
J. Smooth Muscle Res. 2015; 51: 70–81
Published online: October 24, 2015; doi: 10.1540/jsmr.51.70

Corresponding author: Prof. Dra. Aline de Freitas Brito, Universidade Federal da Paraíba/ Centro de Ciências da Saúde/De-
partamento de Educação Física. Address: Campus I - Castelo Branco I. João Pessoa – Paraíba – Brasil. Zip Code: 58.051-900
Phone: +55 83 3216 7695 / +55 83 3216 7030  e-mail: alineebritoo@gmail.com
©2015 The Japan Society of Smooth Muscle Research

Original

Intensity of swimming exercise influences 
tracheal reactivity in rats

Aline F. Brito1,2,3, Alexandre S. Silva3, Iara L. L. Souza1,2, Joedna C. Pereira1,2,  
Italo R. R. Martins1,2 and Bagnólia A. Silva1,2

1Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências 
da Saúde, Universidade Federal da Paraíba, Paraíba, Brasil
2Laboratório de Farmacologia Funcional Professor George Thomas, Centro de Ciências da 
Saúde, Universidade Federal da Paraíba, Paraíba, Brasil
3Laboratório de Estudos do Treinamento Físico Aplicado ao Desempenho e saúde, Departamento 
de Educação Física (DEF), Centro de Ciências da Saúde, Universidade Federal da Paraíba, 
Paraíba, Brasil

Submitted July 22, 2015; accepted in final form September 4, 2015

Abstract

Studies that evaluate the mechanisms for increased airway responsiveness are very sparse, although there 
are reports of exercise-induced bronchospasm. Therefore, we have evaluated the tracheal reactivity and the 
rate of lipid peroxidation after different intensities of swimming exercise in rats. Thus, male Wistar rats 
(age 8 weeks; 250–300 g) underwent a forced swimming exercise for 1h whilst carrying attached loads of 3, 
4, 5, 6 and 8% of their body weight (groups G3, G4, G5, G6 and G8, respectively; n=5 each). Immediately 
after the test, the trachea of each rat was removed and suspended in an organ bath to evaluate contractile 
and relaxant responses. The rate of lipid peroxidation was estimated by measuring malondialdehyde levels. 
According to a one-way ANOVA, all trained groups showed a significant decrease in the relaxation induced 
by aminophylline (10–12–10–1 M) (pD2=3.1, 3.2, 3.3, 3.3 and 3.2, respectively for G3, G4, G5, G6 and G8) 
compared to the control group (pD2=4.6) and the Emax values of G5, G6, G8 groups were reduced by 94.2, 
88.0 and 77.0%, respectively. Additionally, all trained groups showed a significant increase in contraction 
induced by carbachol (10–9–10–3 M) (pD2=6.0, 6.5, 6.5, 7.2 and 7.3, respectively for G3, G4, G5, G6 and G8) 
compared to the control group (pD2=5.7). Lipid peroxidation levels of G3, G4 and G5 were similar in both 
the trachea and lung, however G6 and G8 presented an increased peroxidation in the trachea. In conclusion, a 
single bout of swimming exercise acutely altered tracheal responsiveness in an intensity-related manner and 
the elevation in lipid peroxidation indicates a degree of oxidative stress involvement.
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Introduction

Physical exercise is a primary indication for asthma treatment (1, 2), since it is known that training 
on asthmatics reduces levels of both leukotrienes and endothelin (3) as well as attenuating oxidative stress 
markers (4). Asthmatic exercisers have a lower bronchoconstriction, even though they were without a therapy 
to eliminate the hyperresponsiveness of the airways. Additionally, physical exercise improves aerobic capacity 
and the endurance of respiratory muscles, making asthma attacks less uncomfortable (2, 5).

On the other hand, acute physical exercise can promote a response known as exercise-induced 
bronchoconstriction (EIB) (6, 7), also called exercise-induced asthma. It is a transient bronchoconstriction 
that occurs during, or immediately after, vigorous exercise in some individuals. Its prevalence is 12–15% in 
the general population or 10–20% in Olympic athletes in summer conditions, however, this event increases to 
50–70% of athletes under winter conditions and is intensified in patients with poorly controlled asthma (8).

Some investigations have identified that genetic (9), metabolic (10, 11) and hormonal factors (12) are 
related to EIB. Barreto et al. (11) showed that there is an increase in the concentration of 8-isoprostane (a 
marker of oxidative stress) in the breath condensate of asthmatic children with EIB, suggesting an involvement 
of oxidative stress in bronchial hyperactivity. In turn, other studies suggest that increased oxidative stress 
induces an increase in airway contractility (1).

The literature recommends that asthmatics should exercise with moderate intensity (13), but there is no 
data to support the concept that exercise intensity may be a causal factor in EIB. Several experimental models 
of tissue reactivity of the airways have been used to evaluate several factors such as the inflammatory processes 
involved in respiratory diseases (14) and the physiological mechanisms responsible for the production of mucus 
in the airways (15). Therefore, such models can provide information about a safe level of exercise which will 
avoid EIB in the population predisposed to this phenomenon. Despite this possibility, so far, there has been no 
study on the involvement of airway reactivity to exercise.

Thus, this study aimed to evaluate relaxation and contraction parameters in the rat trachea ​​immediately 
after swimming exercise of different intensities, ranging from aerobic to anaerobic and to investigate the 
possible involvement of metabolites of lipid peroxidation produced during exercise.

Material and Methods

Animals
Male Wistar rats (age 8 wk; weight 250–300 g) were obtained from the bioterium of Prof. Thomas George 

in Centro de Biotecnologia (CBiotec)/Universidade Federal da Paraíba (UFPB). The animals were kept in 
appropriate cages and fed a balanced diet based on feed pellets (Labina®, Purina - Paulínia, Brasil) with 
water ad libitum, constant ventilation and temperature (21 ± 1 ºC), and maintained in a daily 12-h light-dark 
cycle. The exercise tests were performed from 8–9 am and the cumulative concentration–response curves 
were constructed from 9 am – 10 pm. This study was performed following the guidelines for the ethical use 
of animals by Guide for Australian code for the care and use of animals for scientific purposes (2013). The 
protocol of this study was approved by the Ethics Committee for Animal Use of the CBiotec (CEUA/CBiotec) 
from UFPB (protocol: 1101/11).
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Drugs
Calcium chloride dihydrate (CaCl2.2H2O), magnesium chloride hexahydrate (MgCl2.6H2O), potassium 

chloride (KCl) and sodium bicarbonate (NaHCO3) were purchased from VETEC (Brazil). Monosodium 
phosphate 1-hydrate (NaH2PO4.H2O), glucose (C6H12O6), magnesium sulfate monohydrate (MgSO4.H2O) and 
hydrochloric acid (HCl) were purchased from Nuclear (Brazil). Sodium chloride (NaCl) was purchased from 
Dinâmica (Brazil). Carbamylcholine chloride (CCh), aminophylline, trichloroacetic acid, arachidonic acid 
(AA), and thiobarbituric acid were purchased from Sigma-Aldrich (Brazil). Carbogenic mixture (95% O2 and 
5% CO2) was purchased from White Martins (Brazil).

Exercise program
The animals were randomly divided into 6 groups with 5 rats in each. In the exercised groups, the animals 

were submitted to 1 h swimming sessions at five different exercise intensities (G3, G4, G5, G6 and G8%) (see 
below). In the Control Group (CG), the animals were maintained under the same conditions as the other groups 
and were acclimatized on the experiment day. They were not submitted to swimming session but to the control 
session where they were kept in shallow clean water at 31 ± 1 °C throughout the entire experimental period and 
were euthanized at the end of the experiment. The purpose of the control session was to induce stress without 
promoting physical training adaptations (16).

With stress, some animals had a tendency to adopt passive strategies termed immobilization periods, 
characterized by actions such as sitting on the bottom of the tank, putting the legs at the bottom of the tank to 
stand immobile, floating or carrying out small movements to keep their heads out of the water. To eliminate such 
stress, one week before the experimental protocol, the animals underwent two adaptive sessions, with an interval 
of 48 h between them. These sessions involved them swimming for 30 min without increasing the load they 
carried (17). The behavior of each animal was analyzed within the first 15 min, which was the duration recorded 
in the forced swimming test (18). Then, those animals that spent more than 15 min being immobile were excluded 
from our exercise trials, while the rats that swam actively were randomly distributed in each exercise group.

The swimming protocol was adapted from Chies et al. (19). We used a rectangular polyethylene tank 
measuring 120 cm in length, 50 cm in deep and 43 cm wide with water at a temperature of 29 ± 1 °C. The 
animals were submitted to the swimming exercise for a period of 1 h, with a metal ring tied to their chests by a 
1-cm wide elastic ribbon. The ribbon was elastic and could be adjusted close to the chest of the animal, similar 
to a belt measure heart rate in humans. This was adjusted to prevent discomfort or stress, and in such a way 
that the movement of the animals was not restricted or that the load did not fall off during exercise. On the few 
occasions that the elastic ribbon slipped off the rat’s chest, the researcher paused the timer, adjusting the ribbon 
and continued the exercise test. The metal rings in groups G3, G4, G5, G6 and G8 represented 3, 4, 5, 6 and 8% 
of the animal’s body weight, respectively, corresponding to the exercise intensity range they were subjected to 
(19). Gobatto et al. (16) identified that in the rats the maximal lactate steady state level (MLSS) is achieved with 
exercise loads of 5 to 6%. Thus, in the present study we selected exercise intensities below the anaerobic threshold 
(3 and 4%), around the anaerobic threshold (5 and 6%), and finally one protocol above the threshold (8%).

Assessment of exercise-induced lactate
Immediately at the end of the exercise sessions, 25 µl of arterial blood was withdrawn from the tail 

artery of the animal (20) into calibrated heparinized capillaries. Shortly thereafter, the samples were placed 
in Eppendorf® tubes containing 400 µl of 4% trichloroacetic acid and refrigerated until analysis. For serum 
lactate levels the protocol proposed by Engel and Jones was followed (21).
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Organ preparation and pharmacological evaluation of the rat trachea responsiveness
Five min after exercise, the rats of each group were euthanized by cervical dislocation. The trachea were 

removed and divided into segments containing 3–4 cartilage rings. To obtain isometric responses, the rings 
were individually suspended between an isometric force transducer and a stainless steel hook in organ baths (5 
ml) containing Krebs solution (mM) (NaCl 118.0, KCl 4.6, MgSO4 5.7, KH2PO4 1.1, CaCl2 2.5, Glucose 11.0; 
NaHCO3 25.0), adjusted to pH 7.4 and maintained at 37  C. The preparations were stabilized for a period of 1 h 
under a resting tension of 1 g and gassed with a carbonic mixture (95% O2 + 5% CO2).

After this stabilization period, a tonic contraction was induced by 10–6 M CCh, a muscarinic agonist. 
The integrity of the tracheal epithelium was observed by addition of 10–4 M AA to the organ bath (22), the 
rings that relaxed equal to or higher than 50% were considered to have an intact epithelium, while those 
with a relaxation equal to or less than 10% was considered to be without epithelium. After washing, the 
tracheal preparations were rested for 30 min, then a second tonic contraction was induced by 10–6 M CCh and 
aminophylline (10–12–10–1 M), a phosphodiesterase (PDE) inhibitor (23) was added cumulatively to the organ 
bath to obtain a relaxation curve. For pharmacological evaluation of the contractile reactivity, a cumulative 
curve was obtained by the addition of increasing concentrations of CCh (10–9–10–3 M) to the organ bath. The 
tracheal responsiveness was evaluated by comparing pD2 (negative logarithm of molar concentration of an 
agonist that produces 50% of its maximal effect) and Emax (maximum effect) values ​​for control and trained 
groups. The maximal contraction obtained in the CG was considered to be 100% and the effect exerted by the 
exercise was assessed referring to it.

Assessment of oxidative stress induced by exercise in trachea and lung
The rate of lipid peroxidation in trachea and lungs was determined by measuring the chromogenic product 

of the 2 thiobarbituric acid (TBA) reaction with malondialdehyde (MDA). The tissues were washed with cold 
saline to minimize the interference of hemoglobin with free radicals and to remove adhered blood. The tissues 
were weighed and homogenized with KCl 10%. Samples (250 µl) were removed and warmed in a water bath 
at 37 °C for 1 h, then 400 µl of perchloric acid 35% was added, and centrifuged at 0.02 G for 20 min at 4 °C. 
The supernatant was removed and placed in contact with 400 µl of thiobarbituric acid 0.6% and the mixture 
incubated at 95–100 °C for 1 h. After cooling the mixture, the absorbance of the supernatant was read at 532 
nm. A standard curve was generated using 1,1,3,3-tetrametoxipropane. The results were expressed as nmol 
MDA/mg protein. Protein concentration was measured using the Bradford method (24). For the determination 
of MDA concentration in each tissue sample the values were replaced by the absorbance values of the MDA 
standard curve obtained from different concentrations of a standard solution as described by Simonato (25). 
The data were normalized by dry weight present in a given volume of the sample, where the absorbance values 
were divided by the weight in grams of the tissue.

Statistical analysis
Data were expressed as mean ± standard error of the mean (S.E.M.) and were tested for normality and 

homogeneity using the Shapiro-Wilk and Levine, respectively. Comparisons between groups were made using 
one-way ANOVA, with post hoc Bonferroni’s test. Value of P<0.05 were considered to be significant. The 
values of pD2 and Emax were calculated by non-linear regression. All results were analyzed using GraphPad 
Prism version 5.01 (GraphPad Software Inc., San Diego CA, USA).
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Results

Assessment of exercise-induced lactate
Figure 1 shows a significant increase in lactate content in response to exercise sessions, which was 

proportional to the intensity adopted. Between the intensities of 3% (G3, 2.8 ± 0.35 mM) and 4% (G4, 3.35 
± 0.80 mM) of animal body weight, there was no difference in lactate production. From this point forward, 
higher intensities resulted in lactate production significantly higher than the next lower intensity. Thus, 5% 
(G5, 4.54 ± 0.39 mM) promoted the production of lactate greater than 4%. The intensity of 6% (G6, 5.66 ± 
0.39 mM) resulted in lactate production greater than 5% and the 8% intensity (G8, 6.59 ± 0.42 mM) resulted 
in lactacidemia greater than 6%.

Fig. 1.	 Lactate production as a function of exercise intensity. Data are reported as means 
± SEM (n = 5 per group). G3, G4, G5, G6 and G8: exercise intensity based on 
loading with 3, 4, 5, 6 and 8% of body weight, respectively, during swimming 
exercise. *P<0.05 vs. control; #P<0.05 vs. G3; †P<0.05 vs. G4; ‡P<0.05 vs. G5; 
¥P<0.05 vs. G6. (one-way ANOVA test).

Table 1.	 Values of pD2 and Emax (%) of aminophylline in the 
CG, G3, G4, G5, G6 and G8 groups on rat trachea

Group Emax (%) pD2

CG 100.0 ± 0.0 4.6 ± 0.3
G3 99.60 ± 0.4 3.1 ± 0.2*
G4 99.40 ± 0.6 3.4 ± 0.05*
G5 94.2 ± 1.77*,# 3.3 ± 0.09*
G6 88.0 ± 1.22*,# 3.3 ± 0.02*
G8 77.0 ± 2.09*,#,¥ 3.2 ± 0.03*

One-way ANOVA followed by Bonferroni’s post-test (n=5). 
G3, G4, G5, G6 and G8: exercise intensity based on loading 
with 3, 4, 5, 6 and 8% of body weight, respectively, during 
swimming exercise. *P<0.05 vs. control; #P<0.05 vs. G3 or 
G4; ¥P<0.05 vs. G5 or G6.

Table 2.	 Values of pD2 of CCh in the CG, G3, G4, 
G5, G6 and G8 groups on rat trachea

Group pD2

CG 5.7 ± 0.06
G3 6.0 ± 0.09*,¥

G4 6.5 ± 0.02*,#,¥

G5 6.2 ± 0.02*,#,¥

G6 7.2 ± 0.04*
G8 7.3 ± 0.05*

One-way ANOVA followed by Bonferroni’s post-
test (n=5). G3, G4, G5, G6 and G8: exercise intensity 
based on loading with 3, 4, 5, 6 and 8% of body weight, 
respectively, during swimming exercise. *P<0.05 vs. 
control; #P<0.05 vs. G3 or G4; ¥P <0.05 vs. G6 or G8.
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Pharmacological evaluation of the rat trachea responsiveness
All exercised groups had a decrease in the percentage of relaxation at concentrations of aminophylline 

compared to CG (Table 1, Fig. 2), which is demonstrated by the values of pD2 to different intensities (G3, 3.1 
± 0.2; G4, 3.2 ± 0.05; G5, 3.3 ± 0.09; G6, 3.3 ± 0.02; G8, 3.2 ± 0.03 vs. CG, 4.6 ± 0.3, P<0.05). Furthermore, 
it was found that the values of Emax (%) in the G5, G6 and G8 were significantly reduced compared to CG, G3 
and G4 (G5, 94.2 ± 1.77; G6, 88.0 ± 1.22; G8, 77.0 ± 2.09 vs. CG, 100.0 ± 0.0; G3, 99.60 ± 0.4; G4, 99.40 ± 0.6, 
P<0.05). It was also noted that Emax in G8 was lower than at 5% and 6% exercised groups (G8, 77.0 ± 2.09 vs. 
G5, 94.2 ± 1.77; G6, 88.0 ± 1.22, P<0.05). 

In addition, the exercised-induced groups showed a significant increase in their percentage of contraction 

Fig. 2.	 Representative traces and relaxant effect on rat trachea induced by aminophylline 
in control, G3, G4 and G5 (A and B, lower intensities), and G6 and G8 (C e D, 
higher intensities) groups. Data are reported as means ± SEM (n=5 per group). G3, 
G4, G5, G6 and G8: exercise intensity based on loading with 3, 4, 5, 6 and 8% of 
body weight, respectively, during swimming exercise. *P<0.05 vs. control (one-
way ANOVA test). CCh: carbachol; AA: arachidonic acid; W: wash.
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in concentrations of CCh compared to the CG (Table 2, Fig. 3). The contractile response was significantly 
greater for G4 and G5 compared to G3 (Fig. 3A and B). However, the higher intensities of the exercised groups 
(G6 and G8) showed an overlap for its percentage of contraction when compared to other groups (Fig. 3C and 
D), as demonstrated by the pD2 values (G6, 7.2 ± 0.04; G8, 7.3 ± 0.05 vs. CG, 5.7 ± 0.06; G3, 6.0 ± 0.09; G4, 
6.5 ± 0.02; G5, 6.5 ± 0.02, P<0.05).

Fig. 3.	 Representative traces and contractile effect on rat trachea induced by CCh in 
control, G3, G4 and G5 (A and B, lower intensities), and G6 and G8 (C e D, higher 
intensities) groups. Data are reported as the means ± SEM (n = 5 per group). G3, 
G4, G5, G6 and G8: exercise intensity based on loading with 3, 4, 5, 6 and 8% 
of body weight, respectively, during swimming exercise. *P<0.05 vs. control; 
#P<0.05 vs. G3 (one-way ANOVA test). CCh: carbachol.
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Assessment of oxidative stress induced by exercise in trachea and lung
All exercise protocols promoted increases in lipid peroxidation unrelated to exercise intensity compared 

to the CG (Fig. 4). In rat trachea, the increase in peroxidation was similar among intensities of 3, 4 and 5%, 
while 6% presented much higher peroxidation and G8% generated the highest lipid peroxidation among all 
intensities. On lung samples, there was increased peroxidation but without differences among the intensities 
of exercises.

Discussion

The present study demonstrated that aerobic exercise promotes a reduction in the tracheal relaxation 
response accompanied by an increased contractile pattern of this organ which was exacerbated at higher 
intensities (6 and 8%). The contraction increased and the relaxation reduced, with loads of 6 and 8 and were 
directly related with a significant elevation in lipid peroxidation (rat trachea and lungs). There are corroborating 
studies that showed that oxidative stress can induce airway hyperresponsiveness (26), mucus hypersecretion 
(27), epithelial shedding (28) and produce harmful effects on the airway smooth muscle (29).

Asthmatic disease is a chronic inflammatory pathology characterized by hyperresponsiveness of the lower 
airways to several allergenic factors, which contracts the bronchioles hindering expiration severely (30). On 
the other hand, EIB or exercise-induce asthma may occur even in persons who do not respond to any allergen.  
The practical implication of the present data is associated with EIB.

It is known that interleukins and other pro-inflammatory agents (9), hormonal changes with increased 
levels of leptin and reduced adiponectin levels (12) and increased oxidative stress (11) may participate in EIB. In 
addition, environmental changes such as cold weather, dry air and even intensity of exercise are factors that can 
influence the bronchospasm (31). Despite these factors, the exercise intensity has been given special attention, 
because it is the variable most likely to be controlled in order to prevent EIB episodes (32). In light of this, the 

Fig. 4.	 Levels of lipid peroxidation in trachea (A) and lung (B) in control, G3, G4, G5, G6 and G8 groups. 
Data are reported as means ± SEM (n=5 per group). G3, G4, G5, G6 and G8: exercise intensity 
based on loading with 3, 4, 5, 6 and 8% of body weight, respectively, during swimming exercise. 
*P< 0.05 vs. control; #P<0.05 vs. G4; †P<0.05 vs. G5; ‡P<0.05 vs. G6 (one-way ANOVA test).
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consensus is that moderate-intensity exercise is more suitable to achieve the benefits of physical training while 
minimizing asthma attacks in humans (33). In fact, some studies have shown a severe bronchospasm in response 
to high intensity exercise both in people with respiratory problems (34) and athletes (35, 36).

The mechanisms involved in this phenomenon include an increase in pro-inflammatory mediators (kinins 
and interleukins) (37), oxidant lipid mediators (38) and nitric oxide (39). It is noteworthy these mechanisms 
were mostly studied using only indirect methods such as questionnaires and measurement of gases. Studies 
that directly prove these mechanisms are sparse, but there is one investigation analyzing the expression of 
pro-inflammatory proteins in the adrenal medulla (32). Exercise has been shown to increase the expression of 
phosphorylated inflammatory proteins and consequently the levels of eosinophils in high-intensity exercises.

The present study provided direct data on the responsiveness (contractile and relaxant) of exercise on 
superior airways in an animal model. Our results showed that a range of low to moderate intensity aerobic 
exercises are able to increase the contractile response to cholinergic stimulation and reduced the relaxant 
patterns of the xanthine compound in Wistar rat trachea, and that higher intensity of exercise exacerbates 
these responses. In this study, we have used aminophylline instead of isoproterenol which stimulates the 
adrenoceptors because the rat tracheal smooth muscle has few β-receptors (40) and these receptors can be 
easily desensitized by prolonged or repetitive administration of isoproterenol. Although isoproterenol-
desensitized tracheal preparations exhibited a diminished sensitivity to other β-agonists, they still respond 
to the spasmolytic actions of aminophylline (41). The intensities that modify the contractile and relaxant 
responsiveness were of 6 and 8% of body weight, which induced a metabolic demand of 5.66 and 6.59 mM 
of lactate. Therefore, we determinate that the bronchospasm was achieved in the anaerobic exercises range 
(16). The animals in this study were able to maintain the exercise protocol for 60 min with the same serum 
concentration of 5.5 mM, which was the lactate threshold as proposed by Gobatto et al. (16). In contrast, Carr et 
al. (42) found an anaerobic threshold of 7 mM, which explains in a better way the performance of the rats in our 
exercise protocol. Therefore, our results allow us to propose that higher intensity exercise, but not necessarily 
anaerobic, would be less suitable for those who want to avoid EIB attacks.

Hewitt et al. (43) indicate that even moderate-intensity aerobic exercise training attenuates the airway 
hyperresponsiveness via a mechanism that involves β2-adrenoceptors in mice sensitized/challenged with 
ovalbumin, but not in the control group.  Furthermore, low-intensity aerobic exercise has been associated with 
an increase in the levels of serum epinephrine mitigating EIB in asthmatic Sprague-Dawley rats (44). In these 
studies, the exercise attenuated the airway resistance in asthmatic rats, but not in normal rats, however, the 
species used in our study differs from theirs.

In addition to the increased contractile response in higher intense workouts, the elevation in lipid 
peroxidation, as a function of exercise intensity, indicates that oxidative stress may be also involved in the 
inflammatory activity of airway, as it has been described that reactive oxygen species can induce cytokine and 
chemokine production through induction of the oxidative stress-sensitive transcription of nuclear factor-kB in 
bronchial epithelial cells (45).

These data corroborate what was previously suggested by Barreto et al. (11), who reported an increase in 
the concentration of 8-isoprostane (an indicator of oxidative stress) in the exhalation of children with exercise-
induced bronchoconstriction. Other recent studies also found an increased oxidative stress in humans who did 
exercise with higher intensities (3, 38).

In the present experiments we applied to the animal models a training protocol which was similar to 
that for humans and observed, for the first time, its acute influences on superior airway responsiveness. The 
results suggest that the airways become more responsive to contractile agents and less to relaxant agents in 
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response to exercise with high intensity, allowing us to provide more substantial data to support the idea that 
the asthmatics should choose the lower intensity exercises from light to moderate. The incidence of asthma 
exercise-induced is intensity-dependent and the threshold intensity may be reduced in the case of humans or 
animals, having a history of asthma. Therefore, further experiments using asthmatic animal models should be 
done to characterize our findings better. Finally, the present study is of great value for both the patients and the 
exercise prescribers since it provides a guiding principle for the physical activities that will be given to patients 
with respiratory problems.
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