaccine is
needed. Initial attempts at vaccine development for CHIKV
began in the early 1960s, after the virus was isolated from a
member of the Makonde tribe in Tanzania in 1952 [2–5] and
identified by the East African Virology Research Institute
(now the Ugandan Virology Research Institute). CHIKV
has reemerged sporadically roughly every 2 to 50 years
[6, 7]. Notably, a 2005 outbreak that started in Kenya and
spread across the Indian Ocean mainly by viremic travelers
was found to have been propelled by a specific mutation in
the E1 protein that increased the viral infectivity of the
Aedes albopictus vector, enabling broader dissemination of
CHIKV [8]. Vaccine development efforts in turn were reignit-
ed; CHIKV vaccine candidates using diverse platforms
emerged, including live-attenuated vaccines, which were im-
munogenic but accompanied by arthralgia in clinical trials
[9, 10]; recombinant modified vaccinia Ankara, measles, and
adenovirus-vectored vaccines [11–14]; a chimeric alphavirus
vaccine [15, 16]; and DNA vaccine candidates [11, 17–19].
Herein, we focus discussion on 2 additional platforms for
CHIKV vaccine development: whole-inactivated and virus-
like particle (VLP) approaches.

WHOLE-INACTIVATED VACCINES

Whole-inactivated vaccines may provide an enhanced safety
profile over traditional live vaccines as the inactivated viral path-
ogen is inactivated and thus nonreplicating and cannot revert to
its virulent form [20, 21]. Whole-inactivated antiviral vaccines
are currently licensed for polio, hepatitis A, Japanese encepha-
litis, influenza, and rabies, and a Vero cell culture–derived
whole-virus inactivated Ross river virus vaccine has successfully
advanced to phase 3 clinical trial evaluation [22]. Virus inacti-
vation is achieved through chemical or physical methods; how-
ever, the inactivation process has the potential to alter viral
epitopes and adversely affect immunogenicity because the na-
tive structure of the viral antigen is not always maintained. In
turn, administration of multiple doses, booster injections, or
the addition of adjuvant is often required to achieve protective
humoral immune responses [20].

Beginning in the early 1960s, inactivation of CHIKV has
been achieved through formalin, β-propiolactone, 1,5 iodo-
napthyl azide, binary ethyleneimine, or UV irradiation, en-
abling evaluation of whole-inactivated CHIKV vaccine
candidates in preclinical trials [4, 23–26]. A formalin-inactivat-
ed CHIKV vaccine prepared in African green monkey tissue
culture was previously evaluated in 16 healthy adults and
shown to be well tolerated and immunogenic [4].More recently,
a Vero cell–cultured, formalin-inactivated Alhydrogel-adju-
vanted CHIKV candidate vaccine based on the East-Central-
South African CHIKV strain isolated during the 2006 epidemic
in India was shown to elicit high-titer enzyme-linked immuno-
sorbent assay (ELISA) and neutralizing antibodies in mice [27].

VLP VACCINES

VLP vaccines consist of self-assembled viral structural proteins
that mimic the conformation of wild-type virus [28]. By
displaying antigenic epitopes that resemble wild-type virus in
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a high-density display, VLP vaccines are immunogenic and
induce highly neutralizing antibody titers [29]. VLPs provide
an enhanced safety profile as they are nonreplicating, noninfec-
tious constructs. Because live virus is not used in manufacturing,
neither viral attenuation nor viral inactivation is needed during
vaccine production, and this also enables low-containment
manufacturing. VLP vaccines have been used against hepatitis
B virus and human papillomavirus, and at least 2 VLP candidate
vaccines are being evaluated for CHIKV [30–32].

One mammalian cell–produced CHIKV VLP candidate vac-
cine is in advanced clinical development following encouraging
preclinical and early phase clinical evaluation. Expression vec-
tors encoding the CHIKV structural proteins (C-E3-E2-6K-E1)
from the West African CHIKV strain 37 997 transfected into
293 T HEK cells result in the production of VLPs that resemble
wild-type virus with E1 and E2 glycoproteins organized into
heterodimers [31]. In preclinical testing in nonhuman primates,
this VLP vaccine generated neutralizing antibody to both ho-
mologous and heterologous CHIKV strains and provided pro-
tection from viremia in a live CHIKV challenge model; the
mechanistic correlate of protection was demonstrated to be
CHIKV-specific neutralizing antibody [31].

In 2011, this CHIKV VLP nonadjuvanted vaccine candidate
was evaluated in phase 1 testing in 25 healthy adults ages 18–50
years. The vaccine was well tolerated and without dose-limiting
toxicity. Subjects received a 3-dose regimen of either 10, 20 or
40 mcg at weeks 0, 4 and 20 by intramuscular injection. All sub-
jects developed robust neutralizing antibody titers following the
first or second vaccination (geometric mean titers of the half
maximum inhibitory concentration, 2688 in the 10-μg group,
1775 in the 20-μg group, and 7246 in the 40-μg group), as
well as durable humoral responses that persisted at least
6 months following completion of the regimen [33]. Neutraliz-
ing antibody titers, assessed by a previously described reproduc-
ible, quantitative assay [34], reached levels inferred to be
protective following natural infection [35, 36], by comparison
to human convalescent neutralizing antibody responses in the
same assay. Based on this phase 1 safety and immunogenicity
data, the 20-μg dose on a 0- and 1-month schedule was
advanced into phase 2 evaluation in a randomized, placebo-
controlled trial in CHIKV-endemic regions of the Caribbean
(Clinicaltrials.gov NCT02562482).

EFFICACY EVALUATIONS

A promising vaccine could be used in outbreak settings where
attack rates are high in relatively naive populations. Approaches
to evaluate efficacy of a vaccine against an emerging viral disease
that may be sporadic in nature may include a traditional ran-
domized controlled trial or the “ring” vaccination approach,
which was recently successfully used in the West African
Ebola epidemic [37]. Complications related to efficacy evalua-
tion in the context of sporadic outbreak include issues related

to subclinical infections masking cases of disease [38] and dif-
ficulties in defining the primary source of exposure in the case
of mosquito and human vector.

Efficacy data will contribute to the demonstration and valida-
tion of a correlate of immunity. The CHIKV envelope antigens
are highly immunogenic in several platforms; there is good ev-
idence that neutralizing antibody activity is a correlate of immu-
nity. Therefore, it appears that vaccine development is
biologically feasible. If this can be proven in human field trials,
it may be feasible to license vaccines on the basis of their safety
and immunogenicity.

SUMMARY

CHIKV represents a rapidly emerging global infection in which
the debilitating arthritis and high attack rates create a public
health imperative to develop a safe and effective vaccine. In ad-
dition to people living in CHIKV-endemic regions, target pop-
ulations include travelers and guest workers, such as military
personnel, in such regions. Just as the epidemic has spread in
Asia because of the extended range of the A. albopictusmosqui-
to, it is likely that similar adaptations will eventually occur in the
Americas to extend the scope of that epidemic, so the relevant
populations for vaccination may also expand.

Ultimately, a successful vaccine will need to be well tolerated,
safe, devoid of significant vaccine-associated adverse events
such as arthralgia or arthritis, and induce high levels of durable
efficacy in the general population. In addition, it will need to
have manufacturing, stability, and delivery characteristics that
make it cost-effective. Whole-inactivated vaccine approaches
may have relatively low manufacturing costs, but the virus
would have to be grown under high-level containment, and
steps would need to be taken to ensure that antigenicity is not
altered by the inactivation process. VLP vaccines have the ad-
vantage of maintaining authentic structures and antigenicity
and are very safe. If they can be produced efficiently and achieve
sufficient stability, they would serve as ideal immunogens. Both
the whole-inactivated and VLP-based approaches can induce
high levels of antibody, but they may require more than a single
dose for optimal immunogenicity. Conversely, replication-
competent chimeric or vectored approaches may induce a
lower level of antibody but may achieve maximal immunogenic-
ity after a single dose, and therefore, if effective, could also be
suited for outbreak intervention, using a ring vaccination ap-
proach. Accordingly, it will be important to advance >1 vaccine
technology platform into field testing to provide the data need-
ed to determine approaches that best fit the public health needs
of a particular region or population.
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